OXAZOLES: SYNTHESIS, REACTIONS, AND SPECTROSCOPY

Part B

Edited by

David C. Palmer

Johnson & Johnson Pharmaceutical Research & Development, L.L.C.
Raritan, New Jersey
OXAZOLES:
SYNTHESIS, REACTIONS, AND SPECTROSCOPY, PART B

This is the sixtieth volume in the series
THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS
To my wife, Vicki, with love
The Chemistry of Heterocyclic Compounds
Introduction to the Series

The chemistry of heterocyclic compounds is one of the most complex and intriguing branches of organic chemistry, of equal interest for its theoretical implications, for the diversity of its synthetic procedures, and for the physiological and industrial significance of heterocycles.

The Chemistry of Heterocyclic Compounds has been published since 1950 under the initial editorship of Arnold Weissberger, and later, until his death in 1984, under the joint editorship of Arnold Weissberger and Edward C. Taylor. In 1997, Peter Wipf joined Prof. Taylor as editor. This series attempts to make the extraordinarily complex and diverse field of heterocyclic chemistry as organized and readily accessible as possible. Each volume has traditionally dealt with syntheses, reactions, properties, structure, physical chemistry, and utility of compounds belonging to a specific ring system or class (e.g., pyridines, thiophenes, pyrimidines, three-membered ring systems). This series has become the basic reference collection for information on heterocyclic compounds.

Many broader aspects of heterocyclic chemistry are recognized as disciplines of general significance that impinge on almost all aspects of modern organic chemistry, medicinal chemistry, and biochemistry, and for this reason we initiated several years ago a parallel series entitled General Heterocyclic Chemistry, which treated such topics as nuclear magnetic resonance, mass spectra, and photochemistry of heterocyclic compounds, the utility of heterocycles in organic synthesis, and the synthesis of heterocycles by means of 1,3-dipolar cycloaddition reactions. These volumes were intended to be of interest to all organic, medicinal, and biochemically oriented chemists, as well as to those whose particular concern is heterocyclic chemistry. It has, however, become increasingly clear that the above distinction between the two series was unnecessary and somewhat confusing, and we have therefore elected to discontinue General Heterocyclic Chemistry and to publish all forthcoming volumes in this general area in The Chemistry of Heterocyclic Compounds series.

The chemistry and synthetic applications of oxazoles were first covered in 1986 in a comprehensive volume edited by I. J. Turchi (Volume 45 of The Chemistry of Heterocyclic Compounds series). In the meantime, the number of synthetic strategies directed toward oxazole assembly as well as the use of these versatile heterocycles as intermediates, catalytic ligands, and pharmaceutical building blocks has vastly increased. We felt that a supplement and update of oxazole chemistry would be welcomed by the international chemistry community, and we are delighted that Dr. Palmer and his colleagues have accomplished this onerous mission. This volume represents another outstanding service to the organic and
heterocyclic chemistry literature that we are pleased to publish within *The Chemistry of Heterocyclic Compounds* series.

Department of Chemistry
Princeton University
Princeton, New Jersey

Edward C. Taylor

Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania

Peter Wipf
Foreword

The subject of heterocyclic chemistry, prior to 1950, had been viewed as the domain of a small group of organic chemists. The perception prevailed that these individuals simply added ingredients together to make a witch’s brew, heated it to 150–250°C, and ultimately isolated a heterocyclic compound. This may be a somewhat exaggerated description of the subject but nevertheless makes the point that up to that time, it was assumed that one needed special training and knowledge to engage in this subject. However, in spite of this, a large number of molecularly distinct heterocyclic compounds were prepared and subsequently found to have highly important uses in medicine, polymers, dyes, and a number of other areas. As biology and biochemistry matured into a true science during the past 50 years, more and more biological phenomena were found to involve heterocyclic systems. This led to an increased appreciation of heterocycles, their chemical properties, and the reactions they undergo. As a result, these ring systems were subsequently regarded as more than a narrow field of chemistry. There is now little need to convince the informed scientific community of the incredible value of heterocyclic compounds.

As organic chemistry entered a new level of sophistication in the 1950s and understanding of chemical reactions was actively pursued, heterocyclic compounds were also included in this exploration and found to play a major role in many important chemical reactions, both as intermediates and as final products. As this writer predicted in 1974 in a monograph entitled “Heterocycles in Synthesis,” these ring systems will not only be crucial to the scientific areas already mentioned above but will also find great importance in the synthesis of all types of organic compounds. In fact, in the current climate, heterocycles and their properties are so well accepted that they pervade all areas of medicine and biology, as well as chemistry.

The present updated volumes relating to oxazoles, oxazolines, and oxazolones are very timely works since these simple five-membered ring heterocycles have contributed much to the knowledge we have acquired in various fields of biological and chemical sciences. For example, we may envision oxazolones as tautomeric derivatives of the old and well-known azlactones, first reported in 1883. They may also be viewed as “cyclized” amino acid derivatives or their dehydro analogs and therefore would be expected as constituents of many biologically active natural products. In addition, these ring systems have shown their versatility in the synthesis of a variety of ligands for metal catalysts, as well as precursors or vehicles to reach many types of functionalized compounds. Furthermore, their chiral counterparts—oxazoles, oxazolines, and oxazolones containing a stereogenic center—have been major players in a very large number of asymmetric syntheses. Hardly a day passes that some journal does not describe the involvement of these chiral, non-racemic heterocycles for preparing an organic compound in very high
enantiomeric excess. Thus, oxazoles and their derivatives, whose synthesis, properties, and reactivity are described in the following two volumes, represent an immensely versatile family of heterocyclic compounds for future exploitation by both synthetic and medicinal chemists.

Fort Collins, Colorado
A. I. Meyers
November, 2002
Preface

By far the most comprehensive review of the synthesis and reactions of mononuclear oxazoles and derivatives is \textit{The Chemistry of Heterocyclic Compounds, Volume 45}, edited by I. J. Turchi and published in 1986. This work is the definitive reference for oxazole chemistry through 1983. Subsequently, literally tens of thousands of references appeared in the period 1983–2001 pertaining to this remarkable small ring heterocycle. Oxazoles and derivatives continue to be of great interest and importance in all aspects of synthetic chemistry with applications in medicinal and agricultural chemistry, material sciences, photographic dyes, peptide chemistry, asymmetric catalysis, and polymer chemistry. Indeed, more than 250 reviews focusing on specific aspects of the chemistry and biology of oxazoles, oxazolones, oxazolines, and chiral bis(oxazolines) have been published from 1983 to 2001. The continuing interest in oxazoles together with the wealth of new information warrants a second review of this exciting area.

It would require a Herculean effort to prepare a complete discussion and review of every report related to the synthesis, reaction, or application of an oxazole while tabulating every oxazole, oxazolone, oxazoline, and chiral bis(oxazoline) prepared and evaluated during the period of 1983–2001. Such an undertaking is beyond the scope of this review. Furthermore, the ease with which electronic databases, including the patent literature, can be searched, the data retrieved, and the information tabulated would render such a project somewhat redundant.

Rather, the intent of the current project is to provide the reader with a discussion and leading examples of significant advances made in the synthesis, reactions, and applications of mononuclear oxazoles, oxazolones, oxazolines, and chiral bis(oxazolines) during this time frame. The material focuses on the more recent literature, although an update of the older synthetic literature is included wherever possible. In an effort to be selective, references to relevant reviews of material, not discussed in a chapter, are provided. Completely reduced oxazoles, that is, oxazolidines as well as benzo-fused derivatives, are outside the scope of this review.

The coverage is similar to that of Volume 45, although the presentation has been changed and the scope has been expanded to include a chapter devoted to the exciting area of chiral bis(oxazolines). The material is presented in nine chapters and two volumes. In some cases, the organization of the individual chapter contents is different from that in Volume 45 to reflect the changing emphasis on newer methodologies and synthetic targets. For example, in Part A, Chapter One contains an expanded section that deals specifically with the synthesis of selected naturally occurring mono-, bis-, and tris(oxazoles) to reflect the significant synthetic challenges therein. In addition, the discussion of cycloaddition and Diels–Alder reactions of oxazoles is introduced in Chapter One but is covered in detail in Chapter Three. In Part B, oxazolones are defined by the structure of the individual
regioisomer and discussed in Chapters Five, Six, and Seven, respectively. Chapter Eight describes the syntheses and reactions of oxazolines including asymmetric methodology employing monooxazoline ligands. A new chapter, Chapter Nine, was added to include the recent developments in asymmetric synthesis utilizing chiral bis(oxazolines). Discussion of material from the patent literature has been included as an integral part of the volumes. Primary emphasis has been given to general syntheses and reactions. However, reactions that are more limited in scope and yet are singularly unique may also be described.

Tables are included in every chapter. Wherever possible, these contain a variety of selected examples to provide the reader with the scope and limitations of synthetic methods and reactions. However, in some cases a table will contain only the examples reported. No attempt has been made to provide an exhaustive compilation of every oxazole, oxazolone, or oxazoline prepared since 1983.

Part A is devoted specifically to the synthesis, reactions, and spectroscopic properties of oxazoles and encompasses four chapters: Chapter 1—Synthesis and Reactions of Oxazoles; Chapter 2—Spectroscopic Properties of Oxazoles; Chapter 3—Oxazole Diels–Alder Reactions; and Chapter 4—Mesoionic Oxazoles.

Part B is comprised of the following five chapters: Chapter 5—2(3H)-Oxazolones and 2(5H)-Oxazolones; Chapter 6—4(5H)-Oxazolones; Chapter 7—5(2H)-Oxazolones and 5(4H)-Oxazolones; Chapter 8—2-Oxazolines; and Chapter 9—Chiral Bis(oxazolines).

Acknowledgments: I thank the authors for their individual contributions and patience through several iterations of the chapters. I am indebted to the library staff at Johnson & Johnson Pharmaceutical Research & Development who secured even the most obscure references in a timely manner. A very special acknowledgment and thanks are due to Dr. Fuqiang Liu for his critical insights, suggestions, comments, and review of individual chapters during preparation of these volumes. I thank Dr. Mayra Reyes and Dr. Brigitte Segmuller for their help with the indices for Part B. The series editors, particularly Professor Ted Taylor, offered many helpful suggestions and guidance. I thank Dr. Darla Henderson and Ms. Amy Romano at John Wiley & Sons for their constant encouragement and support. Special thanks are due to Ms. Shirley Thomas and her staff at John Wiley & Sons for their patience and understanding during preparation of these volumes. Finally, I am deeply thankful to my wife, Vicki, for her continual support, patience, and understanding during this entire project.

The reader may well encounter errors in a work of this magnitude, particularly in one with several thousand structures. I hope such errors will not detract from the overall intent of the volumes. Nonetheless, any errors are the responsibility of the editor.

Johnson & Johnson Pharmaceutical Research & Development, L.L.C.
Raritan, New Jersey
David C. Palmer
Contents - Part B

Contents - Part A xv

Abbreviations xvii

5. 2(3H)-Oxazolones and 2(5H)-Oxazolones 1
 T. KUNIEDA and H. MATSUNAGA

6. 4(5H)-Oxazolones 53
 D. C. PALMER

7. 5(2H)-Oxazolones and 5(4H)-Oxazolones 129
 C. CATIVIELA and M. D. DIAZ-DE-VILLEGAS

8. 2-Oxazolines 331
 G. S. K. WONG and W. WU

9. Chiral Bis(oxazolines) 529
 A. GHOSH, G. BILCER, and S. FIDANZE

Author Index 595

Subject Index 635
Contents - Part A

Abbreviations xv

1. Synthesis and Reactions of Oxazoles 1
 D. C. PALMER and S. VENKATRAMAN

2. Spectroscopic Properties of Oxazoles 391
 D. LOWE

3. Oxazole Diels–Alder Reactions 417
 J. I. LEVIN and L. M. LAAKSO

4. Mesoionic Oxazoles 473
 G. W. GRIBBLE

Author Index 577

Subject Index 599
Abbreviations

2-MI 2-methylimidazole
9-BBN 9-borabicyclo[3.3.1]nonane
Ac acetyl
acac acetylacetonate
Acm acetamidomethyl
ADH asymmetric dihydroxylation
ADHD attention-deficit hyperactivity disorder
AHMHA 4-amino-3-hydroxy-6-methylheptanoic acid
AHPBA 3-amino-2-hydroxy-4-phenylbutyric acid
Aib 2-aminoisobutyric
AIBN 2,2′-azobisisobutyronitrile
Alloc or AOC allyloxy carbonyl
AMNT aminomalonicitrile p-toluenesulfonate
BARF tetrakis[3,5-bis(trifluoromethyl)phenyl]borate
BDMS biphenyldimethylsilyl
BINAP 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
BINOL [1,1′]binaphthalenyl-2,2′-diol
BINOL-box 3,3′-bis(2-oxazolyl)-1,1′-bi-2-naphthol
Bn benzyl
Boc tert-butyloxy carbonyl
Boc-Ox 2-oxo-3(2H)-oxazolecarboxylic acid tert-butyl ester
BOP benzotriazol-1-yl oxytris(dimethylamino)phosphonium hexafluorophosphate
BOP-Cl N,N-bis-(2-oxo-3-oxazolidinyl)phosphonic chloride
BPA l,4-boronophenylalanine
BPO dibenzoyl peroxide
Bt benzotriazol-1-yl or 1-benzotriazolyl
Bz benzoyl
C3diPhe trans-1-amino-2,3-diphenyl-1-cyclopropanecarboxylic acid
Cbz benzoxycarbonyl
Cbz-Ox 2-oxo-3(2H)-oxazolecarboxylic acid benzyl ester
CDI 1,1′-carbonyldiimidazole
CIP 2-chloro-1,3-dimethylimidazolium hexafluorophosphate
CNS central nervous system
cod cyclooctadiene
Cp cyclopentadiene
CPTS collidine p-toluenesulfonate
CSA camphorsulfonic acid
CSI chlorosulfonylisocyanate
Cy cyclohexyl
CZE capillary zone electrophoresis
DAST diaminosulfur trifluoride
da dibenzylideneacetone
dbg dibenzylglycine
DBF-box 2,2’-(4,6-dibenzofurandiyl)bis[4,5-dihydro-4-phenyloxazole]
DBN 1,5-diazabicyclo[4.3.0]non-5-ene
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DCC N,N’-dicyclohexylcarbodiimide
DCE 1,2-dichloroethane
DDQ 2,3-dichloro-4,5-dicyano-1,4-benzoquinone
de diastereomeric excess
DEAD diethyl azodicarboxylate
DECP or DEPC diethylcyano phosphonate, diethylphosphoryl cyanide
Deoxo-fluor bis(2-methoxyethyl)aminosulfur trifluoride
DIAD diisopropyl azodicarboxylate
DIBALH diisobutylaluminum hydride
DIPEA diisopropylethylamine
DMAC dimethylacetamide
DMAD dimethyl acetylenedicarboxylate
DMAP 4-(dimethylamino)pyridine
DME 1,2-dimethoxyethane
DMF dimethylformamide
DMI 1,3-dimethyl-2-imidazolidinone
DMPU 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
DMT dimethoxytrityl
DOPA 3,4-dihydroxyphenylalanine
Dpg dipropylglycine
DPPA diphenylphosphoryl azide
dppb 1,4-bis(diphenylphosphino)butane
DPPC diphenylphosphoryl chloride, diphenyl phosphochloridate
dppe 1,4-bis(diphenylphosphino)ethane
dpff 1,4-bis(diphenylphosphino)ferrocene
DPPOx diphenyl-(2-oxo-3(2H)-oxazolyl)phosphonate
dppp 1,4-bis(diphenylphosphino)propane
ECF ethyl chloroformate
EDCI or EDAC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
EEDQ 2-ethoxy-N-ethoxycarbonyl-1,2-dihydroquinoline
EGB electrogenerated base
ETHP 2-ethyl-1,4,5,6-tetrahydropyrimidine
ETMG 2-ethyl-1,1,3,3-tetramethylguanidine
EVL ethoxyvinyl lithium
EWG electron-withdrawing group
FMO frontier molecular orbital
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fmoc</td>
<td>9-fluorenylmethoxycarbonyl</td>
</tr>
<tr>
<td>HATU</td>
<td>O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate</td>
</tr>
<tr>
<td>HBTU</td>
<td>O-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium hexafluorophosphate</td>
</tr>
<tr>
<td>1H NMR</td>
<td>proton NMR</td>
</tr>
<tr>
<td>Het</td>
<td>heterocycle</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoric triamide</td>
</tr>
<tr>
<td>HMTA</td>
<td>hexamethylenetetraamine</td>
</tr>
<tr>
<td>HOAt</td>
<td>1-hydroxy-7-azabenzotriazole</td>
</tr>
<tr>
<td>HOBt</td>
<td>1-hydroxybenzotriazole</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>HydrOx</td>
<td>hydroxy-oxazoline</td>
</tr>
<tr>
<td>IBCF</td>
<td>isobutyl chloroformate</td>
</tr>
<tr>
<td>ICI</td>
<td>Imperial Chemical Industries</td>
</tr>
<tr>
<td>IIDQ</td>
<td>2-isobutoxy-N-isobutoxycarbonyl-1,2-dihydroquinoline</td>
</tr>
<tr>
<td>Im</td>
<td>imidazole</td>
</tr>
<tr>
<td>KDN</td>
<td>3-deoxy-β-glycero-α-galacto-2-monulosonic acid</td>
</tr>
<tr>
<td>KHMDS</td>
<td>potassium hexamethyldisilazane, potassium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>l-(\pm)-DET</td>
<td>l-(\pm)-diethyl l-tartrate</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminum hydride</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium disopropylamidide</td>
</tr>
<tr>
<td>LDEA</td>
<td>lithium diethylamide</td>
</tr>
<tr>
<td>LG</td>
<td>learning group</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>lithium hexamethyldisilazane, lithium bis(trimethylsilyl)amide (LHMDS)</td>
</tr>
<tr>
<td>LTMP</td>
<td>lithium 2,2,6,6-tetramethylpiperidide</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>m-chloroperoxybenzoic acid (MCPBA)</td>
</tr>
<tr>
<td>MeBmt</td>
<td>(2S,3R,4R,6E)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic acid</td>
</tr>
<tr>
<td>MEK</td>
<td>methyl ethyl ketone</td>
</tr>
<tr>
<td>MEM</td>
<td>2-methoxyethoxymethyl</td>
</tr>
<tr>
<td>2-MI</td>
<td>2-methylimidazole</td>
</tr>
<tr>
<td>MIBK</td>
<td>methyl isobutyl ketone</td>
</tr>
<tr>
<td>MOM</td>
<td>methoxymethyl</td>
</tr>
<tr>
<td>morphoCDI</td>
<td>N-cyclohexyl-N'-2-(N-methylmorpholinio)ethylcarbodiimide p-toluenesulfonate</td>
</tr>
<tr>
<td>Ms</td>
<td>methanesulfonyl (mesyl)</td>
</tr>
<tr>
<td>MTM</td>
<td>methylthiomethyl</td>
</tr>
<tr>
<td>NaHMDS</td>
<td>sodium hexamethyldisilazane, sodium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>NCS</td>
<td>N-chlorosuccinimide</td>
</tr>
</tbody>
</table>
Abbreviations

NIS
NLO
NMM
NMO
NMP
NOE
Nos
NPM
PB
PCC
PDC
PEG
PET
PhosOx
Phth
piv
PMB
PPA
PPE
PPL
PPTS
PyBOP
PyBroP
PyrOx
RaNi
SelOx
SEM
SES
SulfOx
TADDOL
TBAB
TBAF
TBDMS or TBS
TBDPS
TBTU
TCNE
TEAHC
TEAP
TECM
TEMPO
TEOF
TES
Tf

N-iodosuccinimide
nonlinear optical
4-methylmorpholine (N-methylmorpholine)
4-methylmorpholine N-oxide
N-methyl-2-pyrrolidinone
nuclear Overhauser effect
p-nitrobenzenesulfonyl (nosyl)
n-phenylmaleimide
probase
pyridinium chlorochromate
pyridinium dichromate
poly(ethylene)glycol
positron emission tomography
phosphine-oxazoline
phthaloyl
pivaloyl
p-methoxybenzyl
poly(phosphoric acid)
polyphosphate ester
porcine pancreatic lipase
pyridinium p-toluenesulfonate
benzotriazol-1-yl-N-oxytris(pyrrolidino)phosphonium hexafluorophosphate
bromotris(pyrrolidino)phosphonium hexafluorophosphate
pyridine-oxazoline
Raney nickel
selenide-oxazoline
2-(trimethylsilyl)ethoxymethyl
2-(trimethylsilyl)ethanesulfonyle
sulfide-oxazoline
\(\alpha,\alpha',\alpha''\)-tetraaryl-1,3-dioxolane-4,5-dimethanol
tetraethylammonium bromide
tetra n-butylammonium fluoride
tert-butylidimethylsilyl
tert-butylidiphenylsilyl
O-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate
tetracyanoethylene
tetraethylammonium hydrogen carbonate
tetraethylammonium perchlorate
tandem Erlenmeyer condensation macrolactamization
2,2,6,6-tetramethyl-1-piperidinyloxy, free radical
triethyl orthoformate
triethylsilyl
trifluoromethanesulfonyle (triflyl)
TFA trifluoroacetic acid
TFAA trifluoroacetic anhydride
TFE 2,2,2-trifluoroethanol
THF tetrahydrofuran
THP tetrahydropyran-2-yl
TIA \(N,N,N'-\text{triisopropylacetamidine}\)
Tic 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
TIG 1,2,3-triisopropyguanidine
TIPP H- Tyr- Tic- Phe- Phe-NH\(_2\)
TIPS triisopropylsilyl
TMANO trimethylamine \(N\)-oxide
TMEDA \(N,N,N',N'-\text{tetramethyl-1,2-ethylenediamine}\)
TMG 1,1,3,3-tetramethylguanidine
TMP 2,2,6,6-tetramethylpiperidine
TMS trimethylsilyl
Toac 2,2,6,6-tetramethyl-4-amino-1-oxypiperidine-4-carboxylic acid
Tol-BINAP \(2,2'-\text{bis(di-}p\text{-tolylphosphino)-1,1'-binaphthyl}\)
TosMIC tosylmethyl isocyanide, \([(p\text{-toluenesulfonyl})\text{methyl}]\) isocyanide
TPAP tetrapropylammonium perruthenate
Tr trityl
Troc 2,2,2-trichloroethoxycarbonyl
Ts or Tos \(p\text{-toluenesulfonyl} \text{(tosyl)}\)
VDMO 4,4-dimethyl-2-vinyl-5(4\(H\))-oxazolone
CHAPTER 5

2(3H)-Oxazolones and 2(5H)-Oxazolones

Takehisa Kunieda
Faculty of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan

Hirofumi Matsunaga
Faculty of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan

5.1. 2(3H)-Oxazolones (4-Oxazolin-2-ones) ... 2
 5.1.1. Introduction .. 2
 5.1.2. Synthesis .. 3
 5.1.2.1. From Acyclic Carbamates ... 3
 5.1.2.2. From 2-Allyloxyoxazoles ... 7
 5.1.2.3. From α-Amino Acid Esters ... 7
 5.1.2.4. From Benzoin and Isocyanates ... 8
 5.1.2.5. From 1,2-Diketones .. 8
 5.1.2.6. From β-Enaminosulfoxides ... 12
 5.1.2.7. From Hydroxamic Acids .. 12
 5.1.2.8. From 2-Oxazolidinones ... 14
 5.1.2.9. From Oximes .. 16
 5.1.2.10. From 2,4-Thiazolidinediones ... 17
 5.1.2.11. From 1,2,4-Triazolium Salts ... 18
 5.1.2.12. Via Three Component Condensation ... 18
 5.1.2.13. Miscellaneous ... 20
 5.1.3. Reactions .. 22
 5.1.3.1. Hydrogenation ... 22
 5.1.3.2. Electrophilic Additions .. 23
 5.1.3.3. Radical Additions .. 25
 5.1.3.4. Pericyclic Additions ... 32
 5.1.3.5. C-Substitution ... 36
 5.1.3.6. N-Substitution ... 38
 5.1.3.7. Miscellaneous ... 42

5.2. 2(5H)-Oxazolones (3-Oxazolin-2-ones) ... 45
 5.2.1. Introduction .. 45
 5.2.2. Synthesis .. 45
 5.2.3. Reactions .. 46

This chapter deals with recent advances in the chemistry of 2-oxazolones, namely, 2(3H)-oxazolone (4-oxazolin-2-one, 1) and 2(5H)-oxazolone (3-oxazolin-2-one, 2). Of the five isomeric oxazolones, the former is prominently cited in nearly all the literature reported since the 1980s.

![Figure 5.1](image)

5.1. 2(3H)-OXAZOLONES (4-OXAZOLIN-2-ONES)

5.1.1. Introduction

The first example of 2(3H)-oxazolone heterocycles appeared in 1905, as part of a description of the intramolecular cyclodehydration of N-phenacylurethane.\(^1\) This methodology has been widely modified for a versatile synthesis of this class of compounds. The 2(3H)-oxazolones (4-oxazolin-2-ones) exist predominantly in the keto rather than the enol forms and contains both enol and enamine moieties as masked amino and hydroxy molecules. Thus, a wide variety of possible addition modes at the 4,5-olefinic moiety strongly suggest the potential versatility of the heterocycles as a building block for 2-amino alcohols of biological and of general synthetic interest. Enantiocontrolled ionic, radical, and pericyclic additions at the 4,5-olefinic moiety of the 2-oxazolone ring followed by ring opening provide a useful strategy for the chiral construction of 2-amino alcohols. The 2-amino alcohol skeleton is a structural unit that is found in a substantial number of bioactive compounds such as peptide enzyme inhibitors, amino sugar antibiotics, and sympathomimetic amines as well as alkaloids. Such functional structures also serve as chelating bidentate ligands for metal catalysts in organic synthesis. Another aspect is based on the chemical stability of 2-oxazolone heterocycles that permits their synthetic use as protecting groups and leaving groups.

The important advances in the chemistry of 2(3H)-oxazolones since 1984 have been surveyed in this chapter, which is divided into two sections, synthesis and reactions.
5.1.2. Synthesis

5.1.2.1. From Acyclic Carbamates

A strategy involving the intramolecular cyclization of acyclic urethanes as a key step has been widely employed since the first synthesis of this class of compounds.2

The reaction of ethyl \(N\)-arylcarbamates 3 with 1-bromo-3,3-dimethyl-2-butanone or 1-bromo-3-ethyl-3-methyl-2-pentanone 4 in the presence of lithium bis(trimethylsilyl)amide (LiHMDS) results in the one-step synthesis of 3-aryl-5-tert-butyl-2(3\(H\))-oxazolones 7 in fair to good yields (Fig. 5.2; Table 5.1, Fig. 5.3).3 This method is efficient for the preparation of bulky 5-substituted-2(3\(H\))-oxazolones.

![Reaction scheme](image)

DMF = dimethylformamide

The \(N\)-(\(\alpha\)-hydroxyphenacyl)urethanes 8 react smoothly with aromatics in concentrated sulfuric acid to give Friedel–Crafts type products 9, which are readily converted into 4-aryl-5-phenyl-2(3\(H\))-oxazolones 10 on heating or by treatment with phosphorus pentachloride (Fig. 5.4).4

Treatment of 1,3-dihalo-2-propyl and 2,3-dichloropropyl \(N\)-arylcarbamates 11 and 14 with ammonium fluoride results in the regioselective transformation to the 2(3\(H\))-oxazolones 12 and 15 or to the exocyclic methylene derivatives 13 and 16 depending on the temperature (Fig. 5.5).5
Anodic oxidation of the carbamates 17 and 23 in methanol, followed by reaction with chlorodiphenylphosphine affords the α-diphenylphosphinylcarbamates 20 and 25, from which the readily generated carbanions react with aldehydes to give the 4-phosphinyl-2-oxazolidinones 21 and 26. The removal of the diphenylphosphinyl group by a mild thermal treatment provides a route to the 2(3H)-oxazolones 22 and 27 (Fig. 5.6).\(^6\)

Lead tetraacetate oxidative cyclization of the N-(1-naphthylvinyl)urethane 30, derived from 1'-acetonaphthone 28, yields 4-naphthyl-2(3H)-oxazolone 32 as the

TABLE 5.1. SYNTHESIS OF 3-ARYL-5-tert-BUTYL-2(3H)-OXAZOLONES FROM ETHYL N-ARYLCARBAMATES AND α-BROMO KETONES\(^a\)

<table>
<thead>
<tr>
<th>R</th>
<th>X</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4-Cl</td>
<td>60</td>
</tr>
<tr>
<td>H</td>
<td>4-F</td>
<td>86</td>
</tr>
<tr>
<td>H</td>
<td>2,4-di-Cl</td>
<td>97</td>
</tr>
<tr>
<td>H</td>
<td>3,4-di-Cl</td>
<td>55</td>
</tr>
<tr>
<td>H</td>
<td>3,5-di-Cl</td>
<td>56</td>
</tr>
<tr>
<td>H</td>
<td>2-F, 4-Cl</td>
<td>80</td>
</tr>
<tr>
<td>H</td>
<td>3-CF₃</td>
<td>78</td>
</tr>
<tr>
<td>H</td>
<td>4-MeO</td>
<td>90</td>
</tr>
<tr>
<td>Me</td>
<td>2-F, 4-Cl</td>
<td>63</td>
</tr>
</tbody>
</table>

\(^a\)Data from Ref. 3.
11

$\text{R} = \text{Ph, 4-ClC}_6\text{H}_4, \text{1-naphthyl, c-C}_6\text{H}_{11}$

$\text{X} = \text{F, Cl, Br}$

14

$\text{R} = \text{Ph, c-C}_6\text{H}_{11}$

$\text{X} = \text{Cl}$

Figure 5.5

17

18

19

20

21

22

23

24

25

26

27

Figure 5.6
major product, in addition to a rearranged product, the 1-naphthaleneacetamide 33 (Fig. 5.7). The reaction sequence is as follows:

\[
\begin{align*}
\text{CH}_2\text{N} &\xrightarrow{\text{BnNH}_2, 5\,\text{Å MS}} \text{COMe} \\
\text{Me} &\xrightarrow{\text{(EtOCO)}_2\text{O}, \Delta} \text{BN} \\
\text{Me} &\xrightarrow{\text{Ph(OAc)}_4, \text{AcOH}} \text{CO}_2\text{Et}
\end{align*}
\]

Figure 5.7

Treatment of the \(\alpha\)-methoxycarbonylbenzyl carbamate 34 with diisobutylaluminum hydride (DIBAL-H), followed by dehydration of the resulting 4-hydroxy-2-oxazolidinone 35 with \(\text{NH}_4\text{Cl}\) gives the 5-phenyl-2(3\(H\))-oxazolone 36 (Fig. 5.8).
Protonation of the \(N\)-aryl-\(N\)-(3-triisopropylsilylpropargyl) carbamate 37 with trifluoromethanesulfonic acid generates a \(\beta\)-silylvinyl cationic intermediate 38 that is attacked by the carbamate carbonyl group (but not the aromatic ring) to give good yields of the \(2(3H)\)-oxazolone 40 (Fig. 5.9).\(^9\)

![Figure 5.9](image)

5.1.2.2. From 2-Allyloxyoxazoles

The scope of the thermal [3,3]-sigmatropic rearrangement of a series of 2-allyloxy-substituted 4,5-diphenyloxazoles 41 has been examined.\(^10,11\) These systems, on heating, undergo a facile aza-Claisen rearrangement to give 3-allyl-4,5-diphenyl-\(2(3H)\)-oxazolones 42 (Fig. 5.10). In marked contrast to the thermal results, photolysis of the 2-allyloxy- or 2-benzyloxy-substituted oxazole gives rise to an isomeric mixture of \(2(5H)\)- and \(2(3H)\)-oxazolones, indicative of the recombination of a radical pair generated by allyl-\(O\) bond scission.

5.1.2.3. From \(\alpha\)-Amino Acid Esters

\(\alpha\)-Amino acids serve as good precursors to 5-alkoxy-\(2(3H)\)-oxazolones 47. The compounds are synthesized by the \(N\)-chlorocarbonylation of an \(\alpha\)-amino acid ester 45 with phosgene or the equivalent, followed by treatment with a variety of bases (Fig. 5.11; Table 5.2, Figs. 5.12, 5.13).\(^12\)
5.1.2.4. From Benzoin and Isocyanates

Aromatic α-ketols 48 react with (diethylamino)tributyltin to afford a mixture of (Z)- and (E)-1,2-enediol-types of bis-organo-organostannylated compounds 49 that cyclize upon heating with phenyl isocyanate to give a 3,4,5-triaryl-2(3H)-oxazolone 50 (Fig. 5.14).13

5.1.2.5. From 1,2-Diketones

Reduction of α-imino ketones 52, prepared from 1,2-diketones 51 and 1 equiv of an amine, with sodium in ether, followed by treatment with ethyl chloroformate or
TABLE 5.2. SYNTHESIS OF 5-ALKOXY-2(3H)-OXAZOLONES FROM 𝛼-AMINO ACID ESTERS

![Chemical Structure]

45 47 Figure 12

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Reagentsᵃ,b</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Pr</td>
<td>H</td>
<td>Me</td>
<td>A</td>
<td>82</td>
</tr>
<tr>
<td>CH３Ph</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>26</td>
</tr>
<tr>
<td>CH３Ph</td>
<td>H</td>
<td>(i)-Menthyl</td>
<td>B</td>
<td>76</td>
</tr>
<tr>
<td>CH３Tol</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>86</td>
</tr>
<tr>
<td>(dL)-CHMePh</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>76</td>
</tr>
<tr>
<td>(R)-CHMePh</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>67</td>
</tr>
<tr>
<td>(S)-CHMePh</td>
<td>H</td>
<td>i-Pr</td>
<td>A</td>
<td>98</td>
</tr>
<tr>
<td>(S)-1-Phenylethyl</td>
<td>H</td>
<td>Ph</td>
<td>A</td>
<td>98</td>
</tr>
<tr>
<td>(R)-1-Phenylethyl</td>
<td>H</td>
<td>(i)-Menthyl</td>
<td>B</td>
<td>69</td>
</tr>
<tr>
<td>(S)-1-Phenylethyl</td>
<td>H</td>
<td>(i)-Menthyl</td>
<td>B</td>
<td>68</td>
</tr>
<tr>
<td>3,4-di-MeO-C₆H₄CH₂</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>33</td>
</tr>
<tr>
<td>(1-Naphthyl)methyl</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>43</td>
</tr>
<tr>
<td>(R)-1-(1-Naphthyl)ethyl</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>60</td>
</tr>
<tr>
<td>CHPh₂</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>66</td>
</tr>
<tr>
<td>CHPh₂</td>
<td>H</td>
<td>(i)-Menthyl</td>
<td>B</td>
<td>62</td>
</tr>
<tr>
<td>CHPh₂</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>95</td>
</tr>
</tbody>
</table>

![Chemical Structure]

i-Pr Me Me B 76
i-Pr Me Et B 75
i-Pr Me c-C₆H₁₁ B 67
Ph Me Me B 68
(R)-1-Phenylethyl Me Me A 62
(R)-1-(1-Naphthyl)ethyl Me i-Pr B 65
CHPh₂ Me Me A 95
Furfuryl Et Me B 49
Furfuryl Et 4-Pentenyl B 8

ᵃA = triphosgene, NEt₃; B = COCl₂, Na₂CO₃.
ᵇData from Ref. 12.

![Chemical Structure]

48 49 50 Figure 5.14

Ar OH Ar O
Ar OSnBu₃
Ar OSnBu₃
PhNCO
Ar Ar
70%

Figure 5.14
carbon disulfide, leads to the 4,5-disubstituted-2(3H)-oxazolones 54 and the corresponding 2-thiones 55, respectively (Fig. 5.15; Table 5.3, Fig. 5.16).14,15

A one-pot, highly convergent synthetic strategy from 1,2-diketones 56 and isocyanates, has been used for the preparation of 4,5-dimethylene-2-oxazolidinones 57. Thermal Diels–Alder reactions of the \(N \)-substituted-4,5-dialkylidene-2-oxazolidinones 57 with the dienophiles 58–61 proceed stereo- and regioselectively to afford a variety of bicyclic 2(3H)-oxazolones 62–67. The regioselectivity is greatly improved by the use of Lewis acids such as TiCl\(_4\) and AlCl\(_3\), and the nitrogen atom

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
R & \% Yield of 54 & \% Yield of 55 \\
\hline
Pr & 33 & 35 \\
i-Pr & 35 & 32 \\
Bu & 35 & 36 \\
Ph & 45 & 48 \\
Tolyl & 55 & 50 \\
CHMePh & 35 & 49 \\
\hline
\end{tabular}
\caption{CYCLIZATION OF \(\alpha \)-IMINO KETONES TO 4,5-DIPHENYL-2(3H)-OXAZOLOONES AND 2-THIONESa}
\end{table}

aData from Refs. 14, 15.
2(3\(H\))-Oxazolones (4-Oxazolin-2-ones)

R\(^1\)=H: 56%
R\(^1\)=Me: 85%

R\(^1\)=H, R\(^2\)=Ph: 75%
R\(^1\)=Me, R\(^2\)=4-ClC\(_6\)H\(_4\): 79%

Figure 5.17
of the 2-oxazolidinone ring appears to control the orientation of the dienophile approach. Dimerization of the dienes proceeds in a highly selective manner to give only one dimeric isomer, in addition to the [1,5] rearranged product, 4-methyl-3-phenyl-5-vinyl-2(3H)-oxazolone (Fig. 5.17).

5.1.2.6. From β-Enaminosulfoxide

The one-pot reaction of the α-(difluoromethyl)-β-sulfinylenamine with trifluoroacetic anhydride in CHCl₃, followed by treatment with silica gel affords 4-(difluoromethyl)-5-p-tolylthio-2(3H)-oxazolone (Fig. 5.18). This reaction proceeds via a Pummerer-type rearrangement, followed by [1,3]-proton shift and the simultaneous elimination of trifluoroacetic acid and benzyl alcohol.

5.1.2.7. From Hydroxamic Acids

The reaction of N-aryl-N-(hydroxy)acylamides with 4-nitrobenzenesulfonyl chloride (nosyl chloride) in the presence of NEt₃ gives 3-aryl-5-substituted-2(3H)-oxazolones via the three-membered ring α-lactams, which have also been proposed as intermediates in the isoxazoline–oxazoline transformation. A good leaving group on the nitrogen atom greatly accelerates the reaction. In the same manner, 5-alkyl-3-aryl-4-halo-2(3H)-oxazolones are synthesized from the corresponding N-aryl-N-(hydroxy)-α-halo acylacetamides that are prepared via halogenation of (Fig. 5.19; Table 5.4, Fig. 5.20; Table 5.5, Fig. 5.21).
2(3H)-Oxazolones (4-Oxazolin-2-ones)

\[
\begin{align*}
75 & \quad 4-\text{NO}_2\text{C}_6\text{H}_4\text{SO}_2\text{Cl} \quad 2\ \text{NEt}_3 \\
76 & \\
77 & \\
78 & \\
79 & \quad \text{CF}_3\text{SO}_2\text{Cl} \quad \text{or Br}_2
\end{align*}
\]

Figure 5.19

TABLE 5.4. SYNTHESIS OF 5-ALKYL-3-ARYL-2(3H)-OXAZOLONES FROM
N-ARYL-N-(HYDROXY)ACYLACETAMIDES

<table>
<thead>
<tr>
<th>X</th>
<th>R</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Et</td>
<td>58</td>
</tr>
<tr>
<td>H</td>
<td>Pr</td>
<td>39</td>
</tr>
<tr>
<td>4-F</td>
<td>Me</td>
<td>69</td>
</tr>
<tr>
<td>3-Cl</td>
<td>Me</td>
<td>65</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Me</td>
<td>80</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Et</td>
<td>63</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Pr</td>
<td>39</td>
</tr>
<tr>
<td>4-Br</td>
<td>Me</td>
<td>75</td>
</tr>
<tr>
<td>3-Me</td>
<td>Me</td>
<td>75</td>
</tr>
<tr>
<td>4-Me</td>
<td>Me</td>
<td>66</td>
</tr>
<tr>
<td>4-Me</td>
<td>Et</td>
<td>42</td>
</tr>
</tbody>
</table>

*Data from Ref. 20.
5.1.2.8. From 2-Oxazolidinones

Both 4-hydroxy- and 4-methoxy-2-oxazolidinones are routinely employed as good synthetic precursors for 2(3H)-oxazolones.

Anodic oxidation of 2-oxazolidinones in methanol using $\text{Et}_4\text{N}^+\text{OTs}^-$ as a supporting electrolyte yields the 4-methoxylated derivatives that undergo a facile elimination of methanol to give 2(3H)-oxazolones such as and .

21 An improved procedure for the preparation of 2(3H)-oxazolone involves refluxing with an equimolar amount of acetic anhydride in acetic acid (Fig. 5.22).

Treatment of 4-methoxy-2-oxazolidinone with indolylmagnesium bromide , followed by N-protection with a tert-butoxycarbonyl (Boc) group affords $\text{N,N'-di-Boc-4-(3-indolyl)-2-oxazolidinone}$. Subsequent treatment with N-bromosuccinimide (NBS) in the presence of azobisisobutyronitrile (AIBN) followed by electrochemical reduction yields the protected 4-(3-indolyl)-2(3H)-oxazolone (Fig. 5.23). The Boc groups are easily removed by pyrolysis.23,24

Table 5.5. Synthesis of 5-Alkyl-3-Aryl-4-Halo-2(3H)-Oxazolones from N-Aryl-N-(Hydroxy)-α-Halo Acylacetamides

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)\</td>
<td>(Y)</td>
<td>(R)</td>
<td>% Yield</td>
</tr>
<tr>
<td>H</td>
<td>Cl</td>
<td>Me</td>
<td>37</td>
</tr>
<tr>
<td>H</td>
<td>Br</td>
<td>Me</td>
<td>40</td>
</tr>
<tr>
<td>3-Cl</td>
<td>Cl</td>
<td>Me</td>
<td>73</td>
</tr>
<tr>
<td>4-F</td>
<td>Cl</td>
<td>Me</td>
<td>53</td>
</tr>
<tr>
<td>4-F</td>
<td>Br</td>
<td>Me</td>
<td>(unstable)</td>
</tr>
<tr>
<td>4-CI</td>
<td>Cl</td>
<td>Me</td>
<td>56</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Cl</td>
<td>Et</td>
<td>51</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Cl</td>
<td>Pr</td>
<td>60</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Cl</td>
<td>(i)-Pr</td>
<td>57</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Br</td>
<td>Me</td>
<td>28</td>
</tr>
<tr>
<td>4-Cl</td>
<td>Br</td>
<td>Et</td>
<td>40</td>
</tr>
<tr>
<td>4-Br</td>
<td>Cl</td>
<td>Me</td>
<td>60</td>
</tr>
<tr>
<td>4-Br</td>
<td>Br</td>
<td>Me</td>
<td>(unstable)</td>
</tr>
</tbody>
</table>

Data from Ref. 20.
2(3H)-Oxazolones (4-Oxazolin-2-ones)

The addition of hydrazine to diphenylvinylene carbonate 92 quantitatively affords a 1:1 mixture of perhydro-1,3,4-oxadiazin-2-one 93 and 2-oxazolidinone 94 derivatives, both of which are smoothly dehydrated with P₂O₅ to afford 1,3,4-oxadiazin-2-one 95 and 3-amino-2(3H)-oxazolone 96 (Fig. 5.24), respectively. Addition of primary amines to diphenylvinylene carbonate results in exclusive formation of 3-alkyl-2(3H)-oxazolones, previously investigated as amino protecting groups in peptide synthesis. 26,27

Figure 5.22

Figure 5.23
5.1.2.9. From Oximes

The reaction of aliphatic and aromatic ketone oximes 97 with a dialkyl carbonate 98 in the presence of K₂CO₃ at 180–190 °C yields 3-alkyl-4,5-disubstituted-2(3H)-oxazolones 104 in 22–48% yields. Mechanistically, it is proposed that N-alkylation of the initially formed oxime O-carbonate 99 yields 100, which affords the enamine 101 in the presence of base. A [3,3] sigmatropic rearrangement ensues to produce 102, which then cyclizes to 104. In cases where 97 contains two methylene groups in proximity to the C=N bond, one of which is benzylic, the above reaction sequence is regioselective for the benzylic methylene group (Fig. 5.25; Table 5.6, Fig. 5.26).²⁸
5.1.2.10. From 2,4-Thiazolidinediones

The intramolecular base-induced ring transformation of 3-phenacyl-2,4-thiazolidinediones 105 with sodium hydroxide or triethylamine smoothly proceeds to give 5-aryl-2(3H)-oxazolones 108 (Fig. 5.27).29
Similarly, 6-methyl-3-phenacyl-1,3-oxazine-2,4(3H)-diones 110 are transformed into 5-aryl-2(3H)-oxazolones 108 under phase-transfer catalysis (Fig. 5.28). 30

\[\text{HN} \text{O} \text{O} \text{OMe} \text{Et}_3\text{N}^+\text{CH}_2\text{Ph} \text{Cl}^- \]
\[\text{K}_2\text{CO}_3 \]

\[\text{R} \text{COCH}_2\text{X} \]

\[\text{R} \text{O} \text{O} \text{Me} \]
\[\text{R} \text{O} \text{O} \text{Bu}_4\text{N}^+ \text{K}_2\text{CO}_3 \text{HSO}_4^- \]

\[\text{R}=\text{Ph}: 45\% \]
\[\text{R}=4-\text{MeC}_6\text{H}_4: 35\% \]
\[\text{R}=4-\text{ClC}_6\text{H}_4: 36\% \]
\[\text{R}=4-\text{BrC}_6\text{H}_4: 37\% \]

Figure 5.28

5.1.2.11. From 1,2,4-Triazolium Salts

Treatment of the phenacyliminium salt 114, derived from 5,7-dimethyl[1,2,4]-triazolo[1,5-a]pyrimidine 113 and phenacyl bromide, with 2 equiv of triethylamine gives rise to the 2-iminooxazoline 118 by way of the in situ generated intermediary N-ylides 115. Acidic hydrolysis affords the 3-(2-pyrimidinyl)-2(3H)-oxazolone 119.31,32

Similarly, the [1,2,4]triazolo[1,5-a]pyridinium salt 121 affords 5-phenyl-3-(2-pyridinyl)-2(3H)-oxazolone 122 (Fig. 5.29).33

5.1.2.12. Via Three Component Condensation

The 2(3H)-oxazolones may be synthesized by the direct condensation of three components. Thus, a mixture of α-halo ketones 123, carbon dioxide, and primary amines can be heated at 80–100 °C under gas pressure of 50 kg/cm² to result in the direct formation of 3-substituted 2-oxazolones 124 in 4–25% yield (Fig. 5.30).34
2(3H)-Oxazolones (4-Oxazolin-2-ones)

![Chemical structures and reactions](image)

Figure 5.29

![Chemical structures and reactions](image)

Figure 5.30
Direct condensation of propargyl alcohols [125] (Fig. 5.31), carbon dioxide, and propylamine can be realized by Ru₃(CO)₁₂ catalysis at 80 °C under CO₂ pressure of 50 kg/cm². The reaction mechanism is rationalized as shown below. When diethylamine is used in place of a primary amine, 2-oxoalkyl N,N-diethylcarbamates are isolated in moderate yields.⁴⁵

![Chemical structure](image)

Figure 5.31

5.1.2.13. Miscellaneous

The 1,3-dipolar cycloaddition of α-keto carbenoids to the polar double bond of heterocumulenes provides a direct access to five-membered heterocycles. The reaction of α-diazo ketones [132] with phenyl isocyanate in the presence of a Rh₂(OAc)₄ catalyst affords the 1,3-cycloadduct, 3-phenyl-2(3H)-oxazolones [133] (Fig. 5.32).³⁶

![Chemical structure](image)

Figure 5.32
Heating α-hydroxy amides 135 in xylene with the cumulated phosphorus ylide 134 gives the 2(3H)-oxazolones 140. The reaction proceeds via an addition–cyclization–intermolecular-Wittig olefination sequence, which implies three different types of phosphorus ylides, 134, 136, and 137, respectively, of increasing “ylide activity” (Fig. 5.33; Table 5.7, Figs. 5.34, 5.35). 37

![Figure 5.33](image-url)

TABLE 5.7. 2(3H)-OXAZOLONES FROM α-HYDROXY AMIDES AND PHOSPHORUS YLIDE 134

<table>
<thead>
<tr>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>CH<sub>3</sub>Ph</td>
<td>51</td>
</tr>
<tr>
<td>Me</td>
<td>CH<sub>3</sub>Ph</td>
<td>81</td>
</tr>
<tr>
<td>Me</td>
<td>CHMePh</td>
<td>40</td>
</tr>
<tr>
<td>Me</td>
<td>c-C<sub>6</sub>H<sub>11</sub></td>
<td>48</td>
</tr>
<tr>
<td>Ph</td>
<td>CH<sub>3</sub>Ph</td>
<td>71</td>
</tr>
<tr>
<td>Ph</td>
<td>CHMePh</td>
<td>40</td>
</tr>
<tr>
<td>Ph</td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>50</td>
</tr>
</tbody>
</table>

^aData from Ref. 37.
The condensation of a 2-aminobenzoxazole 141 with α-bromo ketones 142 gives 2(3H)-oxazolones 148 on heating in ethanol. Isotope labeling studies with 18O have shown that the additional oxygen that is incorporated into the ring is derived from the solvent, ethanol (Fig. 5.36).

![Chemical diagram]

Figure 5.36

5.1.3. Reactions

5.1.3.1. Hydrogenation

Certain erythro-2-amino alcohols such as (±)-ephedrine 150, (±)-N-methyl-ephedrine 151 and (±)-conhydride 153 are synthesized with complete stereochemical control by the catalytic hydrogenation of the corresponding 4,5-disubstituted 2(3H)-oxazolone derivatives 22 and 27, followed by ring opening (Fig. 5.37).
Condensation of benzyl glycinate p-toluenesulfonate salt with 4,5-diphenyl-1,3-dioxol-2-one affords 154, which can be converted to the 4,5-diphenyl-3-substituted-2(3H)-oxazolones 155 by sequential treatment with an aldehyde/LiHMDS followed by diaminosulfur trifluoride (DAST). Hydrogenolysis then affords the β-fluoro-α-amino acids 156 in excellent yields without any concomitant cleavage of the carbon–fluorine bond (Fig. 5.38). 39

5.1.3.2. Electrophilic Additions

A 3-acyl-4,5-unsubstituted-2(3H)-oxazolone 157 smoothly undergoes electrophilic addition with Br₂ (or NBS) and PhSeCl in methanol to give trans-5-bromo-4-methoxy- and trans-4-methoxy-5-phenylselenenyl-2-oxazolidinones 158, respectively, with full regio- and trans-selectivity (Fig. 5.39). Both substituents thus
introduced are sufficiently reactive to be replaced in a stepwise manner under ionic and radical conditions, indicative of the versatility of the 2(3H)-oxazolone heterocycle as a building block for the stereodefined construction of 2-amino alcohols.40–46

Optically active 3-(2-\textit{exo}-alkoxy-1-apocamphanecarbonyl)-2(3H)-oxazolones 159 can be used successfully for the preparation of the versatile chiral synthons 161 and 163 (Fig. 5.40). The reactions proceed with excellent diastereoselectivity [\textasciitilde 96\% diastereomeric excess (de)] and interestingly with a thoroughly reversed enantiomeric selectivity.40 This finding is rationalized by assuming that selenenium ions approach the less hindered diastereotopic face in the most predominant conformer to give thermodynamically favored intermediates, whereas coordination of bromine with the oxygen atoms of the 2-alkoxy substituents (see Fig. 5.41; Table 5.8, Fig. 5.42 and Table 5.9, Figs. 5.43 and 5.44) accelerates the attack from the alkoxy substituent site. The versatility of the synthons 161 and 163 is demonstrated by the chiral synthesis of typical hydroxy-amino acids such as 3-hydroxyglutamic acid 168,41,42 statine 165,41 AHPBA 164,43 AHMHA 166,43 and others44 as well as the bicyclic lactone 172.45
The (+)- and (−)-4,5-dialkoxo-2-oxazolidinones 173 and 174 prepared through the 5-bromo-4-methoxy- derivatives serve as reliable chiral synths for the preparation of a wide variety of optically active α-amino acids 176 and α-amino aldehydes 177 (Fig. 5.45). 46

5.1.3.3. Radical Additions

5.1.3.3.1. Attack of Alkyl Radicals

The 4,5-olefinic moiety of 2(3H)-oxazolones functions well as a radical acceptor in a variety of radical reactions.

The RuCl₂(Ph₃P)₃ catalyzed addition of polyhalomethanes, CCl₄ and CBrCl₃, to 3-acetyl-2(3H)-oxazolone 84 leads to the exclusive formation of the trans-4-halo-5-(trichloromethyl)-3-acetyl-2-oxazolidinones 178. 47 In the presence of a radical
TABLE 5.9. DIASTEREOSELECTIVE METHOXYSELENYLATION OF 3-ACYL-2(3H)-OXAZOLONES 159

\[
\begin{array}{cccc}
\text{R}^1 (\text{exo}) & \text{R}^2 (\text{endo}) & \text{Temp (°C)} & \% \text{ Yield (% de)} \\
\hline
=O & =O & 0 & 52 (71) \\
OMe & H & 0 & 83 (60) \\
OBu & H & 0 & 76 (85) \\
OCH₂CH₂OMe & H & 0 & 94 (90) \\
OCH₂CH₂OMe & H & \text{-}20 & 82 (96) \\
H & OMe & 0 & 94 (0) \\
Me & H & 0 & 80 (0) \\
\end{array}
\]

\(a\) Data from Ref. 40.

Figure 5.43

![Diagram of diastereoselective methoxyselenylation reaction.](image)

Figure 5.44

![Diagram of various compounds and their structures.](image)
initiator, benzoyl peroxide (BPO), free-radical telomerization of 84 with a chain-transfer agent, CCl₄, proceeds smoothly at 80°C to give the polyfunctional telomers 179 with high trans- and head-to-tail selectivity. 48,49 The Ru(II)-catalyzed addition of polyhalomethyls to 3-(2-exo-alkoxy-1-apocamphanecarbonyl)-2(3H)-oxazolone 180 gives a 1:1 mixture of trans-stereoisomers 181 and 182 with no diastereoselectivity.47 This result is in sharp contrast to the intramolecular radical cyclization of the derivative with a pendant trichloroacetyl group 185, which proceeds in excellent diastereoselectivity (>99% de) and high yield.50 The straightforward manipulation of the resulting 12-membered macrolides 186 yield
optically active β-hydroxy-α-amino acids including N-tert-Boc-2,2-difluorostatine methyl ester 187 (Figs. 5.46, 5.47).

This methodology can be successfully applied to a chiral synthesis of the key amino acid components with three contiguous chiral centers found in cyclosporins (MeBmt, 190) and bleomycins 191 (Fig. 5.48). \(^{51,52}\)

\[\text{MeBmt (in cyclosporin)} \quad \text{190} \]
\[\text{in bleomycin) 191} \]

Figure 5.47

Figure 5.48
Other examples include the intramolecular radical cyclization of 3-bromoalkyl-2(3H)-oxazolones 192 and 196 with tributyltin hydride/azobisisobutyronitrile to give the pyrrolooxazolidinones 194, 198, and 199. The 2,5-disubstituted pyrrolidine derivatives 195 are produced enantioselectively (Fig. 5.49).53,54

![Chemical Structures]

\[R=\text{Me}: 72\% \]
\[R=\text{CH}_2\text{OTBDPS}: 78\% \]
\[R=\text{Bu}: 69\% \]
\[R=4-\text{MeOC}_6\text{H}_4\text{CH}_2: 69\% \]
\[R=1\text{-butenyl}: 76\% \]

Figure 5.49

In a similar manner, intramolecular cyclization of the O-stannyl ketyl derivatives 201 and 206, generated from the oxazol aldehydes 200 and 205, provides a facile method for the chiral synthesis of 3-hydroxy-2-(hydroxymethyl)-5-substituted-pyrrolidines 202 and 203 and the piperidine analogues 207 and 208 that can be successfully transformed into naturally occurring amino alcohols, (+)-bulgecinine 204 and (−)-desoxoprosopinine 209, respectively (Fig. 5.50).55,56
5.1.3.3.2. Attack of Alkenyl Radicals

Treatment of the alkenyl bromides 210 with tributyltin hydride in the presence of AIBN involves an intramolecular radical addition to the 2(3H)-oxazolone moiety, resulting in the diastereoselective formation of the oxazolidinopiperidines 211. These are readily converted to the protected 2,6-disubstituted 3-hydroxypiperidine derivatives 212 (Fig. 5.51).\(^{57}\)

Hudlicky and co-workers\(^{58,59}\) reported a stepwise radical cyclization approach for the preparation of the complete morphinan ring skeleton 216 (Fig. 5.52). One of the key steps involves the intramolecular radical cyclization of cyclohexenyl...
radicals, generated from the vinylic bromide 213, to the 2(3H)-oxazolone ring, giving rise to a 1 : 2 mixture of the isomeric isoquinoline derivatives 214 and 215 in excellent combined yield. The lack of selectivity in the ring closure was attributed to the lack of a significant steric effect by the distant acetonide group (Fig. 5.52).
5.1.3.3. Polymers

The 2(3H)-oxazolone homopolymer 217 and the 2(3H)-oxazolone copolymer 219 with a carbon–carbon bond backbone structure are readily obtained by heating a 3-acyl-2(3H)-oxazolone alone or with styrene, respectively, at 70 °C in the presence of BPO with the exclusion of air.48,49,60 The N-acetyl polymers serve as regioselective and chemoselective acylating reagents for amines and alcohols (Fig. 5.53).60–63

\[
\text{ON} \quad \text{O} \quad \text{R} \quad \text{O} \quad \text{ON} \\
\text{R} \quad \text{O} \quad \text{N} \quad \text{O} \\
\text{BPO} \\
\text{ON} \quad \text{O} \\
\text{BPO} \\
\text{R} \quad \text{X} \\
\text{styrene} \\
\text{BPO} \\
\text{n} = 30-50 \\
\text{n} = 1,2,3
\]

Figure 5.53

5.1.3.4. Pericyclic Additions

5.1.3.4.1. [4+2] Cycloadditions

The 3-acyl-2(3H)-oxazolones function as good dienophiles in cycloaddition reactions with cyclic 2,4-dienes such as cyclopentadienes and anthracenes.64,65 Thus, the thermal reaction of 3-acetyl-2(3H)-oxazolone with cyclopentadiene and the hexachloro and hexamethyl derivatives gives endo-cycloadducts exclusively. In particular, the chiral cycloadducts 221 and 223 derived from the diastereoselective Diels–Alder reactions of 3-(2-exo-alkoxy-1-apocamphanecarbonyl)-2(3H)-oxazolones with hexamethycyclopentadiene and 9,10-dimethylanthracene, respectively, are highly useful as chiral 2-oxazolidinone auxiliaries.66–71 The conformationally rigid “roofed” structures play a crucial role in affording excellent chiral induction (Fig. 5.54).

The thermal [4 + 2] cycloaddition of 3-acetyl-2(3H)-oxazolone 84 to the reactive dienes, \(o\)-quinodimethane 224 and isobenzofuran 226, generated from benzocyclobutane and 1-ethoxydihydroisobenzofuran, respectively, proceeds
smoothly to afford the polycyclic 2,3-diheterotetrahydronaphthalene derivatives 225 and 227 (Fig. 5.55). The thermal cycloaddition of 3-acyl-2(3H)-oxazolones 157 to dialkyl azodicarboxylates 228 proceeds smoothly under mild conditions (at 80 °C) to give the regiocontrolled cycloadducts 229 exclusively, although two other possible addition modes exist: neither diazetidines 230 (1,2-addition) nor isoxazolidines 231 (1,3-addition) are detected. In the case of chiral N-substituents diastereoselectivities of up to 72% de have been obtained. Treatment of the chiral cycloadducts 229 with acidic methanol gives trans-5-hydrazino-4-methoxy-2-oxazolidinone derivatives 232 that are precursors for a variety of optically active α-amino acids 233 and 2-oxazolidinone auxiliaries 234 (Fig. 5.56; Table 5.10, Fig. 5.57).
TABLE 5.10. DIASTEREOSELECTIVE [4+2] CYCLOADDITION OF AZODICARBOXYLATES TO 2(3H)-OXAZOLONES

<table>
<thead>
<tr>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>Time (h)</th>
<th>% Yield</th>
<th>A:B</th>
<th>% de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>6</td>
<td>83</td>
<td>34:66</td>
<td>32</td>
</tr>
<tr>
<td>Me</td>
<td>i-Pr</td>
<td>12</td>
<td>93</td>
<td>24:76</td>
<td>52</td>
</tr>
<tr>
<td>Pr</td>
<td>i-Pr</td>
<td>12</td>
<td>76</td>
<td>22:78</td>
<td>56</td>
</tr>
<tr>
<td>Pr</td>
<td>Bn</td>
<td>6</td>
<td>86</td>
<td>18:82</td>
<td>64</td>
</tr>
<tr>
<td>CH<sub>2</sub>CMe<sub>3</sub></td>
<td>i-Pr</td>
<td>19</td>
<td>85</td>
<td>15:85</td>
<td>70</td>
</tr>
<tr>
<td>CH<sub>2</sub>CMe<sub>3</sub></td>
<td>Bn</td>
<td>18</td>
<td>93</td>
<td>14:86</td>
<td>72</td>
</tr>
</tbody>
</table>

^aData from Refs. 73, 74.
The ene-reaction, which is mechanistically related to the Diels–Alder reaction, has also been reported. The thermal addition of 3-tert-butoxycarbonyl-2(3H)-oxazolone 236 to 2,2'-biindole 235 affords 4-(2,2'-biindol-3-yl)-2-oxazolidinone 237, probably via the indoline derivative. The product is further converted to the fused aromatic compound 238 by bromination with NBS and AIBN, followed by dehydrobromination (Fig. 5.58).

![Figure 5.58]

5.1.3.4.2. [3+2] Cycloaddition

3-Acetyl-2(3H)-oxazolone 84 serves as a good 1,3-dipolarophile in the [3+2] cycloaddition to N-alkyl-α-phenylnitrones 239, giving a mixture of the four possible isomers 240–243, but with the predominant formation of the exo-syn adduct 240 (Fig. 5.59). Diastereoselective cycloadditions proceed when mixtures of optically active 3-(2-exo-alkoxy-1-apocamphanecarbonyl)-2(3H)-oxazolones and N-benzyl- and N-tert-butyl-α-phenylnitrones are heated at 110 °C.75

5.1.3.4.3. [2+2] Cycloaddition

The photocycloaddition of 3-acetyl-2(3H)-oxazolone 84 with 9,10-phenanthrenequinone 244 gives the spirooxetane 245 regioselectively as a major cycloadduct. Irradiation of 3,4,5-trisubstituted-2(3H)-oxazolones 247 in the presence of 244 results in the predominant formation of dioxane derivatives 248. When duroquinone 249 is irradiated in the presence of the 3,4,5-trisubstituted-2(3H)-oxazolone 247a,
the initially formed, photochemically labile 2,5-cyclohexadienones 250 rearrange to the spirooxetanes 251 (Fig. 5.60).76

Acetone-sensitized [2+2]-photocycloaddition of 2(3H)-oxazolones 247a to maleic anhydride and dimethylmaleic anhydride gives the corresponding anti-cyclobutane cycloadducts 253 as the major products. Similar photoreaction of 2(3H)-oxazolones with 1,6-anhydro-4-O-benzyl-2,3-dideoxy-β-D-erythro-2-hexenopyranose 254 results in the exclusive formation of the anti-cyclobutane-type adduct 255 (Fig. 5.61).77

5.1.3.5. C-Substitution

The Friedel–Crafts type acylation of 4-methyl-2(3H)-oxazolone 256 with acyl chlorides in the presence of AlCl3 proceeds smoothly to give the 5-acyl-4-methyl-2(3H)-oxazolones 257 (Fig. 5.62).78

Treatment of 3-trimethylsilylethoxymethyl(SEM)-2(3H)-oxazolone 258 with tert-BuLi at −78 °C, followed by the addition of tributyltin chloride gives the stannyloxazolones 259. Cross-coupling of 259 with 2-formyl-3-iodoindole in the presence of Pd(PPh3)4 catalyst affords a 1:1 mixture of isomeric 4- and 5-(3-indolyl)-2(3H)-oxazolones 260. These compounds can be further transformed into the tetracyclic carbazoles 262 (Fig. 5.63).79

The 5-methyl-2(3H)-oxazolone sulfonamide derivatives 265 are obtained from the sulfonamides 263 via bromination and subsequent Stille coupling reaction with tetramethyltin in the presence of palladium catalyst (Fig. 5.64).80
$2(3H)$-Oxazolones (4-Oxazolin-2-ones)

Figure 5.60

Scheme 5.60

The reactions involve the photochemical reaction of compounds **244**, **247**, and **249** with various substituents. The reactions proceed under light ($h\nu$) to yield the corresponding products **245**, **246**, and **250**, **251** with specified yields.

- **244**: Reaction with **247** yields **245** (60%) and **246** (12%).
- **247**: Reaction with **244** yields **248**.
- **249**: Reaction with **247a** yields **250** (Photochemically labile) and **251** with yields for $R^1=Me$: 6% and $R^1=Ph$: 30%.

The substituents R^1 and R^2 are specified for each reaction, with $R^1=Me$ and $R^2=Ac$ yielding 37%, $R^1=Ph$ and $R^2=Ac$ yielding 77%, and $R^1=Ph$ and $R^2=Ph$ yielding 98%.
5.1.3.6. N-Substitution

5.1.3.6.1. N-Acylation and N-Alkoxy carbonylation

The parent 2(3H)-oxazolone moiety functions as a bifunctional leaving group when carboxyl groups are activated for acylations and condensations, similar to other five- and six-membered heterocycles such as imidazole, triazole, and 2-pyridinethiol. The excellent leaving ability of a 2(3H)-oxazolone moiety has led to the development of versatile reagents. Thus, 3-acyl- and 3-alkoxycarbonyl-2(3H)-oxazolones serve as “ready-to-use”-type agents for the regioselective and chemoselective N-protection of amino alcohols, amino phenols and polyamines. Regioselective acylation of the primary
X=N-SEM, Y=O: 33%
X=O, Y=N-SEM: 29%

Z=MOM:
X=N-SEM, Y=O: 80%
X=O, Y=N-SEM: 82%

Z=SO₂Ph:
X=N-SEM, Y=O: 24%
X=O, Y=N-SEM: 11%

Figure 5.63

R¹=C₆H₅: 71%
R¹=4-FC₆H₄: 40%
R¹=3-MeC₆H₄: 79%
R¹=4-MeC₆H₄: 37%
R¹=3,4-di-Cl-C₆H₃: 53%

Figure 5.64
The activated phosphorus reagents 269 and 270 are conventionally prepared by the reaction of 2(3H)-oxazolone with the corresponding phosphorus chlorides in the presence of triethylamine. The phosphorus chlorides employed include phosphoryl chloride, thiophosphoryl chloride, mono- and dichlorophosphates, and phosphinic chloride (Fig. 5.66).

The above reagents serve as condensing reagents and have different reactivities for peptides 279,82,83 β-lactams 281,84,85 esters,85 thioesters,85,86 and mixed phosphates,87 as well as for the direct preparation of 3-acyl-2(3H)-oxazolones.82 The bis(2-oxo-3-oxazolinyl)phosphinate 282 is useful for Zr(IV)-catalyzed phosphorylation of alcohols, leading to the general synthesis of acid- and base-labile mixed phosphate esters 284 (Fig. 5.67).87
Figure 5.66

\[
\begin{align*}
\text{R}_1 \text{Chz} - \text{NHCHCO}_2 \text{H} + \text{R}' \text{H}_2 \text{NCHCO}_2 \text{R}'' & \rightarrow \text{R}_1 \text{Chz} - \text{NHCHCO} - \text{NHCHCO}_2 \text{R}'' \\
\text{277} & \rightarrow \text{278} & \rightarrow \text{279}
\end{align*}
\]

\[
\begin{align*}
\text{HO}_2 \text{C} - \text{N} & \rightarrow \text{O} - \text{N} - \text{P(O) reagents} \\
\text{280} & \rightarrow \text{281}
\end{align*}
\]

\[
\begin{align*}
\text{OR} - \text{O} - \text{P} - \text{OR} & \rightarrow \text{R}_1 \text{OR} - \text{O} - \text{P} - \text{OR} \\
\text{282} & \rightarrow \text{283}
\end{align*}
\]

\[
\begin{align*}
\text{OR} - \text{O} - \text{P} - \text{OR} & \rightarrow \text{R}_1 \text{OR} - \text{O} - \text{P} - \text{OR} \\
\text{282} & \rightarrow \text{283}
\end{align*}
\]

\[
\begin{align*}
\text{OR} - \text{O} - \text{P} - \text{OR} & \rightarrow \text{R}_1 \text{OR} - \text{O} - \text{P} - \text{OR} \\
\text{282} & \rightarrow \text{283}
\end{align*}
\]

\[
\begin{align*}
\text{acac} = \text{acetylacetonate} \\
(R_1, R_2 = 1', 2')
\end{align*}
\]

Figure 5.67
The PCC oxidation of 3-amino-4,5-diphenyl-2(3\(H\))-oxazolone 96 affords monodiazobenzyl 286 as the primary decomposition product obtained via loss of carbon monoxide from the postulated \(N\)-nitrenolactam 285.\(^{25}\) Oxidation of 96 with tert-BuOCl/NEt₃ at \(-108^\circ C\) results in a deep green solution of 285, which reacts with dimethyl sulfoxide (DMSO) to give the sulfoximide 288 (Fig. 5.68).\(^{88}\)

![Figure 5.68](image-url)

The alkylation of the 2(3\(H\))-oxazolones 289 with Meerwein’s salt (Et₃O⁺BF₄⁻) occurs readily and in excellent yield, thus providing an efficient route to the 2-ethoxyoxazoles 290. Although the yield of 290 (R = Me) is low, the process can be carried out on large scale starting from commercially inexpensive acetoin (Fig. 5.69).\(^{89}\)

![Figure 5.69](image-url)

5-Alkoxy-2(3\(H\))-oxazolones 47 react with aliphatic and aromatic aldehydes in the presence of Lewis acid catalysts to produce alkyl 2-oxazolidinone-4-carboxylates 291 by successive ring opening and reclosure.

Similarly, reaction with imines affords alkyl 2-imidazolidinone-4-carboxylates 293 via [2+2] cycloadducts 292. Treatment of the isolated cycloadducts 292 with trifluoroacetic acid (TFA) yields 2,3-diaminocarboxylates 294.\(^{91}\)
5,5-Dialkoxy-2-oxazolidinones 295, which are prepared by reaction of 5-alkoxy-2(3H)-oxazolones 47 with acetals in the presence of Lewis acid catalysts, are hydrolyzed in the presence of a protonic acid to produce \(\alpha \)-amino acid esters 296 (Fig. 5.70; Table 5.11, Fig. 5.71; Table 5.12, Fig. 5.72; Table 5.13, Fig. 5.73; Table 5.14, Fig. 5.74).\(^9\)

\[
\begin{align*}
\text{R}^4\text{CHO} & \quad \text{cat. Lewis acid} \\
\text{R}^4\text{OR} & \quad \text{cat. Lewis acid} \\
\text{H}^+ & \quad \text{R}^3\text{O}_2\text{C}^{-} \\
\end{align*}
\]

\[
\begin{align*}
\text{R}^4\text{CHO} & \quad \text{cat. Lewis acid} \\
\text{R}^4\text{OR} & \quad \text{cat. Lewis acid} \\
\text{H}^+ & \quad \text{R}^3\text{O}_2\text{C}^{-} \\
\end{align*}
\]

Figure 5.70

TABLE 5.11. SYNTHESIS OF ALKYL 2-OXAZOLIDINONE-4-CARBOXYLATES FROM 5-ALKOXY-2(3H)-OXAZOLIDONES

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>(R^4)</th>
<th>Lewis Acid</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph(_2)CH</td>
<td>H</td>
<td>Me</td>
<td>Ph</td>
<td>BF(_3)•O(_2)Et(_2)</td>
<td>100</td>
</tr>
<tr>
<td>Ph(_2)CH</td>
<td>H</td>
<td>Me</td>
<td>(i)-Pr</td>
<td>BF(_3)•O(_2)Et(_2)</td>
<td>100</td>
</tr>
<tr>
<td>Ph(_2)CH</td>
<td>H</td>
<td>Me</td>
<td>CO(_2)Me</td>
<td>TMSOTf</td>
<td>28</td>
</tr>
<tr>
<td>((R))-1-Phenylethyl</td>
<td>H</td>
<td>Me</td>
<td>Ph</td>
<td>TMSOTf</td>
<td>95</td>
</tr>
<tr>
<td>((S))-1-Phenylethyl</td>
<td>H</td>
<td>(i)-Pr</td>
<td>Ph</td>
<td>TMSOTf</td>
<td>97</td>
</tr>
<tr>
<td>Ph(_2)CH</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>TMSOTf</td>
<td>95</td>
</tr>
<tr>
<td>PhCH(_2)</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>TMSOTf</td>
<td>97</td>
</tr>
</tbody>
</table>

\(^9\)Data from Ref. 90.
TABLE 5.12. SYNTHESIS OF ALKYL 2-IMIDAZOLIDINONE-4-CARBOXYLATES AND ALKYL 2,3-DIAMINOPROPANE-1-CARBOXYLATES FROM 5-ALKOXY-2(3H)-OXAZOLONES

![Chemical structure](image)

Figure 5.72

<table>
<thead>
<tr>
<th>Compd. No.</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>R^5</th>
<th>Lewis Acid</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>Ph_2CH</td>
<td>H</td>
<td>Me</td>
<td>Ph</td>
<td>Ts</td>
<td>TMSOTf</td>
<td>99</td>
</tr>
<tr>
<td>293</td>
<td>Ph_2CH</td>
<td>H</td>
<td>Me</td>
<td>CO_2Me</td>
<td>Ph_2CH</td>
<td>TMSOTf</td>
<td>99</td>
</tr>
<tr>
<td>293</td>
<td>Ph_2CH</td>
<td>H</td>
<td>Me</td>
<td>CO_2Me</td>
<td>(R)-1-Phenylethyl</td>
<td>TMSOTf</td>
<td>94</td>
</tr>
<tr>
<td>293</td>
<td>(R)-1-Phenylethyl</td>
<td>H</td>
<td>Me</td>
<td>CH(OMe)Ph</td>
<td>Me</td>
<td>TMSOTf</td>
<td>89</td>
</tr>
<tr>
<td>293</td>
<td>(R)-1-(1-Naphthyl)ethyl</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>BF_3•OEt_2</td>
<td>90</td>
</tr>
<tr>
<td>293</td>
<td>Ph_2CH</td>
<td>Me</td>
<td>Me</td>
<td>CO_2Me</td>
<td>Ph_2CH</td>
<td>BF_3•OEt_2</td>
<td>99</td>
</tr>
</tbody>
</table>

a Data from Ref. 91.

TABLE 5.13. SYNTHESIS OF 5,5-DIALKOXY-2-OXAZOLIDINONES FROM 5-ALKOXY-2(3H)-OXAZOLONES

![Chemical structure](image)

Figure 5.73

<table>
<thead>
<tr>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>R^5</th>
<th>Lewis Acid</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph_2CH</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>TMSOTf</td>
<td>81</td>
</tr>
<tr>
<td>Ph_2CH</td>
<td>H</td>
<td>Me</td>
<td>CH(OMe)Ph</td>
<td>Me</td>
<td>TMSOTf</td>
<td>96</td>
</tr>
<tr>
<td>(R)-1-Phenylethyl</td>
<td>H</td>
<td>Me</td>
<td>CH(OMe)Ph</td>
<td>Me</td>
<td>TMSOTf</td>
<td>89</td>
</tr>
<tr>
<td>(R)-1-(1-Naphthyl)ethyl</td>
<td>H</td>
<td>Me</td>
<td>CH(OMe)Ph</td>
<td>Me</td>
<td>TMSOTf</td>
<td>83</td>
</tr>
<tr>
<td>(R)-1-(1-Naphthyl)ethyl</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>BF_3•OEt_2</td>
<td>90</td>
</tr>
</tbody>
</table>

a Data from Ref. 92.
5.2. 2(5H)-Oxazolones (3-Oxazolin-2-ones)

5.2.1. Introduction

Only a few compounds of this class have been reported since 1984 and three papers are surveyed in this section.

5.2.2. Synthesis

The UV irradiation of the 2-allyloxy-4,5-diphenyloxazole results in the predominantly formation of 5-substituted-2(5H)-oxazolones, in contrast to the thermal aza-Claisen rearrangement which readily affords the 2(3H)-oxazolones. The photolysis proceeds via allyl-O bond scission with the generation of a radical pair that subsequently recombines to produce 5-substituted-2(5H)-oxazolones. Similar results were obtained with 2-(benzyloxy)-4,5-diphenyloxazole (Fig. 5.75)."
On treatment with phosphorus pentachloride, 4,5-diaryl-2(3H)-oxazolones 297 are reported to afford 5-chloro-4,5-diaryl-2(5H)-oxazolones 298, rather than the expected 2-chloro-4,5-diaryl-oxazoles. The 5-chloro-products react with methanol to give 4,5-diaryl-4,5-dimethoxy-2-oxazolidinones 299, which are further converted on heating to 4,5-diaryl-5-methoxy-2(5H)-oxazolones 300 (Fig. 5.76).

Figure 5.76

Dehydration of 4-hydroxy-4,5,5-trimethyl-2-oxazolidinone 301 with a catalytic amount of p-toluenesulfonic acid affords the isomeric dimers 303 and 304 in a ratio of 1:2. The former type of dimer, that is, 303 likely results from coupling of the isomeric 2(5H)-oxazolone 302A with 4-methylene-2-oxazolidinone 302B, which are the initially formed dehydration products. On prolonged heating in CH₂Cl₂, the 2(5H)-oxazolone dimer 303, completely isomerizes to the 4-methylene-2-oxazolidinone dimer 304 (Fig. 5.77).

Figure 5.77

5.2.3. Reactions

There is nothing new to report on reactions of 2(5H)-oxazolones.
5.3. SUMMARY

Most of the reports, since the 1980s, on the chemistry of 2-oxazolones concern 2(3H)-oxazolones (4-oxazolin-2-ones) 1 and only few reports have appeared on the isomeric 2(5H)-oxazolones (5-oxazolin-2-ones) 2. Thus, the emphasis of this chapter has been to survey information on the synthesis and reactions of the 2(3H)-oxazolones 1 that has appeared over the past two decades.

The synthetic methods used to prepare 2(3H)-oxazolones since 1984 are largely based on minor modification of previous methodologies. However, some entirely new strategies for the construction of this class of heterocycles have also appeared, which include the application of intramolecular rearrangements such as Claisen-type and Pummerer rearrangements, ring formation catalyzed by transition metal reagents such as Ru₃(CO)₁₂, Rh₂(OAc)₄, and Pd(OAc)₄, and the ingenious use of in situ generated N- and P-ylides.

Recent developments have largely focused on the synthetic potential of the 2(3H)-oxazolone 1 as a building block that contains both masked amino and hydroxy moieties. Enantiocontrolled addition reactions at the 4,5-olefinic moiety of the 2(3H)-oxazolone ring in a variety of ionic, radical, and concerted addition modes provide a versatile strategy for achieving a chiral synthesis leading to the preparation of 2-amino alcohols of biological interest. The reactions also open up routes to chiral 2-oxazolidinone auxiliaries and chiral amino alcohol ligands that are of general use in asymmetric synthesis. Another feature based on the chemical stability of the 2(3H)-oxazolone ring skeleton permits its use as a protecting group, as well as for “ready-to-use”-type of reagents.

5.4. ADDENDUM

Condensation of 3-nosyloxy-2-keto esters 305 with methyl carbamate in refluxing toluene in the presence of p-toluenesulfonic acid provides 2(3H)-oxazolone-4-carboxylates 306 in good yields (41–80%). Alternatively, condensation of 3-bromo-2-keto esters 307, derived from the bromination of α-keto esters with CuBr₂, with methyl carbamate in the presence of AgOTf and p-toluenesulfonic acid under similar conditions provides the 2(3H)-oxazolone-4-carboxylates 306 in comparable yields (30–79%) (Fig. 5.78; Table 5.15, Fig. 5.79).⁹⁵,⁹⁶

The tandem condensation of isocyanates with an α-ketol in DMF leads to the 2-oxazolidinone derivatives 308 that are dehydrated to the 2(3H)-oxazolones 309 by refluxing in DMSO (Fig. 5.80).⁹⁷

Treatment of the N-mesyloxyamide 310 with sodium hydride yields 5-ethoxy-3-methyl-2(3H)-oxazolone 311. This intramolecular cyclization is considerably enhanced under sonication (Fig. 5.81).⁹⁸
TABLE 5.15. SYNTHESIS OF ETHYL 2(3H)-OXAZOLONE-4-CARBOXYLATES FROM 3-NOSYLOXY-2-KETO ESTERS OR 3-BROMO-2-KETO ESTERS

<table>
<thead>
<tr>
<th>R</th>
<th>% Yield from 305</th>
<th>% Yield from 307</th>
<th>% Yield from 307 (with p-TSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bn</td>
<td>80</td>
<td>64</td>
<td>75</td>
</tr>
<tr>
<td>H (Me ester)</td>
<td>51</td>
<td>43</td>
<td>54</td>
</tr>
<tr>
<td>Pentyl</td>
<td>84</td>
<td>63</td>
<td>79</td>
</tr>
<tr>
<td>i-Bu</td>
<td>70</td>
<td>68</td>
<td>75</td>
</tr>
<tr>
<td>i-Pr</td>
<td>41</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Me</td>
<td>56</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Ph</td>
<td>46</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>MeO2CCH2 (Me ester)</td>
<td>49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aData from Refs. 95, 96.
REFERENCES

2(3H)-Oxazolones and 2(5H)-Oxazolones

REFERENCES 51

52 2(3H)-Oxazolones and 2(5H)-Oxazolones

6.1. INTRODUCTION

The first derivatives of the 4(5H)-oxazolone ring system 1 were prepared almost 90 years ago when Traube and Ascher\(^1\) described the synthesis of 2-amino-4(5H)-oxazolones (pseudohydantoins) 2 via condensation of guanidine with α-hydroxy esters (Scheme 6.1). This is quite remarkable in that it was 36 years later before Sheehan and Izzo\(^2\) prepared the first example of a simple 2-aryl analogue via
reaction of benzoyl isocyanate with diazomethane to afford 2-phenyl-4(5H)-oxazolone, 3 (Scheme 6.2). Since these two reports, the 4(5H)-oxazolone ring system has been a rich source of derivatives and analogues prepared and evaluated as antibiotics, tranquilizers, antiinflammatory agents, antidepressants, antimalarials, fungicides, herbicides, antiviral agents, antidiabetic agents, dual 5-lipoxygenase (5-LO) and cyclooxygenase (CO) inhibitors, antiulcer agents, agents for the treatment of metabolic bone disorders, as selective cyclooxygenase (CO) inhibitors, photographic dyes, and nonlinear optical materials.

A comprehensive review of the synthesis and reactions of 4(5H)-oxazolones and analogues was published over 15 years ago. In addition, there are several reviews more limited in scope that have appeared recently. This chapter will survey the synthesis and reactions of 4(5H)-oxazolones and derivatives covering the period from 1983 to 2001. It will follow the basic format presented by Rao and Filler although several areas will be covered in more detail.

In those cases where tautomeric structures are possible, the exclusive or predominant tautomer will be shown (Fig. 6.1). Thus, 1 is predicted to be the most stable tautomer in the gas phase and in solution. It is the only tautomer observed experimentally in solution and will be used to represent 4(5H)-oxazolones. The tautomeric mesoionic anhydro-4-hydroxyoxazolium hydroxide 1b has not been observed spectroscopically but has been trapped in cycloaddition reactions. The amino tautomer 2 has been shown to be the exclusive and/or predominant tautomer for simple 2-amino-4(5H)-oxazolones. Rapi and
co-workers13 presented an excellent discussion of tautomerism in 2-amino-4(5\texttextit{H})-oxazolones. Similarly, the thione 4 is the predominant tautomer.5

6.2. 2-ALKYL(ARYL)-4-(5\texttextit{H})-OXAZOLONES AND THIOOXAZOLONES

6.2.1. Synthesis

There are relatively few syntheses of simple 2-alkyl- or 2-aryl-4(5\texttextit{H})-oxazolones and these have been summarized previously.3 An excellent and comprehensive review of the synthesis and reactions of 4(5\texttextit{H})-oxazolones covering the early literature up to \texttextit{\~}1983 has been published.6 Subsequent to this work extensions of earlier methods and a few additional examples have appeared in the literature and these will be described in detail.

Hydrolysis of a suitably 4-substituted oxazole has been reported to produce the corresponding oxazolone but the yields are not very high and the isolations can be difficult. For example, alkaline hydrolysis of 5 affords a low yield of mandelic acid presumably via the intermediacy of 6 (Scheme 6.3).14 As part of a study
to prepare all eight metabolites of 2,5-diphenyloxazole, the 4-acetoxy derivative, 8 was prepared via cyclization of 7 (Scheme 6.4). Brief alkaline hydrolysis of 8 produced 9 as part of a complex mixture. Only after treatment of this mixture with 1-iodopropane/(n-Bu)$_4$OH$^-$ was it possible to isolate a propylated derivative.15

![Scheme 6.4](image)

Abou-Gharbia and co-workers16 described a general synthesis of 5,5-diphenyl-2-substituted-4(5H)-oxazolones as an extension of their earlier work.17 Reaction of diphenylketene with a series of N-acylsulfilimines 10a–d produced an intermediate N-acyl α-lactam that then rearranged to afford 11a–d in 56–80% yield (Scheme 6.5). Examples are shown in Table 6.1 (Fig. 6.2).

![Scheme 6.5](image)

The reaction was sensitive to substituents present in the aromatic ring of 10. For example, S,S-dimethyl-N-benzoylsulfilimine, 10b, reacted completely with diphenylketene after 4 h in refluxing toluene. In contrast, the corresponding
N-p-nitrobenzoyl analogue was unreactive after 24 h under the same reaction conditions. Reaction of 10b with tert-butylcyanoketene 12 produced none of the expected 4(5H)-oxazolone. Instead, the imide 13, the product of an apparent Pummerer reaction,18 was isolated in low yield (Scheme 6.6).

As part of a mechanistic and synthetic study of nucleophilic carbenes the spirocyclic 4(5H)-oxazolone 18 has been obtained from benzoyl isocyanate (Scheme 6.7).19 Thermal extrusion of nitrogen from the 1,3,4-oxadiazoline 14 produced the carbonyl ylide 15 that fragmented via loss of acetone to the aminooxycarbene 16. Spectroscopic data [gas chromatography–mass spectrometry (GC–MS), infrared (IR), proton and C-13 nuclear magnetic resonance (1H and 13C NMR)] of the crude thermolysate was consistent with 18. The formation of 18 was rationalized to result from nucleophilic addition of 16 to benzoyl isocyanate followed by cyclization of the dipolar intermediate 17. Thermolysis of 19 and 21 under similar reaction conditions afforded 20 and 22 respectively, also identified spectroscopically as the major products in the thermolysate.
The syntheses and reactions of salts of variously substituted 4(5H)-oxazolones were described in Ref. 3. This area is the subject of extensive investigations in the Russian chemical literature and has been reviewed recently. Several very well established and preparatively useful methods to prepare analogues of 23 (Fig. 6.3) are presented in these references and will not be described further.

They include

- Reaction of α-haloacetyl bromides with amides in the presence of strong acids (pK < 1).
- Reaction of α-chloroacetamides with acid chlorides.
- Cyclization of α-hydroxy carboxylic acid amides with anhydrides in the presence of strong acids (pK < 1).
- Cyclization of cyanohydrins with aliphatic acid anhydrides in the presence of strong acids (pK < 1) or aromatic acids halides in the presence of SnCl4.
German workers20 reported that 5-acyloxy-4(5\textit{H})-oxazolonium salts 24 are readily prepared by reaction of acyl cyanides and acid anhydrides in the presence of a strong acid (Scheme 6.8). Analogues like 24 are not available using the traditional methods (see above).

\begin{align*}
\text{R} & = \text{alkyl, aryl} \\
\text{R}_1 & = \text{H, alkyl, aryl, cycloalkyl} \\
\text{R}_2 & = \text{H, alkyl, aryl, cycloalkyl} \\
\text{X}^- & = \text{ClO}_4, \text{Br, SbCl}_5, 1/2 \text{SnCl}_6^{-2}, \text{HSO}_4, \text{CF}_3\text{CO}_2, \text{polyphosphate}
\end{align*}

\textbf{Figure 6.3.} 4(5\textit{H})-Oxazolonium salts.

The manner in which a carbene was generated was found to be critical to the product distribution in a synthesis of 4(5\textit{H})-thiooxazolones (Scheme 6.9). Treatment of diethyl bromomalonate with excess triethylamine in the presence of benzoyl isothiocyanate afforded a mixture of the 4(5\textit{H})-thiooxazolone 25 (44\%) and the 1,3-oxathiole 26 (minor). However, if the carbene was generated via copper-catalyzed decomposition of diethyl diazomalonate, then 26 was isolated as the major product, albeit in low yield (22\%).21

\begin{align*}
\text{EtO}_2\text{C} & \text{CO}_2\text{Et} \\
\text{Br} & \text{PhC(O)NCS}
\end{align*}

\textbf{Scheme 6.9}
A recent report on trifluoromethylsulfenylation of β-keto acids and derivatives describes isolation of 29 in good yield from reaction of 27 with trifluoromethylsulfenyl chloride (Scheme 6.10). Mechanistically, this was rationalized via electrophilic attack of trifluoromethylsulfenyl chloride on the enamine tautomer 27a to generate 28 followed by intramolecular cyclization through the imide oxygen with concomitant loss of CF$_3$SH to produce 29. The product was characterized spectroscopically.

![Scheme 6.10](image)

During investigations of the synthesis of tetracycline ring A analogues, Moskalyk and co-workers unexpectedly isolated 4(5H)-oxazolones 31 and 33 following reaction of 30 and 32 with sodium ethoxide then chloroacetyl isocyanate. Further reaction of 31 effected ring opening of the 4(5H)-oxazolone to yield 34 (Scheme 6.11).

![Scheme 6.11](image)
Base-catalyzed cyclization of N-benzoyl-α-chloroacetamide is a classical method used to prepare 2-phenyl-4(5H)-oxazolone. Extension of this methodology to the N-arylcinnamides afforded a series of 5-arylidene analogues albeit in unstated yield (Scheme 6.12). Thus, acylation of the sodium salt of a benzamide with a cinnamoyl chloride gave the imides that were converted to via a bromination–dehydrobromination sequence. Cyclization to was affected with sodium hydride in 1,2-dimethoxyethane (DME). The authors noted that catalytic reduction of afforded the 5-(arylidene)oxazolidine from which could be regenerated in the presence of air.

Scheme 6.12

Roesky and co-workers unexpectedly isolated the unique 14 membered macrocycle containing arsenic, carbon, oxygen, and nitrogen atoms in the skeletal framework from reaction of arsenic(III) cyanide and hexafluoroacetone (Fig. 6.4). The structure of was confirmed by single-crystal X-ray.

Figure 6.4. Arsenic containing macrocyclic 4(5H)-oxazolone.
Japanese workers26–28 prepared examples of 2-alkenyl-4,5-oxazolediones 40a and 40b, which are key intermediates in the synthesis of alkenoyl isocyanates 41a and 41b (Scheme 6.13). These reactive monomers are precursors to a variety of functionalized polymers including instantaneously curable compositions. Thus, reaction of oxalyl chloride with acrylamide 39a or methacrylamide 39b affords 40a and 40b isolated as hydrochloride salts in high yields. Subsequent decomposition of the 2-alkenyl-4,5-oxazolediones in the presence of a metal halide or synthetic zeolite affords 41a and 41b contaminated with varying amounts of 42a and 42b. The synthesis and reactions of other 2-substituted 4,5-oxazolediones have been described independently by Speziale and co-workers29,30 and Sasaki and co-workers.31,32

\begin{center}
\begin{tabular}{ll}
39a & R = H \\
39b & R = Me \\
40a & R = H \\
40b & R = Me \\
41a & R = H \\
41b & R = Me \\
42a & R = H \\
42b & R = Me \\
\end{tabular}
\end{center}

Scheme 6.13

Almazole D, 43a is a relatively rare naturally occurring 2,5-disubstituted oxazoles that was isolated recently (Fig. 6.5).33 The proposed structure is based on NMR evidence and conversion of 43a to 43b by reaction with diazomethane but it has not yet been confirmed by total synthesis.

\begin{center}
\begin{tabular}{c}
\textbf{Figure 6.5.} Almazole D.
\end{tabular}
\end{center}
6.2.2. Reactions

For a brief survey of typical reactions of 4(5H)-oxazolones the reader is directed to Rao and Filler’s previous review.³ Kul’nevich and co-workers⁶ presented a more comprehensive discussion of this topic. Extensions of previous methodology or new reactions will be presented in this section.

Condensation products of 4(5H)-oxazolonium salts with aldehydes and orthoesters are the subject of a series of papers by Kosulina and co-workers.³⁴⁻³⁶ Reaction of 2-methyl-4(5H)-oxazolonium perchlorates ⁴⁴ with an ortho ester gives rise to an enol ether, which reacts with furanamides to afford the trans-enameamides ⁴⁵ (Scheme 6.14).³⁴ Using electron deficient anilines in a three component condensation affords either ⁴⁶ or ⁴⁷ in 64–80% and 78–84% yields, respectively, depending on whether the reaction is performed in acetic acid or acetic anhydride. Electron-rich anilines are unreactive since they are merely protonated by the perchloric acid present in the reaction medium.³⁶

![Scheme 6.14](image_url)
A recent extension of this methodology includes condensation of 44 with a variety of substituted benzaldehydes, furfurals, and thiophene carboxaldehydes afforded analogues of 48 in good to excellent yield as shown in Table 6.2 (Fig. 6.6). These products were completely characterized spectroscopically with an excellent discussion of the effects of substituents on the corresponding UV, IR, MS, and NMR spectra. Neutralization of 48 with sodium bicarbonate in aqueous ethanol produced the corresponding free bases uneventfully. These compounds were evaluated both as cyanine dyes and for biological activity.\(^\text{35}\) Condensation of 44 with (\(E\))-3-(5-methylfuran-2-yl)-2-propenal affords the expected (\(E, E\))-dienes 49\(a\) and 49\(b\) in 50 and 90% yield, respectively (Fig. 6.7).

Russian workers\(^\text{37}\) reported a high-yield synthesis of the 1,2,4-triazoles 51\(a\) and 51\(b\) from reaction of 50\(a\) or 50\(b\) with hydrazines in a continuation of their earlier

Table 6.2. 2-[2-(\(\alpha\)-HETERARYL)ETHENYL]-4(5\(H\))-OXAZOLONIUM PERCHLORATES FROM OXAZOLONIUM SALTS AND ALDEHYDES\(^a\)

<table>
<thead>
<tr>
<th>X</th>
<th>R</th>
<th>R(_1)</th>
<th>R(_2)</th>
<th>R(_3)</th>
<th>% Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>73</td>
<td>38(a)</td>
</tr>
<tr>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>4-Me-C(_6)H(_4)</td>
<td>83</td>
<td>38(b)</td>
</tr>
<tr>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>4-Br-C(_6)H(_4)</td>
<td>74</td>
<td>38(c)</td>
</tr>
<tr>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>4-NO(_2)-C(_6)H(_4)</td>
<td>64</td>
<td>38(d)</td>
</tr>
<tr>
<td>O</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>3-NO(_2)-C(_6)H(_4)</td>
<td>56</td>
<td>38(e)</td>
</tr>
<tr>
<td>S</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>60</td>
<td>38(f)</td>
</tr>
<tr>
<td>S</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>70</td>
<td>38(g)</td>
</tr>
</tbody>
</table>

\(^a\)Data from Ref. 35.

\(48\)

Figure 6.6

\(49a\) R = H
\(49b\) R = Me

Figure 6.7. (\(E, E\))-Dienes from a 2-methyl-4(5\(H\))-oxazolonium perchlorate.
studies (Scheme 6.15). For $R_1 \neq H$ there was no evidence for formation of regioisomers $52a$ or $52b$ consistent with attack at C-2 by the primary amino group of the hydrazine. The synthesis of triazolium salts and 1,3,5-triazines from reactions of $50a$ and $50b$ with other hydrazines and guanidines has been described previously.6

\[
\begin{align*}
X &= \text{ClO}_4 \text{ or CF}_3\text{CO}_2 \\
50a \quad &R = \text{Me} \\
50b \quad &R = \text{Ph}
\end{align*}
\]

\[
\begin{align*}
R_1\text{NHNH}_2 \\
\text{benzene or i-PrOH} \\
\text{reflux} \\
80-100\% \\
51a \quad &R = \text{Me}, R_1 = H, \text{Ph} \\
51b \quad &R = \text{Ph}, R_1 = H, \text{Ph}
\end{align*}
\]

\[
\begin{align*}
52a \quad &R = \text{Me}, R_1 = H, \text{Ph} \\
52b \quad &R = \text{Ph}, R_1 = H, \text{Ph}
\end{align*}
\]

Scheme 6.15

Additional examples of the utility of ring cleavage and recyclization of 4(5\(H\))-oxazolones to prepare interesting heterocycles have been described (Scheme 6.16). Treatment of 4-aminothymol 53 with 54 in refluxing pyridine yields the 4-imidazolidinones 55 evaluated as antimicrobial and antitubercular agents.38 The authors listed an extensive series of analogues (25 compounds) but reported a yield for only one example, 55 (63\% for $R_1 = \text{Ph}, R_2 = 4\text{-MeO-C}_6\text{H}_4$). Condensation of 2-phenyl-4(5\(H\))-oxazolone 56 with substituted hydrazines affords excellent yields of the 1,2,4-triazoles 57, important precursors to the previously unknown 1(\(H\))-1,2,4-triazole-5-carboxaldehydes 58.39 Representative examples are shown in Table 6.3 (Fig. 6.8).
TABLE 6.3. 5-(HYDROXYMETHYL)-3-PHENYL-1H-1,2,4-TRIAZOLES FROM 2-PHENYL-4(5H)-OXAZOLONE AND HYDRAZINESa

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>57a</td>
<td>Me</td>
<td>91</td>
</tr>
<tr>
<td>57b</td>
<td>Bn</td>
<td>94</td>
</tr>
<tr>
<td>57c</td>
<td>Ph</td>
<td>94</td>
</tr>
<tr>
<td>57d</td>
<td>4-Me-Ph</td>
<td>87</td>
</tr>
<tr>
<td>57e</td>
<td>4-Br-Ph</td>
<td>87</td>
</tr>
<tr>
<td>57f</td>
<td>4-NO2-Ph</td>
<td>95</td>
</tr>
</tbody>
</table>

aData from Ref. 39.

Barrett and Kohrt40 and Kelly and Lang41 independently reported the first examples of oxazole triflates (Scheme 6.17). In both cases, the requisite 2-aryl-4(5H)-oxazolone, 56 or 59, was treated with trifluoromethanesulfonic anhydride (Tf₂O) to afford 60a or 60b, respectively, which were then coupled successfully with a variety of organostannanes. Kelly and Lang41 attempted to extend this methodology to prepare the key oxazole triflates 63 in their approach to sulfomycin I. However, they were unexpectedly thwarted when 61 could not be cyclized to the requisite 4(5H)-oxazolone precursors 62.41 Schaus and Panek42 described an improved procedure to prepare 56 in 90% yield very recently.
Theoretically, the regioselectivity observed in photochemical \([2 + 2]\) cycloaddition of \(56\) with 1,1-dimethoxyethene is in good agreement with experimental results and has been explained on the basis of pertubational molecular orbital theory.\(^{43}\)

Hartke and co-workers\(^{44,45}\) described an interesting contrast in the reactivity of tropolones in an intramolecular Diels–Alder reaction (Scheme 6.18). Thus, alkylation of \(64a\) and \(64b\) with \(65\) gave \(66a\) and \(66b\), respectively, that were subjected to cyclization in refluxing toluene. Whereas \(66a\) decomposed under the reaction conditions, \(66b\) afforded \(67b\) in high yield.

\[\begin{align*}
64a & \quad R_1 = R_2 = R_3 = H \\
64b & \quad R_1 = R_2 = R_3 = Me
\end{align*} \]

\[\begin{align*}
66a & \quad R_1 = R_2 = R_3 = H \quad 46\% \\
66b & \quad R_1 = R_2 = R_3 = Me \quad 64\%
\end{align*} \]

toluene, reflux

\[\begin{align*}
67a & \quad R_1 = R_2 = R_3 = H \quad 0\% \\
67b & \quad R_1 = R_2 = R_3 = Me \quad 87\%
\end{align*} \]

Scheme 6.18

6.3. 2-AMINO-4(5H)-OXAZOLONES

6.3.1. Introduction

The synthesis of 2-amino-4(5H)-oxazolones has been a very productive area of research since Traube and Ascher\(^1\) first prepared 2 nearly 90 years ago. Subsequently, literally hundreds of analogues have been prepared and evaluated, primarily as medicinal agents. For example, pemoline (Cylert®) \(68\) (Fig. 6.9), a central nervous system (CNS) stimulant relatively devoid of side affects has been
used clinically to treat attention-deficit hyperactivity disorder (ADHD). On the other hand, the naturally occurring analogue, indolmycin (Fig. 6.9), is a potent, selective inhibitor of bacterial tryptophanyl enzyme and, as such, has stimulated interest in the design of new antibacterial agents. The classical approaches to analogues of were described briefly and reviewed more extensively by Nekrasov and include

- Cyclization of α-hydroxy esters with guanidine.
- Cyclization of α-halo carboxylic acid ureides.
- Cyclization of α-hydroxy or α-halo amides.
- Aminolysis or hydrazinolysis of 2-thiones.
- Displacement of the 2-amino group with primary and secondary amines.
- Alkylation of 2 or other analogues.

In addition, Rapi and co-workers summarized their investigations of tautomerism in 2-amino-4(5H)-oxazolones (Section 6.1 and Fig. 6.1). Interesting extensions of the earlier approaches to 2 as well as discussions of synthetic work related to 68 and 69 will be described in more detail in this section.

6.3.2. Synthesis

The cyclization of α-halo carboxylic acid ureides can be complicated with products from different modes of cyclization. For example, bromination of 70 at low pH affords the 2-amino-4(5H)-oxazolone 71 in excellent yield, whereas bromination at pH 5–6 generates a mixture of hydantoin 72 and 73 in poor yield (Scheme 6.19). Japanese workers reported that cyclization of α-bromoisovalerylurea with 28% aqueous ammonia yields 2-amino-5-isopropyl-4(5H)-oxazolone 74, not 75 or 76. The structure of 74 was established spectroscopically and confirmed by hydrolysis to 77 (Scheme 6.20).
An example of anomalous behavior in closely related systems was reported some time ago during an investigation of the cyclization products derived from coumarin semicarbazones (Scheme 6.21). Thus, 78a reacted cleanly with chloroacetic acid to yield 79a, which cyclized to the expected product 80a upon treatment with sodium acetate. On the other hand, 79b did not cyclize under the same reaction conditions. This was attributed to the absence of the “enolizable” hydrogen (Ph vs. H). The authors did not comment on the possibility of cyclization of 79b to 80b. The closely related urea analogue 81 did not react with chloroacetic acid thereby
precluding cyclization to the corresponding 2-amino-4(5H)-oxazolone. On the other hand, condensation–cyclization of the chloroacetic acids 82 with a series of N-aryl ureas 83 afforded good-to-excellent yields of the corresponding 2-(arylimino)-4(5H)-oxazolones 84, which showed some promise as antifungal agents (Scheme 6.22).51
Recently, Manthey, Christopherson, and co-workers52 unexpectedly isolated a spirocyclic 2-amino-4(5\text{H})-oxazolone during their investigations of dihydroorotase inhibitors as potential antimalarial agents (Scheme 6.23). The authors anticipated that bromination of the ureide 85 with concomitant cyclization would yield 86 that would then be converted to the potential dihydroorotase inhibitor 87 as shown. However, the product isolated from this four-step reaction sequence was the thiohydantoin 88\textit{b}. It was assumed that bromination of 85 produced the hydantoin 89 that was then converted to 88\textit{b} (see above). Surprisingly, the product isolated in 89\% yield from the bromination reaction was not 89 but the spirocyclic 2-amino-4(5\text{H})-oxazolone 90a that was treated with tributyltin hydride to afford 90b. It was postulated that 90b rearranged to 88a during the thiation reaction. Subsequent cleavage of the 2-bromo-4-methoxybenzyl group (Ar\textsubscript{1}) with trifluoroacetic acid then produced 88b.

![Scheme 6.23](image-url)
Benkovic and co-workers53 also isolated spirocyclic 2-amino-4(5\textit{H})-oxazolones during their studies on pterin-dependent amino acid hydroxylases (Scheme 6.24). Reaction of 91 with \textit{O}-methyl hydroxylamine or semicarbazide at pH 4.8 yielded 92\textsubscript{a} and 92\textsubscript{b}, respectively. The authors showed that 92 does not simply result from reaction of the corresponding oxazolidinedione with either reagent. Further, by using H\textsubscript{2}18O as the solvent they demonstrated that there was no 18O incorporation into the product. Two different but precedent mechanisms were proposed to account for this rearrangement. The stereochemistry of 92\textsubscript{b} was confirmed by single-crystal X-ray.

\textbf{Scheme 6.24}

Other examples of spirocyclic 2-amino-4(5\textit{H})-oxazolones have been prepared and evaluated for their CNS activity and as potential antiviral agents.54,55 In these reports, cyclization of the appropriate \textit{\alpha}-hydroxy ester with guanidine afforded the novel analogues 93, albeit in low-to-modest yields. Representative examples are shown in Table 6.4 (Fig. 6.10).

German workers56 have also isolated a novel spirocyclic 4(5\textit{H})-oxazolone 96 in high yield by reaction of 95 with hydroxylamine sulfate (Scheme 6.25). This was part of an investigation of the synthesis and reactions of 95.

The classical cyclization routes to pemoline 68 and similar 2-amino-4(5\textit{H})-oxazolone analogues continue to be refined and improved. For example, Japanese workers57 have prepared an extensive series of heterocyclic analogues, 100, via several classical routes including cyclization of \textit{\alpha}-hydroxy esters or activated acids.
TABLE 6.4. SPIROCYCLIC 2-AMINO-4(5H)-OXAZOLONES FROM
α-HYDROXY ESTERS AND GUANIDINE

![Chemical structures](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>93a</td>
<td>15</td>
<td>54</td>
</tr>
<tr>
<td>93b</td>
<td>16</td>
<td>54</td>
</tr>
<tr>
<td>93c</td>
<td>16</td>
<td>54</td>
</tr>
<tr>
<td>93d</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td>93e</td>
<td>31</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>93f</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>11</td>
<td>54</td>
</tr>
<tr>
<td>93g</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>31</td>
<td>54</td>
</tr>
<tr>
<td>93h</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>15</td>
<td>54</td>
</tr>
<tr>
<td>93i</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>28</td>
<td>54</td>
</tr>
<tr>
<td>93j</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>36</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>93k</td>
<td>13</td>
<td>54</td>
</tr>
<tr>
<td>93l</td>
<td>31</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>93m</td>
<td>H</td>
<td>32<sup>a</sup></td>
<td>54, 55</td>
</tr>
<tr>
<td>93n</td>
<td>PhCH₂CH₂</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>93o</td>
<td>Bn</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>93p</td>
<td>Et</td>
<td>37</td>
<td>54</td>
</tr>
<tr>
<td>93q</td>
<td>ℓ-Pr</td>
<td>36<sup>a</sup></td>
<td>54, 55</td>
</tr>
</tbody>
</table>

^a% yield from Ref. 54.
with thioureas or guanidines (Scheme 6.26). Some of these have shown excellent promise as anti-\textit{Helio}bacter \textit{pylori} agents.

\begin{align*}
&\begin{array}{c}
\text{OH} \\
\text{Ph} \\
\text{CO}_2\text{R}
\end{array} \\
&\begin{array}{c}
\text{NH}_2\text{CN}/\text{Base} \\
\text{solvent} \\
<10 \text{ to } 150 \degree \text{C}
\end{array}
\end{align*}

\begin{align*}
&\begin{array}{c}
\text{Ph} \\
\text{CO}_2\text{R}
\end{array} \\
&\begin{array}{c}
\text{NH}_2\text{CN}/\text{Base} \\
\text{solvent} \\
<10 \text{ to } 150 \degree \text{C}
\end{array}
\end{align*}

\begin{align*}
&\begin{array}{c}
\text{OH} \\
\text{Ph} \\
\text{CO}_2\text{R}
\end{array} \\
&\begin{array}{c}
\text{NH}_2\text{CN}/\text{Base} \\
\text{solvent} \\
<10 \text{ to } 150 \degree \text{C}
\end{array}
\end{align*}

\begin{align*}
&\begin{array}{c}
\text{OH} \\
\text{Ph} \\
\text{CO}_2\text{R}
\end{array} \\
&\begin{array}{c}
\text{NH}_2\text{CN}/\text{Base} \\
\text{solvent} \\
<10 \text{ to } 150 \degree \text{C}
\end{array}
\end{align*}

\textbf{Scheme 6.27}

Subtle yet significant refinements in the stoichiometry and reaction conditions for the base catalyzed reaction of cyanamide with a mandelate ester have been described recently in the patent literature (Scheme 6.27).58,59 The advantages include fewer impurities and avoidance of the notoriously unstable guanidine free base. In both cases, excellent yields of very pure 68 (up to 99.87\% \textit{A}) have
been obtained from a wide variety of conditions. Interestingly, it does not appear to be critical to prepare a single enantiomer of 68 since rapid epimerization of the benzylic hydrogen “obscures any potential enantioselective pharmacology.” However, very recently, Bonk and co-workers described a spontaneous resolution of the enantiomers of pemoline with >96% enantiomeric excesses possible. Chinese workers reported the first separation of the enantiomers of 68 using cyclodextrin-mediated capillary zone electrophoresis (CZE). Enantioselective high-performance liquid chromatography (HPLC) separations employing chiral stationary phases have been an area of intense investigation. Armstrong’s group recently demonstrated this technique as applied to 68 using a covalently bonded macrocyclic antibiotic, ristocetin A as the chiral stationary phase.

Nekrasov and co-workers prepared 2-amino-5-substituted-4(5H)-oxazolones as part of a program to investigate the chemistry of 2,3-dihydrofuran-2,3-diones (Scheme 6.28). The target oxazolones were evaluated as antispasmodics, analgesics, antiinflammatory agents, antihypoxic agents, and antimicrobial agents. Thus, ring opening of a 5-substituted 2,3-dihydrofuran-2,3-dione 101 with cyanamide followed by recyclization affords the desired 2-amino-5-substituted-4(5H)-oxazolones 102 in excellent yields.

![Scheme 6.28](image)

Displacement of a suitable leaving group is a usually reliable method to introduce a nitrogen substituent at C-2 although there can be considerable variation in the yields. Recently, reports have employed this methodology to prepare substituted di-tert-butylphenols for evaluation as dual 5-lipoxygenase and cyclooxygenase inhibitors or as selective cyclooxygenase-2 inhibitors (Scheme 6.29). Knoevenagel condensation of 103 with 104 followed by methylation gave 105. Examples of products obtained from 105 by displacement with hydroxylamines 106, cyanamide 107, and guanidine 108, respectively, are shown in Table 6.5 (Fig. 6.11). Interestingly, attempts to prepare 110 by Knoevenagel condensation of 103 with 109 failed. However, hydrolysis of 105 afforded 110 in acceptable yield. The unusual ring-opened product 111 was isolated from reaction of 105 with O-methyl hydroxylamine in refluxing ethanol. The structure of 111 was confirmed by X-ray crystallography.
Scheme 6.29

TABLE 6.5. 5-(BENZYLIDENE)-2-SUBSTITUTED-4(5H)-OXAZOLONES FROM 5-(BENZYLIDENE)-2-(METHYLTHIO)-4(5H)-OXAZOLONE

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Conditions</th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>106a</td>
<td>NHOH</td>
<td>NHOH · HCl, KOrBu/EtOH, rt</td>
<td>13</td>
<td>67</td>
</tr>
<tr>
<td>106b</td>
<td>NHOMe</td>
<td>NHOMe · HCl, KOrBu/EtOH, 0 °C to rt</td>
<td>29</td>
<td>67</td>
</tr>
<tr>
<td>106c</td>
<td>NHOEt</td>
<td>NHOEt · HCl, KOrBu/EtOH, −30 °C</td>
<td>7</td>
<td>67</td>
</tr>
<tr>
<td>106d</td>
<td>NHOallyl</td>
<td>NHOallyl · HCl, KOrBu/EtOH, −40 °C</td>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>107</td>
<td>NHCN</td>
<td>NH₂CN, KOrBu/EtOH, reflux</td>
<td>38</td>
<td>66</td>
</tr>
<tr>
<td>108</td>
<td>NHC(=NH)NH₂</td>
<td>NH₂C(=NH)NH₂ · HCl, KOrBu/EtOH, reflux</td>
<td>55</td>
<td>65, 66</td>
</tr>
</tbody>
</table>
Czech workers described an interesting oxidative ring contraction that affords 2-amino-5-(carboxyalkyl)-4(5H)-oxazolones 113a–e (Scheme 6.30; Table 6.6, Fig. 6.12). Prolonged reaction of an ω-(2-amino-6-hydroxy-4-oxo-3,4-dihydropyrimidine-5-yl)alkane acid or ester 112a–f with 30% hydrogen peroxide in concentrated aqueous ammonia gave 113a–e in 52–65% yield. The structures of 113a–e were confirmed spectroscopically. The authors ruled out the isomeric hydantoins 114a–e as possible products based on the following evidence. Hydrolysis of 113d (n = 4) gave 115a, whereas hydrolysis of the isomeric hydantoin 114d (n = 4) would have yielded 115b. Finally, the hydantoins were independently synthesized and were clearly different from the isolated products. Conversion of 116 to 117 was effected in comparable yield.

Mechanistically, the authors proposed initial hydroxylation at C-5 followed by anion formation of the 5-hydroxyl group, attack at C-2 and rearrangement to the 2-amino-4(5H)-oxazolone upon work-up (Scheme 6.31). To support this premise they oxidized 112d to 118, which rearranged to 113d upon exposure to 5% aqueous ammonia at room temperature, consistent with previous work.69
The naturally occurring 4(5H)-oxazolone antibiotic indolmycin 69 (Fig. 6.13) has been a focus of several synthetic programs since the structure was first elucidated by Schach von Wittenau and Els nearly 40 years ago. These syntheses can be broadly classified as either involving classical cyclization to construct the 4(5H)-oxazolone ring or as elaboration of an existing 4(5H)-oxazolone. The classical cyclization routes will be discussed at this time, whereas routes involving elaboration of an existing 4(5H)-oxazolone will be described in Section 6.3.3.
The first, and one of the most straightforward, syntheses of racemic 69 was that of Schach von Wittenau and Els after they had determined the structure. Friedel–Crafts alkylation of indole with ethyl 2,3-epoxybutyrate gave the α-indolmycenic acid ester 119a. Cyclization of 119a with N,N'-dimethylguanidine yielded both 69 and isoindolmycin 120 (Scheme 6.32). In this case, facile epimerization of H-5 had occurred under the basic cyclization conditions.

Preobrazhenskaya and co-workers employed a similar cyclization strategy in their synthesis of optically active indolmycin (Scheme 6.33). Conversion of indole to the requisite indolmycenic acids 121 was uneventful. Resolution of 121 with α-phenethylamine yielded α-indolmycenic acid 121a and β-indolmycenic acid 121b. These were separated, independently esterified with diazomethane and then cyclized with N,N'-dimethylguanidine to afford 69 and 120, which were separated by fractional crystallization. In addition, these authors also prepared 122 and 123 from cyclization of 119b with urea or thiourea and guanidine, respectively. Shortly after this work, Chan and Hill reported the absolute configuration of 69 to be (5S, 6R).
Mukaiyama and Takeda73 described the first asymmetric synthesis of \textit{69} in which \textit{127} was obtained utilizing their methodology to prepare enantiomerically enriched 3-substituted alkanoic acids (Scheme 6.34).74,75 In their approach, 3-formylindole was first protected as the carbobenzyloxy (Cbz) derivative and then treated with \textit{124} to yield \textit{125a} and \textit{125b} as a 1.5 : 1 ratio of (Z/E) isomers. Thermal isomerization of \textit{125a} to \textit{125b} followed by addition of methylmagnesium bromide gave \textit{126}, which was transformed into \textit{127} in four steps. With the synthesis of \textit{127} secured, they turned their attention to prepare the 4(5\textit{H})-oxazolone using conditions that would preclude epimerization at C-5. Thus, protection of the alcohol and saponification followed by a benzoxazolium \textit{128} mediated coupling with \textit{N}-methylthiourea gave a mixture of \textit{129} and \textit{130}. Thermal rearrangement of the isothiourea \textit{129}, hydrolysis of the tetrahydropyran-2-yl (THP) protecting group and now, a benzoxazolium \textit{128} mediated ring closure completed the synthesis of \textit{69}.

Scheme 6.33
Scheme 6.34
6.3.3. Reactions

2-Amino-4(5H)-oxazolones can react with or without ring opening depending upon the reaction conditions. Examples of synthetically useful reactions without ring cleavage include hydrolysis to 2,4-oxazolidinediones, transamination of the 2-amino group with primary and secondary amines, and aldol condensations with aromatic aldehydes. However, in some cases, simple alkylation or acylation reactions are complicated by regioselectivity issues and frustratingly poor yields. Similarly, Mannich reactions can yield multiple and sometimes unexpected products. Hydrolysis can affect ring cleavage to produce both α-hydroxy acids and α-hydroxy amides although this is not usually a synthetically useful process. On the other hand, hydrolytic ring cleavage with concomitant recyclization can be a useful method to prepare hydantoins. Hydrazinolysis also affects ring cleavage to afford intermediate acylamino guanidines that undergo cyclodehydration to generate 5-(α-hydroxyalkyl)-1,2,4-triazolines. Recent representative examples of some of these reactions together with noncyclization approaches to indolmycin \(69\) will be described in this section.

The frustrating and sometimes capricious nature of simple reactions of 2-amino-4(5H)-oxazolones is exemplified in the following reports. Ramsh and co-workers \(^\text{76}\) acetylated \(68\) with acetyl chloride in benzene but isolated both a poor yield and a poor mass balance of \(131\) together with dehydroacetic acid \(132\). Attempts to transaminate \(131\) with diethylamine in the absence of a solvent or with aniline in benzene failed. The authors recovered \(68\), which is in stark contrast to an earlier report from Hansen and Masch \(^\text{77}\) that acetylation of \(68\) with acetic anhydride gave \(131\) in 87% yield. In addition, these same authors reported that reaction of \(131\) with diethylamine at room temperature gave \(134\) in excellent yield (Scheme 6.35).

![Scheme 6.35](image-url)
Finally, Ramsh and co-workers78 methylated 133 and isolated a 3:1 mixture of 135 and 136 albeit, in only 35% combined yield. The Russian authors offered a much different mechanistic rationale to account for these results than earlier work.79 Mannich reactions of 68 lead to markedly different results depending on the amine component (Schemes 6.36; 6.37). For example, 137 was isolated in poor yield after refluxing a mixture of 68, benzylamine, paraformaldehyde, and acetic acid in methanol.80 The same material was also prepared from 138 under similar conditions. In a continuation of this work, Ramsh and co-workers81 investigated reactions using other primary and secondary amines. When 68 was treated with an excess of formalin and a secondary amine either 139 or 140 was isolated, albeit in fair to modest yield. However, some primary amines gave rise to the oxazolo[3,2-\textit{a}]1,3,5-triazines 141a–d, whereas other primary amines led to the
oxazolo[3,2-a]1,3,5,7-tetrazocines **142a** and **142b**. Among these bicyclic analogues only **141d**, derived from aniline, was isolated in a synthetically useful yield.

Lee and co-workers\(^8^2\) reported an interesting example of a conjugated polymer obtained by polymerizing 5-phenyl-2-(propynlamino)-4(5\(H\))-oxazolone in the presence of palladium or platinum chlorides. The authors predict this unique material may have applications for polymer electrolytes, semiconductors, and nonlinear optical (NLO) materials.

Indolmycin continues to attract the interest of synthetic chemists as a lead compound for preparation of new antibacterial agents. As such, considerable effort has been expended to develop shorter, more efficient syntheses that can be readily adapted for preparation of analogues.

A Pfizer group\(^8^3\) described the first preparation of **148** that did not involve a late stage construction of the 4(5\(H\))-oxazolone (Scheme 6.38). Instead, their strategy

![Scheme 6.38](image-url)
employed 143 as a key intermediate to install this ring system very early in the synthetic scheme. Thus, treatment of 143 with lithium diisopropylamide (LDA) gave the enolate 144, which was alkylated with 145a to afford a 2.2:1 mixture of the diastereomers 146 and 147 in 70% yield. These were separated chromatographically and 146 was converted quantitatively into racemic indolmycin 148.

However, efforts to adapt this strategy for an asymmetric synthesis of 69 were uniformly disappointing. All attempts to prepare an optically active alkylating agent 145a (X = Cl) gave completely racemic material. A model study for alkylation of 144 with racemic 145b (X = OMs) yielded the unexpected 5-carbobenzyloxy derivative 149 thereby precluding this approach. Preparation of 150a–c incorporating a proline chiral auxiliary was straightforward. Alkylation of these analogues with 145a gave 151a–c from which amine exchange with methylamine under nonepimerizing conditions afforded (+)-indolmycin. However, the enantiomeric excess (ee) was a disappointing 9–17%. Nonetheless, the authors demonstrated an overall strategy that was efficient and convergent requiring only five steps to prepare racemic indolmycin in 34% yield.

More recent syntheses of indolmycin derivatives and analogues have also capitalized on the strategy of the Pfizer group (see above). For example, Witty and co-workers utilized 143 and 152 to prepare a series of analogues that were evaluated as inhibitors of *Staphylococcus aureus* (Scheme 6.39). In their work, the lithium enolates 144 and 153 were reacted with 145a and 154a–g followed by a straightforward reaction sequence to yield the target compounds 148 and 155–163. The respective diastereomers of 148, 155, 156, and 159–163 were separated chromatographically and evaluated individually. In all cases, the diastereomers with the same relative stereochemistry as indolmycin were the most active.

This same group also utilized 144 in their attempts to prepare the conformationally restricted indolmycin analogue 164. Initially, the authors envisioned construction of the [5,6,6] tricylic ring on a fully elaborated intermediate containing a 4(5H)-oxazolone side chain (Scheme 6.40). Conversion of 2-methyl-3-nitrobenzoic acid to the requisite indole precursor 165 was readily accomplished in five steps. Reaction of 165 with 144 gave 166 quantitatively, isolated as a mixture of diastereomers. However, at this point the strategy to prepare the [5,6,6] tricyclic ring system was completely frustrated by their inability to functionalize or eliminate the tertiary hydroxyl group. Ultimately, 166 was converted to the open-chain indolymycin homologue 167 without incident.

An alternative strategy involving addition of 144 to an appropriately functionalized tricyclic system proved to be successful (Scheme 6.41). In this approach, protection of the indole nitrogen fortuitously proved unnecessary. Conversion of 168 to the unstable iodide 169a or to the phenylselenide 169b was straightforward. The key intermediate unsaturated oxindole 170 was isolated in 50% overall yield from 169b. Only one racemic diastereomer 171 of four possible pairs was isolated from low-temperature addition of 144 to 170. Conversion of 171 to the target 172 occurred without detectable epimerization at C-8 or C-11. The C-8 (S), C-11 (S) relative stereochemistry was confirmed crystallographically.
Scheme 6.39

143 R = H
152 R = Me

144 R = H
153 R = Me

145a R1 = CHClMe, R2 = Cbz
154a R1 = CHClEt, R2 = Cbz
154b R1 = CF(Me)2, R2 = Cbz
154c R1 = CH2NMMe3+, R2 = H
154d R1 = CH=CHCO2tBu, R2 = TBDMS
154e R1 = CH=CHNO2, R2 = SEM
154f R1 = CHO, R2 = TBDMS
154g R1 = COMe, R2 = TBDMS

148 R3 = Me
155 R3 = Et
158 R3 = H
162 R3 = OH

159

160

161

163
Scheme 6.40

Scheme 6.41

TMG = 1,1,3,3-tetramethylguanidine
epimerization occurred at C-11 to produce 173 when 171 was treated with tetramethylguanidine.

Recently, Shue85 described further refinements and improvements to the Pfizer strategy (Scheme 6.42). Acylation of 143 with benzyl cyanoformate gave the requisite starting 4(5H)-oxazolone 175. Alkylation of 175 with the gramine analogue 176 yielded 177 quantitatively from which 146 and 147 were obtained as a 1:1.5 mixture of diastereomer pairs. After chromatographic separation each pair was converted independently to (±)-indolmycin 148a and (±)-isoindolmycin 148b. This synthesis requires four steps to produce 148a in 47% overall yield from readily available starting materials.

![Scheme 6.42](image)

Very recently, Kamiyama and co-workers86 described a stereocontrolled synthesis of 69 based on Schach von Wittenau and Els original route.70 In this newer approach (Scheme 6.43), ethyl crotonate was converted to ethyl (2S, 3R)-2,3-epoxybutanoate using the commercially available asymmetric dihydroxylation mixture, AD-mix-β (Aldrich Chemical Company). The epoxide was then ring opened with indolemagnesium bromide to give ethyl (2S, 3R)-2-hydroxy-3-(indol-3-yl)butanoate 119a in very good yield. Cyclization of 119a with guanidine at room temperature afforded 178 in which the 4(5H)-oxazolone ring was created.
without epimerization at C-5. Finally, amine exchange then completed the synthesis of 69.

Scheme 6.43

6.4. 2-ALKOXY-4(5H)-OXAZOLONES AND 2-HYDROXY-4(5H)-OXAZOLONES (2,4-OXAZOLIDINEDIONES)

6.4.1. Introduction

There are only a few reports of 2-alkoxy-4(5H)-oxazolones and these are limited to highly substituted 4-(arylimino)-2-ethoxy- or 4-(alkylimino)-2-ethoxy-analogues. There are no reports of a 2-hydroxy-3-unsubstituted-4(5H)-oxazalone that exists as a hydroxy tautomer 179a–179d. Rather, the predominant tautomer for a 2-hydroxy-3-unsubstituted-4(5H)-oxazalone is the 2,4-oxazolidinedione, 179 (Fig. 6.14). For example, Codding determined the structure of 5,5-diphenyl-2,4-oxazolidinedione to be 180 by X-ray crystallography. More recently, Japanese workers crystallographically determined the structure of 5-(4-methoxybenzylidene)-2,4-oxazolidinedione to be 181 during their studies of hydrogen-bonding effects in potential nonlinear optical materials.

In principle then, these saturated imides and derivatives are beyond the scope of this chapter. However, the synthesis and reactions of some 3-unsubstituted derivatives of 179 are included in the interest of completeness. No attempt has been made to provide an exhaustive review of all examples of 2,4-oxazolidinediones. Rather, selected examples from the recent literature that illustrate general synthetic approaches or novel reactions are described.
Derivatives that are 3-substituted such as the antiepileptic agents, trimethadione (Tridione\(^{182a}\)), or dimethadione (Paradione\(^{182b}\)), the fungicides, famoxadone (Famoxate\(^{183}\)), chlozolinate, \(^{184}\) and the herbicide vinclozolin, \(^{185}\) are beyond the scope of this chapter (Fig. 6.15). Nonetheless, Refs. 93–100 and references cited therein contain an interesting description of the syntheses and reactions of such analogues. In addition, the reader should also consult the following selected references for further examples.

- 3-Alkyl- or 3-aryl-2,4-oxazolidinediones via photochemical cyclization,\(^{101}\) organonickel-mediated carbonylation,\(^{102}\) cyclization of \(\mathcal{N}\)-alkenyl-\(\alpha\)-acetamides,\(^{103}\) carboxylation and cyclization of 2-propynamides,\(^{104}\) cyclization of \(O\)-carbamates of \(\alpha\)-hydroxy acetic acids and esters,\(^{105,106}\) cyclization of \(\alpha\)-hydroxy acetamides,\(^{107}\) and catalytic asymmetric dihydroxylation (ADH) of \(\mathcal{N}\)-alkenoyl-2-oxazolidinones.\(^{108}\)
- 3-(Arylideneamino)-2,4-oxazolidinediones via cyclization of arylidine benzilic acid hydrazides\(^{109}\) and 3-amino-2,4-oxazolidinediones from perhydro-1,5,2-dioxazine-3,6-diones.\(^{110}\)

\[\text{Figure 6.14. 2,4-Oxazolidinedione tautomers.}\]
3-Alkoxy-2,4-oxazolidinediones via cyclization of \(N \)-alkoxy-2-hydroxycarboxamides,\(^{111,113-116} \) and cyclization of 2-hydroxycarbohydroxamic acids.\(^{112} \)

6.4.2. 2-Alkoxy-4(5\(H \))-Oxazolones

Kauffman\(^{87} \) prepared the 2-ethoxy-4-(p-tolylimino) derivatives 186a and 186b by thermolysis of ethyl azidoformate in the presence of keteneimines. Mild acid hydrolysis afforded 187a and 187b that were independently converted to 5,5-dimethyl- and 5,5-diethyl-2,4-oxazolidinedione, 188a and 188b, respectively, upon more vigorous hydrolysis. Interestingly, 187a and 187b were recovered unchanged after refluxing 8 h in 6\(M \) hydrochloric acid (Scheme 6.44).

\[\text{R}_2C=C=N-C_6H_4-4-Me \rightarrow \begin{align*}
\text{EtO} & \rightarrow \text{N-C}_6\text{H}_4-4-\text{Me} \\
186a & \text{R} = \text{Me} \\
186b & \text{R} = \text{Et}
\end{align*} \]

\[\begin{align*}
\text{HN} & \rightarrow \text{O} \\
187a & \text{R} = \text{Me} \\
187b & \text{R} = \text{Et}
\end{align*} \]

\[\begin{align*}
\text{HN} & \rightarrow \text{O} \\
188a & \text{R} = \text{Me} \\
188b & \text{R} = \text{Et}
\end{align*} \]

Figure 6.15. 3-Substituted 2,4-oxazolidinediones.

- 3-Alkoxy-2,4-oxazolidinediones via cyclization of \(N \)-alkoxy-2-hydroxycarboxamides,\(^{111,113-116} \) and cyclization of 2-hydroxycarbohydroxamic acids.\(^{112} \)
L’abbé and co-workers described reactions of \(186a\) with a variety of heterocumulenes \((X=C=Y)\) to generate \(189a-e\) and/or \(190a-e\) (Table 6.7, Fig. 6.16). The authors proposed a ring-opening cycloaddition that is mechanistically related to the Boulton-Katritzky rearrangement. Reaction of \(186a\) with chlorosulfonyl isocyanate also produced the hydrolysis product \(191\) that was the only isolable product after chromatographic purification. Chromatographic purification of \(189c\) affected hydrolysis of the benzamide yielding only \(192\). Similarly, \(193\) was isolated as the sole product from reaction of \(186a\) with bis(ethoxycarbonyl)ketene, whereas diphenylketene reacted with \(186a\) to give the spirocyclic adduct, \(194\) (Scheme 6.45). No cycloadducts were isolated from phenyl isocyanate, phenyl isothiocyanate, benzoyl isothiocyanate, methyl acrylate, methyl vinyl ketone, or acrylonitrile.

This same group also investigated the thermolysis of \(\alpha\)-bromo amidines as a means to prepare 2-alkoxy-4(5H)-oxazolones. Here, an \(\alpha\)-bromo imide \(195a\) or \(195b\) was converted to the corresponding amidine \(196a\) or \(196b\), which upon
heating, eliminated hydrogen bromide with concomitant cyclization and produced the intermediate 2-ethoxy-4(5H)-oxazolone 197a or 197b. Hydrolytic work-up of 197a or 197b then afforded 198a or 198b. Thermolysis of 196a or 196b in the presence of tert-butylamine produced 199a or 199b (Scheme 6.46).

![Diagram](image)

TABLE 6.7. BOULTON-KATRITZKY REARRANGEMENT PRODUCTS FROM 5,5-DIMETHYL-2-ETHOXY-4-(p-TOLYLIMINO)-4(5H)-OXAZOLONE AND HETEROCUMULENES

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Compound</th>
<th>% Yield</th>
<th>Compound</th>
<th>% Yield</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TosN</td>
<td>O</td>
<td>189a</td>
<td>11%</td>
<td>190a</td>
<td>47</td>
<td>benzene, reflux, 7 days</td>
</tr>
<tr>
<td>ClSO2N</td>
<td>O</td>
<td>189b</td>
<td>25%</td>
<td>191</td>
<td>20</td>
<td>benzene, 70 °C</td>
</tr>
<tr>
<td>PhCON</td>
<td>O</td>
<td>189c</td>
<td>34%</td>
<td></td>
<td></td>
<td>MeCN, reflux</td>
</tr>
<tr>
<td>PhSO2N</td>
<td>S</td>
<td>190d</td>
<td>76</td>
<td></td>
<td></td>
<td>benzene, 75 °C</td>
</tr>
<tr>
<td>TosN</td>
<td>S</td>
<td>190e</td>
<td>71</td>
<td></td>
<td></td>
<td>benzene, 75 °C</td>
</tr>
<tr>
<td>(EtO2C)2C</td>
<td>O</td>
<td>193</td>
<td>17</td>
<td></td>
<td></td>
<td>benzene, 80 °C</td>
</tr>
</tbody>
</table>

Data from Ref. 88.

2-Alkoxy-4(5H)-Oxazolones and 2-Hydroxy-4(5H)-Oxazolones
There are no reports that alkylation of a 2,4-oxazolidinedione generates a 2-alkoxy-4(5H)-oxazolone. Alkylation of the sodium or potassium salt of a 2,4-oxazolidinedione was described >50 years ago and is an excellent means to prepare the corresponding N-alkyl derivatives.\cite{118-121} Reaction of the silver salt of 5,5-dimethyl-2,4-oxazolidinedione \textit{188a} with ethyl iodide was shown to yield 5,5-dimethyl-4-ethoxy-2(5H)-oxazolone \textit{200}\cite{118,119} and not \textit{201} as originally reported.\cite{122} There was no evidence for the formation of 5,5-dimethyl-2-ethoxy-4(5H)-oxazolone \textit{202} (Scheme 6.47). Further examples of 4-alkoxy-5-substituted-4(5H)-oxazolones will be described in Section 6.4.3.1.

![Scheme 6.47](image)

Scheme 6.47

6.4.3. 2-Hydroxy-4(5H)-Oxazolones (2,4-Oxazolidinediones)

6.4.3.1. Synthesis

The most versatile syntheses of 3-unsubstituted-2,4-oxazolidinediones involve either cyclization of \(\alpha\)-hydroxy esters with urea or cyclization of \(\alpha\)-hydroxy amides with a carbonate or phosgene.\cite{5} A third very useful approach is cyclodehydration of \(O\)-carbamoyloxy acetic acids. Normally, this method affords 3-substituted analogues in which the 3-substituent is derived from an isocyanate.\cite{5,99} However, examples in which an \(\alpha\)-O-carbamoyloxy ester has been prepared via chlorosulfonyl isocyanate or an equivalent will also be described in this section. Extensions of these methodologies together with new approaches to 2,4-oxazolidinediones follow. Many of the analogues prepared, particularly as potential antidiabetic agents, employ \(\alpha\)-hydroxy esters or \(\alpha\)-hydroxy amides as precursors, which provides clear evidence of the versatility and generality of these classical approaches. A selection of recent examples will illustrate this point.\cite{123-129}

Sanchez-Viesca and co-workers\cite{123,124} employed both synthetic routes to prepare \textit{203} and \textit{204} (Scheme 6.48). Cyclization of \textit{205} was used to prepare \textit{206}, a key intermediate in the synthesis of potential antihyperglycemic agents like \textit{207} and
Alternatively, Japanese workers128 cyclized 209, a fully elaborated analogue of 205 and prepared 210, which was also evaluated as an antidiabetic agent.

\begin{align*}
\text{Scheme 6.48}
\end{align*}
Pfizer chemists129 prepared a novel series of 5-substituted-2,4-oxazolidinediones 212a–n via cyclization of the corresponding \(\alpha\)-hydroxy amides, 211a–n (Scheme 6.49). Among the derivatives prepared, 212a–d, 212g, 212h, 212l, and 212m showed statistically significant hypoglycemic activity.

\[
\begin{align*}
R & \xrightarrow{\text{(EtO)}_2\text{CO, NaOMe, EtOH, reflux}} \text{HN} \xrightarrow{\text{O}} O \xrightarrow{\text{HN}} O \xrightarrow{\text{O}} R \\
211a-n & \quad 212a-n
\end{align*}
\]

\[
\begin{align*}
212a & \quad R_1 = R_2 = R_3 = H \\
212b & \quad R_1 = \text{Me}, R_2 = R_3 = H, \text{cis} \\
212c & \quad R_1 = \text{Me}, R_2 = R_3 = H, \text{trans} \\
212d & \quad R_1 = \text{Et}, R_2 = R_3 = H, \text{cis} \\
212e & \quad R_1 = \text{Et}, R_2 = R_3 = H, \text{trans} \\
212f & \quad R_1 = R_2 = \text{H}, R_2 = \text{Me} \\
212g & \quad R_1 = R_2 = \text{H}, R_3 = \text{Me}
\end{align*}
\]

\[
\begin{align*}
212h & \quad \text{HN} \xrightarrow{\text{O}} O \xrightarrow{\text{HN}} O \xrightarrow{\text{O}} \text{Me} \\
212i & \quad R_1 = \text{Me}, R_2 = \text{H} \\
212j & \quad R_1 = \text{H}, R_2 = \text{Me}
\end{align*}
\]

\[
\begin{align*}
212k & \quad \text{HN} \xrightarrow{\text{O}} O \xrightarrow{\text{HN}} O \\
212l & \quad \text{ex} \quad \text{212m} \quad \text{endo}
\end{align*}
\]

\text{Scheme 6.49}

Spriocyclic analogues of 2,4-oxazolidinediones are readily prepared via either methodology although not always in comparable yield or efficiency (Scheme 6.50). For example, Trigo and co-workers130 cyclized ethyl 3-hydroxyquinuclidine-3-carboxylate, 213 (R = OEt) with urea to furnish 214 in fair yield. In contrast, cyclization of the corresponding \(\alpha\)-hydroxy amide, 213 (R = NH\textsubscript{2}) afforded 214 in 76% yield. This same group131 found that cyclization of the \(\alpha\)-hydroxy amides, 215–217 afforded 218–220 in 66–95% yields. This improvement was significant relative to their earlier work using the corresponding \(\alpha\)-hydroxy esters.132
Söllhuber and co-workers133 also described similar results during their work on ester and sulfonamide bioisosteres (Scheme 6.51). Here, multiple attempts to prepare the spirocyclic 2,4-oxazolidinedione \textit{224} via cyclization of \textit{222} failed completely, starting material was recovered. Alternatively, cyclization of \textit{223} afforded \textit{224} in poor yield. The solution to this problem was treatment of the cyanohydrin \textit{221} with chlorosulfonyl isocyanate to generate \textit{225} from which \textit{224} was isolated after hydrolysis. The trans quinolizidine ring junction was supported by 13C NMR data together with the presence of Bohlmann bands134 in the IR spectrum. The stereochemistry of \textit{225} ($2R$, $11bS$) was based on the 1H NMR spectrum that shows a deshielding affect on the chemical shift of the 11b proton. This finding was attributed to the presence of the C-4' imino group.
Spirocyclic 2,4-oxazolidinedione analogues have been prepared and evaluated as cholinergic agents by Japanese workers (Scheme 6.52). For example, condensation of the \(\alpha\)-hydroxy ester 226 with urea produced 227a quantitatively, whereas reaction with thiourea afforded 227b in poor yield together with 228.
Radiolabeled analogues of dimethadione (Paradione\textsuperscript{[\textbeta\textgamma]}) \textbf{182b} have been synthesized employing both cyclization methods (Scheme 6.53). Ginos and co-workers136 condensed \([2-^{11}\text{C}]\)dimethyl carbonate with 2-hydroxyisobutyramide to prepare \([2-^{11}\text{C}]5,5\text{-dimethyl-2,4-oxazolidinedione 229}\) for positron emission tomography (PET) studies. Independently, French chemists137 employed the same strategy to prepare \textbf{229} using \([2-^{11}\text{C}]\)diethyl carbonate. In both cases, these groups reported comparable chemical and radiochemical yields. Shortly thereafter, Ginos138 reported the results of synthetic approaches to \textbf{229} with or without dimethyl carbonate as a carrier. With excess dimethyl carbonate as a carrier, \textbf{229} was obtained in higher yields and purity but with a lower specific activity. Diksic139 showed that \([^{11}\text{C}]\)phosgene condensed rapidly with 2-hydroxyisobutyramide using powdered potassium hydroxide in acetonitrile to afford \textbf{229} in 40–60\% radiochemical yield with extremely high chemical (98\%) and radiochemical (99\%) purity. This “no-carrier-added” approach was superior to previous methods in that no high temperatures (130–150°C) or extensive HPLC purification was required. A Japanese group140 has prepared \([2-^{13}\text{C}]5,5\text{-dimethyl-2,4-oxazolidinedione 230}\), the penultimate precursor to \([2-^{13}\text{C}]\)trimethadione via condensation of \([^{13}\text{C}]\)urea with ethyl \(\alpha\)-hydroxyisobutyrate.

\begin{align*}
\text{Me} & \quad \text{CONH}_2 \\
\text{Me} & \quad \text{OH} \\
\text{NaOMe, MeOH, 150} \quad \text{°C} \\
\quad \text{or}
\end{align*}

\begin{align*}
\text{Me} & \quad \text{CONH}_2 \\
\text{Me} & \quad \text{OH} \\
\quad \text{KOH, MeCN} \\
\quad \text{~5} \quad \text{°C} \quad \text{to rt, 30 min}
\end{align*}

\begin{align*}
\text{Me} & \quad \text{CO}_2\text{Et} \\
\text{Me} & \quad \text{OH} \\
\quad \text{EtOH, reflux} \\
\quad \text{74\%}
\end{align*}

\textbf{229}

\textbf{229}

\textbf{230}

\textbf{Scheme 6.53}

Schnur and colleagues at Pfizer141–145 prepared a wide variety of 2,4-oxazolidinediones that have been evaluated as hypoglycemic agents and as aldose reductase inhibitors (Tables 6.8, Fig. 6.17; 6.9, Fig. 6.18; Fig. 6.19). Several approaches were evaluated including a trimethylsilylcarbimide-mediated synthesis of cyanohydrins that were then converted to the corresponding imidates \textit{in situ} followed by cyclization and work-up. This methodology has been successfully
applied to the synthesis of 5-aryl derivatives 231 as well as spirocyclic analogues 232a and 232b. Other spirocyclic derivatives 232c–f were prepared from an imidate using 1,1'-carbonyldiimidazole (CDI). Furanyl- and thienyl-C-5 substituted analogues 233 were also prepared via an α-hydroxy imidate. In contrast, analogues such as 234 were derived from base-catalyzed ring contraction of alloxans. Other 5-heteroaryl-2,4-oxazolidinediones prepared by Schnur and co-workers include 235–240.

Doya disclosed an improved process for preparation of 2,4-oxazolidinediones from α-hydroxy esters and urea in a recent patent. The process effects condensation of the starting materials using a metal oxide, for example, lead oxide at 100–250 °C followed by fractional distillation to recover any unreacted α-hydroxy ester. The product is then isolated by distillation. The recovered starting material can be recycled. 5-Methyl-2,4-oxazolidinedione, 212 (R = Me) was isolated in 80.4% yield of 99.4% purity in this manner.
TABLE 6.9. SPIROCYCLIC 2,4-OXAZOLIDINEDIONES FROM CYCLIZATION OF α-HYDROXY IMIDATES

![Structure](image_url)

<table>
<thead>
<tr>
<th>Structure</th>
<th>R</th>
<th>X</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>232a</td>
<td>H</td>
<td>O</td>
<td>57</td>
</tr>
<tr>
<td>232b</td>
<td>6-Cl</td>
<td>O</td>
<td>79</td>
</tr>
<tr>
<td>232c</td>
<td>6-Br</td>
<td>O</td>
<td>38</td>
</tr>
<tr>
<td>232d</td>
<td>H</td>
<td>S</td>
<td>45</td>
</tr>
<tr>
<td>232e</td>
<td>6-F</td>
<td>S</td>
<td>41</td>
</tr>
<tr>
<td>232f</td>
<td>H</td>
<td>CH₂</td>
<td>28</td>
</tr>
</tbody>
</table>

aData from Ref. 144.

Figure 6.18. 5-Heteroaryl-2,4-oxazolidinediones.
Imperial Chemical Industries (ICI) chemists147 prepared a novel series of spirocyclic 2,4-oxazolidinediones 243 derived from 7-substituted isatins (Scheme 6.54). The key intermediate α-acyloxy amides 242 were readily prepared from 241 in three steps. Base-catalyzed cyclization of 242 then afforded the target compounds that were reported to be potent inhibitors of aldose reductase. Pfizer chemists148 approached 5-substituted isatin spirocyclic analogues 243 via α-hydroxy esters 244 that were converted to the corresponding α-carbamyleoxy esters 245 in good yield using chlorosulfonyl isocyanate. Cyclization of 245 with potassium tert-butoxide then produced 243 in acceptable yield (Scheme 6.54; Table 6.10, Fig. 6.20).

Söllhuber’s group149 extended the scope of their earlier work133 using chlorosulfonyl isocyanate to synthesize spirocyclic 2,4-oxazolidinediones. They prepared 188a, 214, 218, and 232 together with several additional examples using this methodology.

On the other hand, Wyeth-Ayerst chemists150 encountered limitations with this methodology during their syntheses of spirocyclic 2,4-oxazolidinediones derived from isoindole (Scheme 6.55). For example, reaction of 246 with chlorosulfonyl isocyanate followed by cyclization with potassium tert-butoxide afforded poor to modest yields of 247 when R was a substituted benzyl group. Cyclization of 246 using ethyl chloroformate (ECF), triethylamine and 4-(dimethylamino)pyridine (DMAP) in refluxing tetrahydrofuran (THF) gave 247 in only 29\% yield when R was methyl and failed completely if R was an isopropyl group. However,
conversion of 246 to the \(\alpha\)-hydroxy amide 248 followed by anion formation with LiHMDS and cyclization with carbonyldiimidazole produced 247 in good yield if \(R\) was a cyclohexyl group. The same reaction sequence was also very successful when it was applied to prepare analogues of 250.

Cyclization of an \(\alpha\)-hydroxy ester with a metal cyanate is also a useful approach to prepare 2,4-oxazolidinediones.\(^{151–153}\) Japanese workers have employed this method to prepare a variety of analogues that have been evaluated as antiulcer agents 251,\(^{151}\) antidiabetic agents 252a–c,\(^{152}\) and as antitumor agents 253a–c (Scheme 6.56).\(^{153}\)

2,4-Oxazolidinediones can be obtained from electrochemical reduction of \(\alpha\)-halo amides in the presence of carbon dioxide.\(^{154–156}\) Originally, the 2,4-oxazolidinediones were observed as a component in a product mixture isolated during efforts to develop a synthetically useful synthesis of malonamides.\(^{154}\) Mechanistically, the authors proposed that carbon dioxide was reduced to the radical anion at low working potentials. This radical anion then generated the conjugate base of the \(\alpha\)-halo amide followed by carboxylation and cyclization. The yields were modest but the authors noted this was the first example where the carbon dioxide radical anion functioned as an electrogenerated base.

Further refinements in the reaction conditions resulted in a general synthesis of 3,5-dialkyl- and 3,5,5-trialkyl-2,4-oxazolidinediones including trimethadione
Scheme 6.55

1. CSI, THF
2. KOt-Bu, THF
11-44%

LiHMDS, THF
CDI 63%

R = cyclohexyl

2. KOt-Bu, THF
60-92%

R = Me, t-Bu, 2-F-4-Br-Bn

Scheme 6.56

1. KOCN
n-BuOH
2. 2M HCl
36-98%

R = H, Me
R1 = H, Me, Et, Bn, Ph
Now, the reaction of 255 and carbon dioxide was carried out in the presence of a probase (PB), for example, tetraethyl ethylenetetracarboxylate, 256 (Scheme 6.57). In this way, the electrogenerated base (EGB) derived from 256 affected quantitative conversion of 255 to the conjugate base. Following carboxylation and cyclization, 182a, and analogues of 257 were isolated in modest to excellent yield.

```
R, R1 = H, Me,
R2 = H, Me, Bn, allyl
X = Cl, Br, OTs

255

257

PB

CO2, TEAP-DMF

40-95%

TEAP = tetraethylammonium perchlorate
PB = probase

Scheme 6.57
```

These same authors156 reported that electrochemically generated superoxide ion can also function effectively to activate carbon dioxide to yield a carboxylating agent. In this case, mechanistically, they proposed a peroxycarbonate radical anion. Interestingly, a nonelectrochemical system using carbon dioxide, dicyclohexyl-18-crown-6, and a molar equivalent of potassium superoxide was ineffective. Yields of 257 comparable to the electrochemical process were obtained only using a molar excess of potassium superoxide. Very recently, this group157 has succeeded in developing a synthetically useful, nonelectrochemical process. Condensation of an \(\alpha \)-halo amide with an excess of tetraethylammonium hydrogen carbonate (TEAHC) in acetonitrile gave 182a and 257 analogues in excellent yields. Similar reaction of \(\alpha \)-halo or \(\alpha \)-tosyl acetanilides afforded modest yields of 257 (\(R_2 = \text{Ph} \)) owing to the attenuated nucleophilicity of the amide anion.

Oxidation of 5-substituted barbituric acids 258 with concomitant ring contraction has been shown to afford 2,4-oxazolidinediones 260 (Scheme 6.58).158 Similarly, examples of 5-aryl- and 5-heteroaryl-2,4-oxazolidinediones, for example, 231 and 233–240 (Table 6.8 and Fig. 6.19) have been prepared from alloxan hydrate 261. Thus, conversion of 261 to the dilauric acid intermediates 262 and reaction with sodium hydroxide gave the target compounds.141–143,159 Swiss chemists160 isolated 265 as a side product (12% yield) from the oxidation of the thymidine base in 263 during their preparation of 264 (Scheme 6.58).
Poje and co-workers161 obtained the caffolide 268 from uric acid 266 via the alloxanic acid ureide 267 during their studies on biomimetic intermediates in oxidative transformations of purines (Scheme 6.59). Rapi and co-workers162 proposed that oxidation of the 2-aminooxazole moiety in some 17\textbeta{}-(2-amino-oxazol-4-yl) steroids allowed these compounds to act as peroxide scavengers (Scheme 6.59). Oxidation of 269 and 271 with hydrogen peroxide generated 270 and 272 among the isolated products. A Japanese group163 isolated the antioxidant 273 from roasted perilla seed (Fig. 6.21), which is the first example of a naturally occurring 2,4-oxazolidinedione. The absolute configuration of 273 has not been determined.
Figure 6.21. A naturally occurring 2,4-oxazolidinedione from roasted perilla seed.
6.4.3.2. Reactions

The 2,4-oxazolidinedione ring system readily undergoes reactions at N-3 and C-5 without ring opening or with ring opening and recyclization to generate new heterocyclic systems. Many 3-substituted-2,4-oxazolidinediones, particularly 3-aryl analogues, are conveniently prepared by reaction of an \(\alpha \)-hydroxy ester or \(\alpha \)-hydroxy acid with an isocyanate.\(^92,99,135\) On the other hand, direct alkylation of N-3 has been used to incorporate a variety of functional groups in modest to acceptable yields.\(^92,118–122,135,152,153\) Direct alkylation can be complicated in that both N- and O-alkylation can and often do occur\(^92,118,119,121\) although very efficient and clean N-alkylations have been reported (Scheme 6.60).\(^164–166\) Additional examples of N-alkylated 2,4-oxazolidindiones are shown in Table 6.11 (Fig. 6.22).

A variety of 2,4-oxazolidinedione moieties have been prepared as precursors to N-acyliminium ions. These, in turn, have been used in synthetic approaches to 13-aza-16-oxasteroids,\(^167\) interesting and novel heterocycles,\(^168–174\) and natural products such as (±)-β-conhydrine, 294b,\(^175\) (±)-O-methylpallidinine, \(^297,176\) 4-oxa-2-aza-podophyllotoxin, \(^299,177\) and morphine, \(^302,178\) Introduction of the 2,4-oxazolidinedione can be achieved by conventional alkylation.\(^178\) However, it is normally introduced through Mitsunobu chemistry\(^179\) using diisopropyl azodicarboxylate\(^167–173\) or diethyl azodicarboxylate.\(^174–177\) The former reagent is favored by
Kano and co-workers. Once the 2,4-oxazolidinedione moiety has been incorporated, amide reduction then affords an α-hydroxy lactam, the key N-acyliminium ion precursor. Representative examples of 2,4-oxazolidinediones and the products derived from N-acyliminium ion cyclization are shown in Schemes 6.61–6.63, pp. 110–112.

Acylation at N-3 normally occurs uneventfully with 5-alkyl-2,4-oxazolidinediones, for example, 251 (R = H, R1 = Me) or 5,5-disubstituted 2,4-oxazolidinediones, for example, 180 and 188a to afford the corresponding N-acylated analogues (Scheme 6.64, p. 113). These N-acyl derivatives have been evaluated as herbicides and as potential antiinflammatory agents. Schulte and co-workers converted 251 (R = H, R1 = Me), 180 and 188a to the N-aryl or N-arylsulfonyl analogues in good yield with no byproducts. Thus, reaction of a 2,4-oxazolidinedione with benzoyl chloride or an arenesulfonyl chloride in the presence of AlCl3/pyridine cleanly afforded 303 or 304 in 56–82% yield. However, 5-phenyl-2,4-oxazolidinedione, 251 (R = H, R1 = Ph) did not yield the expected N-3 aroyl or N-3 arenesulfonyl analogue. Instead, the pyridylated derivatives 305–307 were isolated in low to modest yield.
Mannich reactions of 2,4-oxazolidinediones, particularly spirocyclic analogues, for example, 214, and 218–220, usually proceed readily at N-3 in good to excellent yields (Scheme 6.65, p. 114). Similarly, 5-(arylidene)-2-thio-4-oxazolidinones 312 react readily with formaldehyde to yield the 3-hydroxymethyl derivatives, 313. Functionalizing C-5 of 2,4-oxazolidinediones is generally accomplished by alkylation or Knovenagel reaction (Schemes 6.66–6.69). For example, treating 251 (R = H, R1 = Me) with 3 equiv of LDA followed by two equivalents of a protected bromo alcohol and deprotection with dilute hydrochloric acid gave the

Scheme 6.61
5,5-disubstituted derivatives, 314a and 314b, in fair yields (Scheme 6.66). However, only 314b could be converted to an [18F] labeled analogue, which was evaluated as a potential indicator of tissue pH.183 A series of 5-benzyl-2,4-oxazolidinediones were prepared by Pfizer chemists184 and found to be potent hypoglycemic agents (Scheme 6.66, p. 115). Their initial approach to these compounds involved protection of 179 with a trityl group to produce 316. Treatment of 316 with methyl magnesium carbonate185 generated the anion, which was added to a benzyl halide to yield 317. Deprotection with TFA then yielded the target 318. Overall, this route was unsatisfactory owing to the low yields (<20%) encountered during the alkylation. However, they were able to develop an alternate and very successful approach involving Knovenagel chemistry (see Scheme 6.68, p. 117).

Zask186 described a very clever and general approach to prepare 3-hydroxy-2(5H)-furanones in which he described the first report of a dianion of 179 that was utilized to prepare the key intermediate (Scheme 6.67, p. 116). After some experimentation he found that treatment of 179 with 2 equiv of tert-butyl lithium and 6 equiv of lithium chloride gave 319 that reacted cleanly with an α-halo ketone to produce 320. Hydrolysis of 320 with refluxing 6 M hydrochloric acid then
1. NaBH₄, aq. THF
2. Dess-Martin periodinane

298

1. NaBH₄, aq. THF
2. Dess-Martin periodinane
3. H₂, Pd/C, EtOH
4. AcOH

81% 4 steps
Ref. 177

299

300

1. NaBH₄, MeOH
2. BF₃·Et₂O, CH₂Cl₂

45%
Ref. 178

301

Scheme 6.63
afforded 321 in good to excellent yield. Mechanistically, it was proposed that 319 added to the α-halo ketone to generate a chlorohydrin that cyclized to an intermediate epoxide, which was transformed to the allylic alcohol via proton abstraction at C-5 with concomitant epoxide ring opening. This methodology was used to convert 322 to the naturally occurring fungal metabolite W-3681, 323, which has shown aldose reductase inhibitory activity (Scheme 6.67, p. 116).

The Knoevenagel reaction has been an extremely versatile method to functionalize C-5. Literally hundreds of 5-alkenyl- and 5-alkyl-2,4-oxazolidinedione analogues have been prepared in this manner. Generally, 2-thio-2,4-oxazolidinedione, 104, is used in these reactions although 179 has been used successfully as well. Some representative examples follow.

Unangst and co-workers65,66 condensed 104 with several 3,5-dialkyl-4-hydroxy-benzaldehydes followed by alkylation and hydrolysis to afford 110 and other
3,5-dialkyl analogues, which were evaluated as dual 5-lipoxygenase and cyclooxygenase inhibitors (Scheme 6.29). Chemists from Fuji Film Company187 adopted a similar synthetic approach to prepare a series of 5-(benzylidene)-2,4-oxazolidinediones326 that were evaluated as photosensitive materials and organic nonlinear optical materials (Scheme 6.68, p. 117). Here, the 5-(arylidene)-2-thio-2,4-oxazolidinediones,324 were methylated to give325 from which326 were obtained by acid hydrolysis. This same strategy has proven to be very useful to prepare

Scheme 6.65
analogue evaluated as potential antidiabetic agents188 and analogues for the treatment of metabolic bone disorders.189 In the latter example, Roche chemists adopted an alternative process to prepare their targets (Scheme 6.68). Knoevenagel reaction of 104 with aromatic and heterocyclic aldehydes gave 324 as expected. However, they opted to convert the 2-thiones directly to 326 using meta-chloroperbenzoic acid. Reduction of 326 then provided the desired target compounds 327 uneventfully.

Variability in the reaction yield is commonly encountered with Knoevenagal condensations of 104. Pfizer chemists184 developed a solution to this problem (Scheme 6.68) to address the poor yields of 318 they obtained by direct alkylation of 316 (see Scheme 6.66). Initially, they found a dramatic disparity in yields of 324 (25–60o) following the literature conditions that used sodium acetate, acetic acid and benzene at reflux.190 This variability in the yields was traced to incomplete reaction since significant amounts of both 104 and the aldehyde were recovered.
Modifying the reaction conditions to continuously remove water by heating an intimate mixture of 104, sodium acetate, and the aldehyde under vacuum then produced 324 consistently in 50–70% yields. The synthesis of 318 was then completed uneventfully by oxidation of 324 with meta-chloroperbenzoic acid and hydrogenation.

It is well known that 179 does not react with aromatic aldehydes under basic conditions. However, Knoevenagel reactions of 179 have been reported (Scheme 6.69). Thus, in an alternative route to potential antidiabetic agents, Japanese chemists condensed 179 with aromatic and heterocyclic aldehydes using piperidine in refluxing acetic acid to generate 328 in a single step. This product could be isolated or immediately converted to 329 via catalytic hydrogenation. The use of 104 to prepare the representative examples shown would have been problematic given the reaction sequence required to convert a 2-thio-2,4-oxazolidinedione to 329 (see above).

Schnur and co-workers summarized typical reactions that can be performed on functional groups of substituted 2,4-oxazolidinediones without ring opening. These reactions include reduction with iron-acetic acid, chlorosulfonation, nucleophilic displacements of aromatic fluorides, and acid hydrolysis with HCl/formic acid. Nonetheless, there are examples of useful ring cleavage reactions involving 2,4-oxazolidinediones.
Enzymatic hydrolysis of racemic 5-phenyl-2,4-oxazolidinedione, 251 (R=H, R₁ = Ph) afforded δ-mandelic acid after refluxing the intermediate carbamoyl-δ-mandelic acid in water (Scheme 6.70).¹⁹¹ This process is a particularly attractive synthesis of optically active α-hydroxy acids in that the L-enantiomer is epimerized under the reaction conditions. A German group found that reaction of 188a with 80% hydrazine produced the 1,2,4-triazolone 331 (Scheme 6.70).¹⁹² It was proposed that hydrazine affected ring opening to give the α-hydroxy acylsemicarbazide 330 that was cyclodehydrated to yield the triazolone.

Heimgartner and co-workers¹⁹³ conducted a detailed mechanistic investigation of the reaction of [¹⁵N]labeled 2,2-dimethyl-3-(dimethylamino)-2H-azirine 332 with NH-acidic heterocycles (Scheme 6.71). Based on these studies the authors proved that ring opening of 188a with 332 afforded the imidazolone 336 in which
Scheme 6.69

Scheme 6.70
only N-3 was labeled. This interesting and unexpected result was mechanistically consistent with the formation of a ring-expanded lactam 334 from the initial bicyclo[3.3.0] adduct 333. Transannular cyclization of the [15N]labeled nitrogen

TABLE 6.12. IMIDAZOLONES FROM 5,5-DIMETHYL-2,4-OXAZOLIDINEDIONE AND 2H-AZIRINES

<table>
<thead>
<tr>
<th>2,4-Oxazolidindione</th>
<th>R</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>188a</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>83</td>
</tr>
<tr>
<td>188a</td>
<td>Me</td>
<td>Me</td>
<td>-(CH₂)₂</td>
<td>Me</td>
<td>88</td>
</tr>
<tr>
<td>179</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>79</td>
</tr>
<tr>
<td>179</td>
<td>H</td>
<td>H</td>
<td>-(CH₂)₂</td>
<td>Me</td>
<td>95</td>
</tr>
<tr>
<td>180</td>
<td>Ph</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>85</td>
</tr>
<tr>
<td>180</td>
<td>Ph</td>
<td>Ph</td>
<td>-(CH₂)₂</td>
<td>Me</td>
<td>73</td>
</tr>
<tr>
<td>251</td>
<td>H</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>77</td>
</tr>
<tr>
<td>251</td>
<td>H</td>
<td>Ph</td>
<td>-(CH₂)₂</td>
<td>Me</td>
<td>64</td>
</tr>
</tbody>
</table>

aData from Ref. 194.
atom in 333 with the urethane carbonyl group then produced a second bicyclo[3.3.0] adduct 335 that ring opened to afford 336. The authors have extended this work and developed a high yield, general synthesis of imidazolones including spirocyclic analogues. Examples are shown in Table 6.12 (Fig. 6.23).

6.5. SUMMARY

The 4(5H)-oxazolone ring system has been and continues to be a rich source of interesting chemistry that has produced a number of useful compounds including trimethadione, dimethadione, famoxadone, chlozolinate, and vinchlozolin. In addition, such diverse areas of research as nonlinear optical materials, photographic and luminescence dyes, antidiabetic, antiulcer, antibacterial, and antitumor agents continues to provide a strong stimulus for further developments in this area.

6.6. ADDENDUM

Weiss and co-workers prepared a series of oxazolinylidene steroids 343 as luminescence dyes for application as potential intracellular diagnostic agents (Scheme 6.72). The key intermediate 2-aryl-5,5-dimethyl-4(5H)-thiooxazolones 341 were readily available from the corresponding 4(5H)-oxazolones 339. Reaction of 341 with 342, generated in situ from the hydrazone 340, gave 343 as expected. It was not possible to prepare 343 from 3-thio-androsta-1,4-dien-17-one since the requisite corresponding heterocyclic diazo compounds could not be prepared.

Smith and co-workers adapted Sheehan and Izzo’s original synthesis of 2-aryl-4(5H)-oxazolones and developed a general synthesis of 2-alkyl-4(5H)-oxazolones. Treatment of an acid halide with AgNCO followed by diazomethane produced 344 that were immediately converted to the 2-alkyl-4-oxazole triflates 345. The authors noted that ethanol-free diazomethane was required to prepare 344. The oxazole triflates 345 were, in turn, key intermediates leading to a variety of 2,4-disubstituted oxazoles required for natural products (Scheme 6.73).

Kamiyama and colleagues at Takeda Chemical Industries described improvements to their earlier stereoselective synthesis of indolmycin 69. Most significantly, the authors noted that 69 was recently shown to be a potent anti-\textit{H. pylori} agent. This finding further emphasized the need and interest in a scaleable, stereoselective syntheses. They abandoned their one-step approach to 178 from 119a (Scheme 6.43). Instead, 119a was saponified to the \(\alpha\)-hydroxy acid 121a that was rigorously purified. This material was then converted to 178 in two-steps using guanidine rather than \(\textit{N,N}\)-dimethylguanidine. The authors reported that the use of guanidine in tert-BuOH in the presence of 4-Å molecular sieves was critical to install the 4(5H)-oxazolone ring system with minimal epimerization at C-5. Overall, 69 was prepared in 22% yield and 99.4% ee from ethyl (2S, 3R)-epoxybutanoate. This methodology was also applied to prepare metabolites of 69 as well (Scheme 6.74).
Scheme 6.72

R = F, Cl, OMe, NO₂, NMe₂

Lawesson's reagent
toluene, reflux
33-89%

MnO₂, Et₂O, rt

toluene, rt
25-88%

Scheme 6.73

X = Cl, Br

R = Me, Et, tBu, Ph, CH₂Br, (CH₂)₂Ph, CH(Br)Me
Acknowledgments

I thank Dr. F. Liu for review of this chapter.

REFERENCES

References

References

CHAPTER 7

5(2H)-Oxazolones and 5(4H)-Oxazolones

Carlos Cativiela
Department of Organic Chemistry, University of Zaragoza, 50009 Zaragoza, Spain

Maria D. Diaz-de-Villegas
Department of Organic Chemistry, University of Zaragoza, 50009 Zaragoza, Spain

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>130</td>
</tr>
<tr>
<td>7.2</td>
<td>5(2H)-Oxazolones (3-Oxazolin-5-ones)</td>
<td>131</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Synthesis</td>
<td>131</td>
</tr>
<tr>
<td>7.2.1.1</td>
<td>From Amino Acids: Tautomerism and Racemization</td>
<td>131</td>
</tr>
<tr>
<td>7.2.1.2</td>
<td>C-2 versus C-4 Alkylations</td>
<td>134</td>
</tr>
<tr>
<td>7.2.1.3</td>
<td>Via Sigmatropic Rearrangements</td>
<td>136</td>
</tr>
<tr>
<td>7.2.1.4</td>
<td>4-Arylthio, 4-Alkoxy, and 4-Amino Derivatives</td>
<td>139</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Reactions</td>
<td>143</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Synthesis of Pyrroles</td>
<td>143</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>Generation of Nitrile Ylides</td>
<td>143</td>
</tr>
<tr>
<td>7.2.2.3</td>
<td>Other Reactions</td>
<td>145</td>
</tr>
<tr>
<td>7.3</td>
<td>Saturated 5(4H)-Oxazolones (2-Oxazolin-5-ones)</td>
<td>151</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Synthesis</td>
<td>151</td>
</tr>
<tr>
<td>7.3.1.1</td>
<td>Cyclization from Amino Acid Derivatives</td>
<td>151</td>
</tr>
<tr>
<td>7.3.1.2</td>
<td>Other Cyclization Procedures</td>
<td>155</td>
</tr>
<tr>
<td>7.3.1.3</td>
<td>Rearrangements of Oxazoles</td>
<td>155</td>
</tr>
<tr>
<td>7.3.1.4</td>
<td>From Other Oxazolones</td>
<td>160</td>
</tr>
<tr>
<td>7.3.1.5</td>
<td>2-Alkoxy Derivatives</td>
<td>177</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Reactions</td>
<td>178</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Hydrolysis and Alcoholyis</td>
<td>178</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Aminolysis with Amines</td>
<td>183</td>
</tr>
<tr>
<td>7.3.2.3</td>
<td>Aminolysis with Amino Acid Derivatives</td>
<td>185</td>
</tr>
<tr>
<td>7.3.2.4</td>
<td>Incorporation of Dialkylamino Acids into Peptides</td>
<td>189</td>
</tr>
<tr>
<td>7.3.2.5</td>
<td>Other Ring-Opening Reactions</td>
<td>191</td>
</tr>
<tr>
<td>7.3.2.6</td>
<td>Dimerization Reactions</td>
<td>194</td>
</tr>
</tbody>
</table>
The 5-oxazolones or oxazolin-5-ones are very interesting heterocyclic compounds that have been used as intermediates in the synthesis of a variety of organic molecules. Two structural classes are possible, the 5(2H)-oxazolones (or 3-oxazolin-5-ones) and 5(4H)-oxazolones (or 2-oxazolin-5-ones). These structures differ only in the position of the double bond. Apart from the presence of the heteroatoms (N and O), the carbonyl group and the double bond, the 2- or 4-position, respectively, can be saturated or unsaturated. The isomeric 5-oxazolones are
shown in Figure 7.1. The saturated analogues 1 and 3 do not have an exocyclic double bond, whereas the unsaturated analogues 2 and 4 do contain an exocyclic double bond.

These compounds are very important and, apart from two brief reviews of oxazoles that include oxazolones,1,2 numerous reviews have been published, although the most recent of these was almost 20 years ago.3 Thus, this chapter will survey the significant results published during the last two decades and will discuss new syntheses of 5-oxazolones and focus attention on the use of these intermediates as versatile reagents in organic chemistry. Particular emphasis will be given to their use as building blocks to prepare other important heterocyclic compounds and as suitable reagents for the synthesis of α-amino acids and peptides.

7.2. 5(2H)-Oxazolones (3-Oxazolin-5-ones)

7.2.1. Synthesis

The following section covers only those procedures for the synthesis of 5(2H)-oxazolones described during the last 20 years and it should be borne in mind that a number of classical procedures have been described before.3

7.2.1.1. From Amino Acids: Tautomerism and Racemization

A saturated 5(2H)-oxazolone, also known as a 3-oxazolin-5-one or a pseudoxazolone, can be considered as the tautomer of a saturated 5(4H)-oxazolone (or 2-oxazolin-5-one) by a 1,3-prototropic shift (Scheme 7.1).
In fact, the first saturated pseudoxazolone reported, 4-methyl-2-(trifluoromethyl)-5(2H)-oxazolone, was incorrectly assigned as the tautomeric 5(4H)-oxazolone and only later did nuclear magnetic resonance (NMR) studies establish the correct structure. This compound was synthesized from alanine and trifluoroacetic anhydride (TFFA). This methodology constitutes, under standard conditions, the most general procedure for the synthesis of 5(2H)-oxazolones.

Saturated 5(4H)-oxazolones are easily obtained from N-acylamino acids in the presence of a cyclization agent and have been used extensively in coupling reactions as synthetic equivalents of \(\alpha \)-amino acids in the synthesis of peptides. In this context, tautomeric equilibrium can be a significant problem due to the racemization associated with the isomerization. For example, trifluoroacetylation of tryptophan in ether affords the 5(4H)-oxazolone 5 without racemization. However, upon dissolution in acetonitrile, 5 completely racemizes.\(^4\,^5\) Further, upon heating, an aqueous dioxane solution of 5 cleanly isomerizes to the isomeric 5(2H)-oxazolone 6 (Scheme 7.2).

Interestingly, treating bromotyrosine with TFFA in an autoclave at 80–120 °C, affords the corresponding 5(2H)-oxazolone that was used as an intermediate in the synthesis of psammaplin.\(^6\)
Cyclizations with perfluoroacylating agents seem to be quite general for the synthesis of 5(2H)-oxazolones with aromatic substituents directly bonded to the heterocyclic ring. For example, perfluoroacylation of a solution of an arylglycine containing a phosphorus trihalide affords 4-aryl-2-(perfluoroalkyl)-5(2H)-oxazolones (Table 7.1, Fig. 7.2). Similar results were obtained when amino nitriles were used as starting materials.

Difluoroacetic anhydride reacts similarly with alanine and this process affords 2-(difluoromethyl)-4-methyl-5(2H)-oxazolone. Treatment of this compound with hydrogen bromide in acetic acid in the presence of ethanethiol yields that was converted to 3,3-difluoroalanine in several steps as shown in Scheme 7.3. This reaction opened the way to prepare β,β-difluoro amino acids.

TABLE 7.1. SYNTHESIS OF 5(2H)-OXAZOLONES VIA CYCLIZATION OF AMINO ACIDS OR AMINO NITRILES

<table>
<thead>
<tr>
<th>X</th>
<th>Cyclization Agent</th>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>R<sub>3</sub></th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO<sub>2</sub>H</td>
<td>TFAA</td>
<td>indol-3-ylmethyl</td>
<td>H</td>
<td>CF<sub>3</sub></td>
<td>90</td>
<td>4,5</td>
</tr>
<tr>
<td>CO<sub>2</sub>H</td>
<td>TFAA/PCl<sub>3</sub></td>
<td>4-ClC<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>CF<sub>3</sub></td>
<td>≈ 100</td>
<td>7</td>
</tr>
<tr>
<td>CN</td>
<td>TsOH</td>
<td>4-ClC<sub>6</sub>H<sub>4</sub></td>
<td>COCF<sub>3</sub></td>
<td>H</td>
<td>56</td>
<td>9</td>
</tr>
<tr>
<td>CO<sub>2</sub>H</td>
<td>DFAA</td>
<td>Ph</td>
<td>H</td>
<td>CHF<sub>2</sub></td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>CO<sub>2</sub>H</td>
<td>TFAA</td>
<td>i-Pr</td>
<td>H</td>
<td>CF<sub>3</sub></td>
<td>80–90</td>
<td>11</td>
</tr>
<tr>
<td>CO<sub>2</sub>H</td>
<td>TFAA</td>
<td>s-Bu</td>
<td>H</td>
<td>CF<sub>3</sub></td>
<td>80–90</td>
<td>11</td>
</tr>
<tr>
<td>CO<sub>2</sub>H</td>
<td>TFAA</td>
<td>Ph</td>
<td>H</td>
<td>CF<sub>3</sub></td>
<td>80–90</td>
<td>11</td>
</tr>
</tbody>
</table>

Cyclizations with perfluoroacylating agents seem to be quite general for the synthesis of 5(2H)-oxazolones with aromatic substituents directly bonded to the heterocyclic ring. For example, perfluoroacylation of a solution of an arylglycine containing a phosphorus trihalide affords 4-aryl-2-(perfluoroalkyl)-5(2H)-oxazolones (Table 7.1, Fig. 7.2). Similar results were obtained when amino nitriles were used as starting materials.

Difluoroacetic anhydride reacts similarly with alanine and this process affords 2-(difluoromethyl)-4-methyl-5(2H)-oxazolone. Treatment of this compound with hydrogen bromide in acetic acid in the presence of ethanethiol yields that was converted to 3,3-difluoroalanine in several steps as shown in Scheme 7.3. This reaction opened the way to prepare β,β-difluoro amino acids.

Scheme 7.3
Racemization observed during coupling reactions in the synthesis of peptides can be attributed, at least in part, to the influence of the base used on the equilibrium of the tautomeric oxazolones. Numerous studies have been undertaken to avoid this problem or, alternatively, to direct the equilibrium to the desired compound. For example, the triethylamine-promoted tautomerization of 4-alkyl-5(4H)-oxazolones to 4-alkyl-5(2H)-oxazolones has been studied by proton NMR (1H NMR) long-range coupling. In addition, the kinetics of racemization of 2,4-disubstituted-5(4H)-oxazolones obtained from N-acetyl, N-benzoyl, and N-benzyl-oxycarbonylamino acids have been studied in several solvents, both alone and in the presence of tertiary amines. The racemization process is governed by electronic effects of the substituent at C-2 and by steric effects of the substituent at C-4. The thermodynamic data suggest that the 4-benzyl-2-substituted-5(4H)-oxazolones racemize more readily than the corresponding 4-alkyl analogues (alkyl ≠ benzyl) and that the rate of the base-catalyzed reaction depends on the steric bulk at the nitrogen atom of the tertiary amine as well as on the basicity.

7.2.1.2. C-2 versus C-4 Alkylations

The availability of a general procedure to prepare 4-alkyl-2-(trifluoromethyl)-5(2H)-oxazolones from α-amino acids and TFAA, and taking into account the tautomerization process, has led to many efforts to direct the alkylation reaction toward C-2 or C-4. For example, in the presence of triethylamine, Michael addition of TFAA occurs at C-2 when tert-butylacrylate is used as electrophile. The resulting dialkylated products could be easily transformed into α-diketones (Scheme 7.4; Table 7.2, Fig. 7.3).
Alternatively, alkylation of 4-benzyl-2-(trifluoromethyl)-5(2\(H\))-oxazolone 16 in the presence of mild base using active alkyl halides as electrophiles occurs at C-4.\(^{14}\) Subsequent aminolysis of a 4,4-dialkyl-5(4\(H\))-oxazolone like 17 gave an \(\text{N}-(\text{trifluoroacetyl})-\alpha,\alpha\)-dialkylglycine amide 18 that was used to prepare important peptides incorporating an \(\alpha,\alpha\)-dibenzylglycine unit (Scheme 7.5).

![Scheme 7.5](image)

In principle, 5(4\(H\))-oxazolones 19 could also be used as starting materials to prepare 5(2\(H\))-oxazolones 20 via an alkylation reaction, but this approach depends on many factors. Several years ago\(^3\) it was reported that a mixture of isomeric products 20 and 21 is usually obtained (Scheme 7.6) and the site of reaction in base-catalyzed addition reaction of 5(4\(H\))-oxazolones with activated multiple bonds is determined primarily by the nature of the activated multiple bond.

TABLE 7.2. SYNTHESIS OF 5(2\(H\))-OXAZOLONES VIA ALKYLATION AT C-2

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>EWG(^b)</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Pr</td>
<td>CF(_3)</td>
<td>CO(_2)Bu</td>
<td>(\approx 80)</td>
</tr>
<tr>
<td>Ph</td>
<td>CF(_3)</td>
<td>CO(_2)Bu</td>
<td>(\approx 80)</td>
</tr>
<tr>
<td>MeSCH(_2)CH(_2)</td>
<td>CF(_3)</td>
<td>CO(_2)Bu</td>
<td>(\approx 80)</td>
</tr>
</tbody>
</table>

\(^a\) Data from Ref. 11.
\(^b\) EWG = electron-withdrawing group.
The reaction of 2-aryl-4-phenyl-5(4H)-oxazolones 22 with 4-methylenetriazoles 23 was also studied. The direction of the alkylation was strongly dependent on the nature of the substituent on the aromatic ring at C-2 in 22. Thus, oxazolones with electron-rich aryl substituents gave predominantly alkylation at C-4 to yield 24. In contrast, the isomeric products 25 are preferentially obtained when using substrates with electron-withdrawing substituents (Scheme 7.7).

Very interesting interconversions between allyl substituted-5(4H)-oxazolones and allyl substituted-5(2H)-oxazolones have also been described. In particular, 4-allyl-2-methyl-4-phenyl-5(4H)-oxazolone 27 and 4-(3,3-dimethylallyl)-2-methyl-4-phenyl-5(4H)-oxazolone 31 were found to undergo a [3,3] sigmatropic allyl shift on thermolysis to give the corresponding isomeric 5(2H)-oxazolones 28 and 33, respectively. In contrast, on direct irradiation 28 and 32 undergo a [1,3] allyl shift to give the corresponding 5(4H)-isomers 27 and 31. To elucidate the mechanism of these reactions all compounds were synthesized unambiguously; the 5(4H)-oxazolones 27 and 31 by alkylation of 26 and the 5(2H)-oxazolones 28 and 32 by irradiation of azirines 29 and 30 in the presence of carbon dioxide. These reactions are shown in Scheme 7.8.
Analogously, cyclopropenyl systems 34, 35 were also studied (Scheme 7.9; Table 7.3, Fig. 7.4). Here, further heating of 35 afforded substituted pyridines 36.\(^\text{17,19}\)

A new synthesis of 2-allyl-4-phenyl-5(2\(H\))-oxazolones 39 has been published\(^\text{20}\) starting from the corresponding allyl \(N\)-acylphenylglycinates 37. The reaction proceeds via the nonisolable oxazoles 38 that undergo a sigmatropic rearrangement under the cyclization conditions. The reductive ring cleavage of the oxazolones is a
very useful procedure for the synthesis of β,γ-unsaturated ketones 40 (Scheme 7.10; Table 7.4, Fig. 7.5). The utility of the reaction was extended to include other allyl, propargyl, and cinnamyl N-acylphenylglycinates. Catalytic hydrogenation of the resulting 5(2H)-oxazolones 43 and subsequent reductive ring cleavage gave the corresponding ketones 44. Complete transfer of the chirality was observed starting

TABLE 7.3. SYNTHESIS OF 5(2H)-OXAZOLONES VIA SIGMATROPIC REARRANGEMENT

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>CH₂=CHCH₂</td>
<td>Me</td>
<td>98</td>
<td>16</td>
</tr>
<tr>
<td>Ph</td>
<td></td>
<td>Me</td>
<td>≈100</td>
<td>17</td>
</tr>
<tr>
<td>Ph</td>
<td></td>
<td>Me</td>
<td>≈100</td>
<td>17,19</td>
</tr>
</tbody>
</table>

Figure 7.4

TABLE 7.4. SYNTHESIS OF 5(2H)-OXAZOLONES VIA REARRANGEMENT OF 5-ALKOXYOXAZOLES

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>4-ClC₆H₄</td>
<td>PhC≡CCH₂</td>
<td>50</td>
</tr>
<tr>
<td>Ph</td>
<td>4-ClC₆H₄</td>
<td>PhC≡CCH(Me)</td>
<td>83</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>PhC≡CCH(Me)</td>
<td>56</td>
</tr>
<tr>
<td>Ph</td>
<td>4-ClC₆H₄</td>
<td>PhCH=CHCH₂</td>
<td>40</td>
</tr>
<tr>
<td>Ph</td>
<td>4-ClC₆H₄</td>
<td>PhCH=CHCH(Ph)</td>
<td>45</td>
</tr>
</tbody>
</table>

ₐData from Ref. 21.
from enantiomerically pure alcohols. Interestingly, either enantiomer of 1,4-diphenyl-2-methylbutan-1-one could be obtained from (E)- or (Z)-(R)-4-phenyl-3-buten-1-ol.21

7.2.1.4. 4-Arylthio, 4-Alkoxy, and 4-Amino Derivatives

The nature of the arylthio substituent at C-4 of a 5(2H)-oxazolone dictates which of two different synthetic strategies can be used.22,23 The first involves the use of sodium cyanodithioformate and the corresponding ketone as starting materials. The reaction occurs through a thiazolone45 that must be alkylated on the sulfur atom followed by treatment with Hg(OAc)\textsubscript{2} to afford the corresponding 4-(alkylthio)-5(2H)-oxazolone47. The second strategy involves the addition of thiophenol to

Scheme 7.10
ethyl cyanoformate to afford a thioimidate followed by the addition of the ketone and a Lewis acid (Scheme 7.11; Table 7.5, Fig. 7.6; Table 7.6, Fig. 7.7). Both synthetic pathways, which are complementary for alkyl or aryl sulfide derivatives, are limited with respect to variation of the substituent on the ketone.

Two different methods have also been described for the synthesis of 4-alkoxy-5(2H)-oxazolones 50. In the first case, 4-(phenylthio)-5(2H)-oxazolones 48 are oxidized to the 4-phenylsulfinyl derivatives that react with the alcohol present in the reaction medium to afford the corresponding 4-alkoxy derivatives. Alternatively, 4-alkoxy-5(2H)-oxazolones 50 have been obtained by condensation of iminooxalates and ketones in acidic medium. (Scheme 7.12; Table 7.7, Fig. 7.8; Table 7.8, Fig. 7.9).

TABLE 7.5. SYNTHESIS OF 4-(ALKYLTHIO)-5(2H)-OXAZOLONES FROM SODIUM CYANODITHIOFORMATE, KETONES AND ALKYLATING AGENTS

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH2</td>
<td>(CH2)5</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>2,4-(NO2)2C6H3</td>
<td>(CH2)5</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

aData from Ref. 23.
TABLE 7.6. SYNTHESIS OF 4-(ARYLTHIO)-5(2H)-OXAZOLONES FROM ETHYL CYANOFORMATE, KETONES, AND ARYLTHIOLS

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>R₁SH</td>
<td>TiCl₄</td>
<td>PhS</td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>(CH₂)₅</td>
<td>28–32</td>
</tr>
<tr>
<td>2-naphthyl</td>
<td>(CH₂)₅</td>
<td>Me</td>
<td>≈12</td>
</tr>
<tr>
<td>2-naphthyl</td>
<td>Ph</td>
<td>CF₃</td>
<td>21</td>
</tr>
</tbody>
</table>

Data from Refs. 22 and 23.

Table 7.7. SYNTHESIS OF 4-ALKOXY-5(2H)-OXAZOLONES FROM 4-(PHENYLTHIO)-5(2H)-OXAZOLONES

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et</td>
<td>(CH₂)₅</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>i-Pr</td>
<td>(CH₂)₅</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Data from Ref. 24.
Reaction of carbon dioxide with N-[1-chloro-2,2,2-trifluoro-1-(trifluoromethyl)-ethyl]-N,N-dialkylformamidines has been described as a procedure to prepare 4-(dialkylamino)-5(2H)-oxazolones (Scheme 7.13; Table 7.9, Fig. 7.10). Mechanistically, this reaction probably does not proceed via a nitrile ylide given the observed regioselectivities and the dependence of the reaction rate on the solvent.

\[
\begin{align*}
\text{CF}_3 & \quad \text{CF}_3 \\
\text{NCl} & \quad \text{H} \\
\text{R}_1 & \quad \text{R}_2 \\
\text{CO}_2 & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{R}_1 & \quad \text{R}_2
\end{align*}
\]

Scheme 7.13

Finally, it has also been reported that the reaction of anilines with ethylimino-(ethylthio) acetate fluoroborate and treatment of the resulting product with formaldehyde is an interesting and general procedure for the synthesis of 4-(alkylamino)-5(2H)-oxazolones.

\[
\begin{align*}
\text{Et} & \quad \text{CF}_3 & \quad \text{Ph} & \quad 14 \\
i-\text{Pr} & \quad \text{CF}_3 & \quad \text{Ph} & \quad 28 \\
i-\text{Pr} & \quad \text{H} & \quad \text{Ph} & \quad 7
\end{align*}
\]

Table 7.9. Synthesis of 4-(N,N-Dialkylamino)-5(2H)-oxazolones from Amidines and Carbon Dioxide

\[
\begin{align*}
\text{EtMe} & \quad \text{Me} & \quad 98 \\
(CH_2)_2O(CH_2)_2 & \quad 91
\end{align*}
\]

Table 7.8. Synthesis of 4-Alkoxo-5(2H)-oxazolones from Iminooxalates and Ketones or Aldehydes

\[
\begin{align*}
\text{R}_1 & \quad \text{R}_2 & \quad \text{R}_3 & \quad \% \text{ Yield} \\
\text{Et} & \quad \text{CF}_3 & \quad \text{Ph} & \quad 14 \\
i-\text{Pr} & \quad \text{CF}_3 & \quad \text{Ph} & \quad 28 \\
i-\text{Pr} & \quad \text{H} & \quad \text{Ph} & \quad 7
\end{align*}
\]

Data from Ref. 24.

\[
\begin{align*}
\text{Me} & \quad \text{Me} & \quad 98 \\
(CH_2)_2O(CH_2)_2 & \quad 91
\end{align*}
\]

Data from Ref. 25.
7.2.2. Reactions

7.2.2.1. Synthesis of Pyrroles

4-Alkyl(aryl)-2-(trifluoromethyl)-5(2H)-oxazolones have been used as intermediates to prepare 2-(trifluoromethyl)pyrroles, interesting compounds frequently used as insecticides and acaricides. The oxazolones react with electron-deficient unsaturated compounds in the presence of a base. Reaction of 5(2H)-oxazolones, usually with a substituted aryl ring at C-4, with a wide variety of alkynes and alkenes has given rise to numerous 2-(trifluoromethyl)pyrroles. For example, dimethyl acetylenedicarboxylate, 2-chloroacrylonitrile, haloacrylates or haloacrylonitriles, perhaloalkenes, N-[(α-(4-chlorostyryl)pyridinium] tetrafluoroborate, 2-ethynylpyridine, 2-(1-chlorovinyl)pyridine and, more recently, fullerene all have been used as electron-deficient unsaturated compounds. Mechanistically, it is postulated that the anion of the 4-aryl-2-(trifluoromethyl)-5(2H)-oxazolone undergoes Michael addition to the activated alkene to generate an intermediate that sequentially cyclizes and decarboxylates to afford a 3H-pyrrole. Subsequent 1,3-proton shift leads to the 1H-(trifluoromethyl)pyrrole (Scheme 7.14; Table 7.10, Fig. 7.11).

![Scheme 7.14](image)

Similarly, reaction of 4-aryl-2-(trifluoromethyl)-5(2H)-oxazolones with substituted azo compounds, for example, PhN\(\equiv\)NCO\(_2\)Et affords (trifluoromethyl)dihydrotriazoles.

7.2.2.2. Generation of Nitrile Ylides

The thermolysis of 4-(alkythio or arylthio)-5(2H)-oxazolones in the presence of dipolarophiles with activated double bonds leads to five-membered cycloadducts.
These results are rationalized on the basis of the intermediate formation of thio-substituted nitrile ylides 58 that undergo regioselective 1,3-dipolar cycloadditions with the dipolarophiles. Some examples are shown in Scheme 7.15. If a dipolarophile is not present in the reaction mixture the nitrile ylides 58 (R₂ = Me) isomerize to give the 2-aza-1,3-butadienes 59 that can be trapped in a Diels–Alder reaction.43,44

Scheme 7.15
On heating, 4-(isopropoxy)-2-phenyl-2-(trifluoromethyl)-5(2H)-oxazolone \(65\) underwent decarboxylation to the alkoxy-substituted nitrile ylide \(66\) that was trapped in a 1,3-dipolar cycloaddition by trifluoroacetophenone to generate \(68\). Other dipolarophiles reacted similarly. In the absence of a dipolarophile, cyclization of \(66\) yielded the isoindole \(67\) (Scheme 7.16; Table 7.11, Fig. 7.12).

On heating, 4-(isopropoxy)-2-phenyl-2-(trifluoromethyl)-5(2H)-oxazolone \(65\) underwent decarboxylation to the alkoxy-substituted nitrile ylide \(66\) that was trapped in a 1,3-dipolar cycloaddition by trifluoroacetophenone to generate \(68\). Other dipolarophiles reacted similarly. In the absence of a dipolarophile, cyclization of \(66\) yielded the isoindole \(67\) (Scheme 7.16; Table 7.11, Fig. 7.12).

7.2.2.3. Other Reactions

Aminolysis of some 4-alkyl-2-(trifluoromethyl)-5(2H)-oxazolones \(69\) has been published (Scheme 7.17; Table 7.12, Fig. 7.13). Some degree of asymmetric
induction is observed when chiral amines are used, a phenomenon that depends largely on solvents and on the nature of the amine. For example, aminolysis of 69 with (S)-phenylethylamine gave 70 mainly as the (S,S)-diastereomer. The same direction of induction was observed when chiral amino acid esters were used. For example, (S)-alanine or (S)-valine methyl esters afforded ring opening with high diastereoselectivity to afford (S,S)-dipeptides. In contrast, aminolysis with (S)-proline methyl ester gave mostly (R,S)-dipeptides.

![Scheme 7.17](image)

TABLE 7.12. AMINOLYSIS OF 5(2H)-OXAZOLONES

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3X</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH2</td>
<td>(S)-Ph(Me)CH</td>
<td>not described</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>i-Pr</td>
<td>(S)-Ph(Me)CH</td>
<td>not described</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>PhCH2</td>
<td>(S)-PhCH2CHCO2Me</td>
<td>not described</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>i-Pr</td>
<td>(S)-PhCH2CHCO2Me</td>
<td>not described</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>PhCH2</td>
<td>(S)-i-PrCHCO2Me</td>
<td>not described</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>i-Pr</td>
<td>(S)-i-PrCHCO2Me</td>
<td>not described</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Phosphites and 2,2-bis(trifluoromethyl)-5(2H)-oxazolone 71 react with elimination of carbon dioxide to give 2-aza-4-phospha-1,1-bis(trifluoromethyl)-1,3-buta-diene 72 that can be used as a synthon for the previously unknown hydrogen-substituted nitrile ylide 72a in [3 + 2]-cycloaddition reactions. Examples of cycloadditions of 72a with dipolarophiles to give heterocyclic compounds 73–77 are shown in Scheme 7.18.

4-Alkyl-2-(trifluoromethyl)-5(2H)-oxazolones 78 react with 3-(dimethylamino)-2H-azirines 79 (Scheme 7.19; Table 7.13, Fig. 7.14). This reaction, investigated mechanistically, has been described as a new procedure for the synthesis of 5-(dimethylamino)-3,6-dihydropyrazin-2(1H)-ones 80.
The double bond of 2,2-bis(trifluoromethyl)-5(2H)-oxazolone 71 reacts with ynamines 51 and the resulting cycloadduct 81 is converted into the corresponding amino acid after hydrolysis. The procedure constitutes a new route to 3-alkyl-substituted aspartic acid derivatives 83 (Scheme 7.20; Table 7.14, Fig. 7.15).

Some unusual reactions have been described for 2-(4-chlorophenyl)-2-(3,3-dimethylallyl)-4-phenyl-5(2H)-oxazolone 84. This compound undergoes a Lewis acid-catalyzed rearrangement to give a tetrahydrofuropyrrole 85. 52 On the other hand, depending on the reaction conditions, thermolysis of 84 produces the azabicyclohexene 86 or a substituted 2,3-dihydropyridine 87 together with the caged compound 88 formed by dimerization of the 2,3-dihydropyridine and the azabicyclohexene (Scheme 7.21). 53,54

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH₂</td>
<td>(CH₂)₅</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>i-Pr</td>
<td>Me</td>
<td>Me</td>
<td>60</td>
</tr>
<tr>
<td>PhCH₂</td>
<td>Me</td>
<td>Me</td>
<td>48</td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>58</td>
</tr>
</tbody>
</table>

aData from Ref. 50.
5(2H)-Oxazolones (3-Oxazolin-5-ones)

Table 7.14. 3-Alkyl Aspartic Acid Derivatives from Reaction of 5(2H)-Oxazolones with Ynamines

<table>
<thead>
<tr>
<th>R</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>95</td>
</tr>
<tr>
<td>Et</td>
<td>95</td>
</tr>
</tbody>
</table>

aData from Ref. 51.

5(2H)-Oxazolone N-oxides have been obtained by heating a solution of 5-isonitroso-2,2-dimethyl-1,3-dioxane-4,6-dione with the corresponding ketone in toluene. It has been postulated that the reaction occurs through an intermediate nitrosoketene that is generated from via loss of CO₂ and acetone, respectively.
These cyclic nitrones 91 react with electron-rich olefins in 1,3-cycloaddition reactions to afford fused isoxazolidines 92–94 from which several unusual amino acids 95–97 have been obtained (Scheme 7.22).

Several research groups have focused their attention on the photooxidation of 2′-deoxyguanosine that is used as a model compound for DNA. The major photooxidation products of this nucleoside were identified and classified according to their formation through a radical mechanism (type I) or a singlet oxygen-mediated mechanism (type II). The major type I product was identified as 2,2-diamino-[(2-deoxy-β-D-erythro-pentofuranosyl)-4-amino]-5(2H)-oxazolone 98 (Fig. 7.16).
It was shown previously that saturated 5(4\(H\))-oxazolones or 2-oxazolin-5-ones with only one substituent at C-4 can be considered as the tautomeric form of saturated 5(2\(H\))-oxazolones or 3-oxazolin-5-ones. These compounds can also be considered as amino acid derivatives and, indeed, cyclization procedures are the most commonly used to prepare these compounds. The cyclization reaction employs a variety of cyclodehydrating agents and the general method is shown in Scheme 7.23, with an N-acyl-\(\alpha\)-amino acid being the most typical starting material used. In this way, 5(4\(H\))-oxazolones derived from most natural amino acids \(^99\) (\(R_3 = H\)) have been obtained by heating the corresponding N-acyl derivatives in the presence of acetic anhydride.\(^1,65-68\)

The procedure is also useful for the synthesis of 4,4-disubstituted 5(4\(H\))-oxazolones. For example, cyclization of a 2-aryl(hetaryl)carbonylamino-2-arylproionic acid afforded the corresponding oxazolones \(^99\) (\(R_3 = \text{Me}\)) that were evaluated as selective herbicides.\(^69\)

A slight modification of this procedure using N-acyl-\(\alpha\)-amino acids obtained from trifluoropyruvic acid and the corresponding nitrile has been described.\(^70\)
this case, 4-acetoxy-2-substituted-4-(trifluoromethyl)-5(4H)-oxazolones 100 are obtained (Scheme 7.24).

The synthesis of 2-(trifluoromethyl) derivatives is more difficult and the compound preferentially obtained depends on the substituents and on the reaction conditions. Thus, the reaction of tryptophan with TFAA gives the 5(4H)-oxazolone without racemization. However, when this optically active product is dissolved in acetonitrile the racemic 5(4H)-oxazolone is obtained. On the other hand, treatment of the optically active compound with hot aqueous dioxane gave the isomeric 5(2H)-oxazolone (see Scheme 7.2).

Treatment of 2-(1-adamantyl)glycine with TFAA gave 4-(1-adamantyl)-2-(trifluoromethyl)-5(4H)-oxazolone in high yield. A 2-(trifluoromethyl)-5(4H)-oxazolone derived from serine has been obtained from O-trimethylsilyl-N-(trifluoroacetyl)serine diethylamide.

Cyclization of N-acyl-α-amino acids under acidic reaction conditions is sometimes problematic due to the difficulty in separation of the desired oxazolone from by-products while avoiding decomposition of the reactive oxazolone. This finding is particularly true in the case of 2-phenyl-5(4H)-oxazolone, an interesting compound that is a very useful intermediate to prepare a variety of novel products. The use of carbodiimides as dehydrating agents has been described as a means to improve the results. In particular, treatment of an N-acyl-α-amino acid with N-cyclohexyl-N'-2-(N-methylmorpholinio)ethylcarbodiimide p-toluensulfonate (Scheme 7.25) is especially useful as a general synthesis of the desired saturated 5(4H)-oxazolones 101 in excellent yields. This same carbodiimide was used to study the kinetics of the formation of saturated 5(4H)-oxazolones from N-protected dipeptides.
The use of mixed anhydrides derived from N-acyl-α-amino acids has become an interesting strategy for synthesis of saturated 5(4H)-oxazolones 101 (Scheme 7.26). For example, reaction of N-acyl-α-amino acids with methyl chloroformate in the presence of N-methylmorpholine affords racemic 5(4H)-oxazolones.

In the cases where optically active substrates were used as starting materials, chiral, saturated 5(4H)-oxazolones were obtained with good enantiomeric excesses (ee). Oxazolones derived from N-formyl-α-amino acids are better prepared using isopropenyl chloroformate, rather than methyl chloroformate, in the presence of N-methylmorpholine.

2-Phenyl-5(4H)-oxazolone has been obtained during alkaline hydrolysis of p-nitrophenyl N-benzoylglycinate. A detailed study of this process has shown that the leaving group expulsion is the rate-determining step for conversion of the glycinate to the 5(4H)-oxazolone.

In addition to the typical cyclization procedures described above, methods involving the use of other mild, cyclodehydrating agents have been published. For example, cyanuric chloride in the presence of triethylamine, 2-ethoxy-N-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) or 2-isobutoxy-N-isobutoxy-carbonyl-1,2-dihydroquinoline (IIDQ), N,N-dimethylchlorosulfitemanium chloride and several haloiminium salts have proved to be very useful reagents.

The use of N-acylated-α-amino nitriles, nitrones, or α-amino amides as starting compounds have also been reported. N-Acylated-α-amino nitriles were converted into 5(4H)-oxazolones 101 in the presence of ethyl chlorooxoacetate (Scheme 7.27).

\[\begin{align*}
R_2 & \quad \text{CO}_2\text{H} \\
\quad & \quad \text{NHCOR}_1 \\
& \quad \text{CICO}_2\text{R} \\
& \quad \text{O} \\
& \quad \text{N} \quad \text{Me} \\
\quad & \quad \text{O} \\
\quad & \quad \text{N} \quad \text{O} \\
& \quad \text{R}_1 \\
& \quad \text{R}_3 \\
& \quad \text{R}_2 \\
& \quad \text{R}_1
\end{align*} \]

Scheme 7.26

\[\begin{align*}
R_2 & \quad \text{CN} \\
\quad & \quad \text{NHCOR}_1 \\
& \quad \text{CICO}_2\text{Et} \\
& \quad \text{O} \\
& \quad \text{N} \quad \text{O} \\
& \quad \text{R}_1 \\
& \quad \text{R}_3 \\
& \quad \text{R}_2
\end{align*} \]

Scheme 7.27
Nitrones such as 102 gave 2-aryl-4-substituted-5(4H)-oxazolones 103 in the presence of acetic anhydride and triethylamine (Scheme 7.28). Selected examples of saturated-5(4H)-oxazolones prepared via cyclization of amino acids are shown in Table 7.15 (Fig. 7.17).

![Scheme 7.28](image)

2-Acylamino-\(N,N\)-2-trimethylpropionamides 104, obtained from 2,2-dimethyl-3-(dimethylamino)-2\(H\)-azirine and carboxylic acids, were hydrolyzed to the corresponding carboxylic acids and then cyclized to the 4,4-dimethyl-2-substituted-5(4H)-oxazolones 105. This reaction sequence including ring opening of the 5(4H)-oxazolone with amino acids is a very interesting methodology to prepare Aib-containing peptides 106 (Scheme 7.29). 86

<table>
<thead>
<tr>
<th>X</th>
<th>Cyclization Agent</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂H</td>
<td>TFAA</td>
<td>indol-3-ylmethyl</td>
<td>H</td>
<td>CF₃</td>
<td>90</td>
<td>4,5</td>
</tr>
<tr>
<td>CO₂H</td>
<td>Ac₂O</td>
<td>4-MeC₆H₄</td>
<td>H</td>
<td>3-ClC₆H₄</td>
<td>80</td>
<td>69</td>
</tr>
<tr>
<td>CO₂H</td>
<td>TFAA</td>
<td>H</td>
<td>1-adamantyl</td>
<td>CF₃</td>
<td>86</td>
<td>71</td>
</tr>
<tr>
<td>CO₂H</td>
<td>morphoCDI⁺</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>90</td>
<td>74</td>
</tr>
<tr>
<td>CO₂H</td>
<td>morphoCDI⁺</td>
<td>H</td>
<td>H</td>
<td>t-Bu</td>
<td>84</td>
<td>74</td>
</tr>
<tr>
<td>CO₂H</td>
<td>morphoCDI⁺</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>82</td>
<td>74</td>
</tr>
<tr>
<td>CO₂H</td>
<td>cis(S)(O)CHNMe₂Cl</td>
<td>H</td>
<td>Me</td>
<td>Ph</td>
<td>~85</td>
<td>81</td>
</tr>
<tr>
<td>CONMe₂</td>
<td>HCl/toluene</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>CONMe₂</td>
<td>HCl/toluene</td>
<td>Me</td>
<td>Me</td>
<td>2-HOC₆H₄</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>CONMe₂</td>
<td>HCl/toluene</td>
<td>Me</td>
<td>Me</td>
<td>Ph₂C(OH)</td>
<td>90</td>
<td>85</td>
</tr>
</tbody>
</table>

⁺\(N\)-Cyclohexyl-\(N\)'-2-(\(N\)-methylmorpholinio)ethylcarbodiimide \(p\)-toluenesulfonate.
7.3.1.2. Other Cyclization Procedures

A new and completely different methodology involving a cycloaddition reaction has been described. The reaction between diphenylketene, tert-butylcyanoketene or dimethylketene with 2,4,6-trimethylbenzonitrile N-oxide gave the corresponding 5(4H)-oxazolones 107 in moderate yields (Scheme 7.30).

7.3.1.3. Rearrangement of Oxazoles

Allylic esters of N-acyl-α-amino acids were rearranged to the γ,δ-unsaturated α-amino acids 110 through an Ireland–Claisen rearrangement in moderate to good yields and with good diastereoselectivities. Under certain conditions this process involves the formation of an intermediate oxazole 108 that was converted to the corresponding oxazolone 109 by [3,3] sigmatropic rearrangement (Scheme 7.31).
In a similar way, propargyl esters of \(N\)-benzoyl-\(\alpha\)-amino acids have been converted into \(\alpha\)-allenyl-\(\alpha\)-amino acid esters 113 by cyclization to oxazoles 111 followed by Claisen rearrangement to the 4-allenyl-2-phenyl-5(4\(H\))-oxazolones 112. Oxazolone ring opening with methanol then afforded 113 (Scheme 7.32).\(^{89}\)

Since the rearrangement occurs via the corresponding 5-alkoxyoxazoles, a new strategy was developed starting from these heterocycles. Nucleophilic displacement of fluoride in 5-fluoro-2-phenyl-4-(trifluoromethyl)oxazole 114 with allylic alcohols gave the allylic ethers 115 that subsequently yielded the saturated oxazolones 116 through a Claisen rearrangement. 2-Substituted 3,3,3-trifluoroalanine derivatives 117\(^{90}\) or \(\alpha\)-(trifluoromethyl)-\(\beta\)-substituted aspartic acid derivatives 118\(^{91}\) could be obtained readily from 116 after hydrolysis or hydrolysis followed by oxidation (Scheme 7.33).
Similarly, the allenic derivatives 120 and 121 have been obtained from propargylic alcohols as shown in Scheme 7.34. The use of 2-(hydroxymethyl)furan or 2-(hydroxymethyl)thiophene as allylic alcohols gives rise to \(\alpha \)-\((\text{trifluoromethyl})\)\(\alpha \)-\((2\text{-heteroaryl})\)glycine derivatives 125 after hydrolysis of the corresponding oxazolone 124 as shown in Scheme 7.35.

Scheme 7.33

Scheme 7.34
Heating 5-(arylmethyloxy)-2-phenyl-4-(trifluoromethyl)oxazoles 126 effects thermal rearrangement to 4-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-5(4H)-oxazolones 127. In some cases, the formation of 2-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-5(2H)-oxazolones has been reported. Hydrolysis of 127 constitutes a new general route to α-(arylmethyl)-α-(trifluoromethyl) α-amino acids 128 (Scheme 7.36). In this case, isolation of mixed products in crossover experiments indicates that the rearrangement is not a sigmatropic process but involves a 1,3-benzyl shift. 5-(Benzyloxy)-2-phenyl-4-(trifluoromethyl)oxazole and 4-benzyl-2-phenyl-4-(trifluoromethyl)-5(4H)-oxazolone have been studied as enzyme inhibitors for amino acid decarboxylases and transaminases.

β-δ-C-Allosyl-(R)-alanine 131 was synthesized from the β-C-glycosyloxazolone 130 that was obtained from the corresponding protected d-glucal by a sequential coupling with N-benzoylalanine followed by a Claisen rearrangement (Scheme 7.37). The oxazolone was obtained as a mixture of two diastereoisomers in a 3:1 ratio. The process involves the formation and rearrangement of an intermediate oxazole 129 that could not be detected.
It is known that 5-acyloxyoxazoles 132 rearrange to 4-acyl-5(4H)-oxazolones 133 in the presence of 4-(dimethylamino)pyridine or 4-(pyrrolidino)pyridine. Recently, an asymmetric variant of this nucleophile-catalyzed rearrangement that employs a chiral derivative of 4-(pyrrolidino)pyridine has been described. This procedure allows the construction of quaternary stereocenters with high levels of enantioselectivity (Scheme 7.38). Representative examples of saturated 5(4H)-oxazolones prepared via sigmatropic rearrangements are shown in Table 7.16 (Fig. 7.18).
7.3.1.4. From Other Oxazolones

7.3.1.4.1. From \(5(2H)\)-Oxazolones

As discussed previously, alkylation of 4-benzyl-2-(trifluoromethyl)-\(5(2H)\)-oxazolone 16 in the presence of mild base using active alkyl halides occurs at C-4 to afford \(\alpha,\alpha\)-dialkyl-\(5(4H)\)-oxazolones (Scheme 7.5).14

7.3.1.4.2. Saturated \(5(4H)\)-Oxazolones via Modifications at C-2

Saturated 2-vinyl-\(5(4H)\)-oxazolones have been widely used as intermediates for the synthesis of polymeric compounds that will be described in Section 7.3.2.9. Apart from these polymerization reactions, the Diels–Alder reactions of 4-substituted-2-vinyl-\(5(4H)\)-oxazolones 134 with cyclopentadiene are reported to give norbornenyl oxazolones 13598,99 that are useful to prepare norbornenyl functionalized resins by azlactone ring-opening addition reactions (Scheme 7.39).

![Scheme 7.39](image)

The vinyl substituent at C-2 can also act as a Michael acceptor and reaction with certain nucleophiles gives rise to 1,4-addition compounds. For example, \(p\)-toluenesulfonic acid catalyzed addition of thiols to 2-vinyl- or 2-isopropenyl-\(5(4H)\)-oxazolones 136 gave, almost exclusively, the Michael adducts 137 that were used
as curing agents for epoxy and isocyanate resins. On the other hand, acid-catalyzed addition of primary alcohols to 4,4-dimethyl-2-vinyl-5(4H)-oxazolone (R₁ = R₂ = Me, R₃ = H) gave 138 and 139 as an ~50:50 mixture, whereas with secondary and tertiary alcohols the Michael adducts 138 were preferentially obtained. Interestingly, the reaction of 4,4-dimethyl-2-isopropenyl-5(4H)-oxazolone (R₁ = R₂ = R₃ = Me) with phenethyl alcohol effected ring opening to afford compound 139 (R₁ = R₂ = R₃ = Me, R₄ = CH₂CH₂Ph) cleanly (Scheme 7.40).

Finally, hydrosilylation of 2-alkenyl-5(4H)-oxazolones in the presence of an appropriate catalyst normally afforded β-addition compounds, for example, 141, although 4,4-dimethyl-2-vinyl-5(4H)-oxazolone 140 also yielded the corresponding α-addition compound 142 (Scheme 7.41).
7.3.1.4.3. Saturated 5(4H)-Oxazolones via Modifications at C-4

ALKYLATION. Saturated 5(4H)-oxazolones are readily available compounds that can be easily obtained from a wide variety of natural amino acid derivatives. These heterocyclic compounds can be considered as nucleophilic synthons of \(\alpha \)-amino acids and their most exploited reactivity, apart from oxazolone ring opening, is the reaction at C-4 with a variety of electrophiles.

The behavior of 2-substituted- or 2-unsubstituted-5(4H)-oxazolones is completely different. Reaction of electrophiles with 2-substituted-5(4H)-oxazolones usually occurs at C-4, whereas reaction of electrophiles with 2-unsubstituted-5(4H)-oxazolones affords the corresponding 5(2H)-oxazolones. The best example of the behavior of 2-unsubstituted-5(4H)-oxazolones involves 4-isopropyl-5(4H)-oxazolone 143, the anion of which can be considered as a formyl anion equivalent.\(^{103,104}\) Thus, reaction of 143 with a catalytic amount of triethylamine gives 144 that reacts with \(\alpha,\beta \)-unsaturated carbonyl compounds to afford Michael adducts or with aldehydes to produce the corresponding aldol adducts. Mild acid hydrolysis of 145 yields the corresponding aldehydes (Scheme 7.42).

\[
\begin{align*}
\text{i-Pr} & \quad \text{O} \\
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Et}_3\text{N} & \quad \text{143} & \quad \text{i-Pr} & \quad \text{O} \\
& & \quad \text{144} & \quad \text{i-Pr} & \quad \text{O} \\
\text{E} & \quad \text{145} & \quad \text{H}_2\text{O}^+ & \quad \text{E-CHO}
\end{align*}
\]

Scheme 7.42

Alkylation of saturated 5(4H)-oxazolones at C-4 is a well-known reaction that can be achieved under a wide variety of conditions. Numerous articles have described this reaction as a means to prepare 4,4-dialkyl-5(4H)-oxazolones 147 that are valuable intermediates to prepare \(\alpha,\alpha \)-disubstituted \(\alpha \)-amino acids. For instance,\(^{105}\) 2-phenyl-5(4H)-oxazolone 146 readily obtained from hippuric acid and \(\text{N,N'} \)-dicyclohexylcarbodiimide (DCC), is alkylated at C-4 with allyl, benzyl, or phenacyl halides if the reaction is conducted in dipolar aprotic solvents in the presence of weak bases. Hydrolysis of the resulting 5(4H)-oxazolones leads to \(\alpha,\alpha \)-dialkylglycines 148 (Scheme 7.43).

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Ph} & \quad \text{R} & \quad \text{H}_2\text{O}^+ \\
\text{Ph} & \quad \text{R} & \quad \text{CO}_2\text{H} \\
\text{weak base} & \quad 2 \text{RX} & \quad \text{146} & \quad \text{147} & \quad \text{148}
\end{align*}
\]

Scheme 7.43

The alkylation of 2-aryl-4-phenyl-5(4H)-oxazolones like 22 is strongly dependent upon the nature of the substituent on the aromatic ring at C-2. For electron-rich
aryl substituents, the C-4 alkylated compounds are the main products as shown in Scheme 7.7. In other cases, alkylation occurs exclusively at C-4.

Alkylation of 2,4-disubstituted-5(4H)-oxazolones can be conveniently performed via phase-transfer catalysis. For example, the substrate and an alkyl halide are dissolved in an organic solvent and stirred with an aqueous sodium carbonate solution containing tetrabutylammonium bromide as a phase-transfer catalyst.

4,4-(Diarylmethyl)-2-phenyl-5(4H)-oxazolones can be prepared in one-step by dialkylation of using magnesium methyl carbonate and the corresponding arylmethyl halide. 4-Methyl(or benzyl)-2-phenyl-5(4H)-oxazolone is benzylated or methylated in the presence of potassium carbonate, potassium hydroxide or diisopropylethylamine and a phase-transfer catalyst to yield the corresponding 4,4-dialkyl-5(4H)-oxazolone, which upon hydrolysis affords α-methyl- or α-benzylphenylalanine.

Recently, a new and generally applicable procedure for efficient α-alkylation of 2-phenyl-4-substituted-5(4H)-oxazolones has been described. A valuable feature of this approach is that, depending on the availability and ease of preparation of the starting oxazolone and the reactivity of the electrophile, two complementary approaches are available (Scheme 7.44). This synthetic methodology opens interesting possibilities for the synthesis of novel α-amino acids that combine two side chains of proteinogenic and non-proteinogenic amino acids—so-called “chimeras”.

An asymmetric alkylation of 2-phenyl-4-substituted-5(4H)-oxazolones has been described recently. This approach is based on palladium-catalyzed allylic alkylations of using 3-acetoxycyclohexene as reagent. The reaction occurs with excellent enantioselectivity for the major diastereoisomer and opens the way for the asymmetric synthesis of quaternary α-amino acids, important building blocks in peptide synthesis (Scheme 7.45).
Other allylating agents have been employed in this enantioselective reaction with different results. Moderate-to-low ee’s are obtained with highly symmetrical allylating agents, whereas 1-monosubstituted and 1,1-disubstituted allyl reagents gave ee’s >90%. This allylation was the key step in the stereoselective synthesis of some sphingosine analogues. Alkylation of oxazolones with ω-halo ketones under phase-transfer catalysis generated an enolate 155 from initial alkylation at C-4 that immediately translactonized to produce an enol lactone 156 (Scheme 7.46). Selected examples of 5(4H)-oxazolones prepared via alkylation are shown in Table 7.17 (Fig. 7.19).

Scheme 7.46

MICHAEL REACTION. 5(4H)-Oxazolones undergo base-catalyzed conjugate addition to activated unsaturated compounds to afford the corresponding C-4 Michael adducts. For example, base-catalyzed addition of a 4-monosubstituted-5(4H)-oxazolone 157 to methyl propiolate yields a mixture of diastereomeric methyl 3-(5-oxo-2-phenyl-2-oxazolin-4-yl)acrylates 158. Hydrolytic ring opening of 158 and subsequent oxidation with lead tetraacetate affords 3-acylacrylates 160 (Scheme 7.47).
This procedure is an excellent method to prepare 1,4-dicarbonyl compounds 163 (Scheme 7.48) and, using triethylamine, has been extended to include other activated double bonds. 119 Thus, the starting α-amino acids can be considered as nucleophilic acyl equivalents. Representative examples of 5(4H)-oxazolones prepared via Michael additions are shown in Table 7.18 (Fig. 7.20).

<table>
<thead>
<tr>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>R<sub>3</sub></th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Me</td>
<td>61</td>
<td>107</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>CH<sub>2</sub>=CHCH<sub>2</sub></td>
<td>77</td>
<td>107</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>EtO<sub>2</sub>CHCH<sub>2</sub></td>
<td>57</td>
<td>107</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Me</td>
<td>19</td>
<td>107</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>CH<sub>2</sub>=CHCH<sub>2</sub></td>
<td>49</td>
<td>107</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>EtO<sub>2</sub>CHCH<sub>2</sub></td>
<td>40</td>
<td>107</td>
</tr>
<tr>
<td>PhCH<sub>2</sub></td>
<td>Ph</td>
<td>t-BuO<sub>2</sub>CCH<sub>2</sub></td>
<td>69</td>
<td>111</td>
</tr>
<tr>
<td>i-Bu</td>
<td>Ph</td>
<td>t-BuO<sub>2</sub>CCH<sub>2</sub></td>
<td>68</td>
<td>111</td>
</tr>
<tr>
<td>t-BuO<sub>2</sub>CCH<sub>2</sub>CH<sub>2</sub></td>
<td>Ph</td>
<td>Me</td>
<td>50</td>
<td>111</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>2-cyclohexen-1-yl</td>
<td>73</td>
<td>112</td>
</tr>
<tr>
<td>PhCH<sub>2</sub></td>
<td>Ph</td>
<td>2-cyclohexen-1-yl</td>
<td>75</td>
<td>112</td>
</tr>
<tr>
<td>t-Bu</td>
<td>Ph</td>
<td>2-cyclohexen-1-yl</td>
<td>91</td>
<td>112</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Me<sub>2</sub>C=CHCH<sub>2</sub></td>
<td>67</td>
<td>115</td>
</tr>
<tr>
<td>PhCH<sub>2</sub></td>
<td>Ph</td>
<td>Me<sub>2</sub>C=CHCH<sub>2</sub></td>
<td>62–78</td>
<td>115</td>
</tr>
<tr>
<td>i-Pr</td>
<td>Ph</td>
<td>Me<sub>2</sub>C=CHCH<sub>2</sub></td>
<td>47</td>
<td>115</td>
</tr>
</tbody>
</table>

In those cases, where conjugated 1,3-dicarbonyl compounds have a leaving group in the β-position, reaction with a 5(4H)-oxazolone occurs via an addition–elimination reaction sequence to give, after cyclization, pyran-2-ones 165.
(Scheme 7.49). The requisite activated double bond is generated in situ from the 1,3-dicarbonyl compound and a one-carbon synthon such as a trialkyl orthoformate, diethoxymethyl acetate or N,N-dimethylformamide dimethyl acetal.120

It has also been reported121 that some 4-substituted-5(4\textsubscript{H})-oxazolones 166 undergo Michael addition to triphenylvinylphosphonium bromide to give the corresponding 4,4-disubstituted-5(4\textsubscript{H})-oxazolones 167 from which ring opening

\[R_1 \text{Michael Acceptor} \rightarrow R_2 \text{R}_3 \%	ext{ Yield} \text{ Reference} \]

<table>
<thead>
<tr>
<th>R\textsubscript{1}</th>
<th>Michael Acceptor</th>
<th>R\textsubscript{2}</th>
<th>R\textsubscript{3}</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Bu</td>
<td>HC≡CCO\textsubscript{2}Me</td>
<td>MeO\textsubscript{2}CCH=CH</td>
<td>Ph</td>
<td>87</td>
<td>118</td>
</tr>
<tr>
<td>PhCH\textsubscript{2}</td>
<td>HC≡CCO\textsubscript{2}Me</td>
<td>MeO\textsubscript{2}CCH=CH</td>
<td>Ph</td>
<td>76</td>
<td>118</td>
</tr>
<tr>
<td>MeO\textsubscript{2}C(CH\textsubscript{2})\textsubscript{2}</td>
<td>HC≡CCO\textsubscript{2}Me</td>
<td>MeO\textsubscript{2}CCH=CH</td>
<td>Ph</td>
<td>85</td>
<td>118</td>
</tr>
<tr>
<td>PhCONH(CH\textsubscript{2})\textsubscript{4}</td>
<td>HC≡CCO\textsubscript{2}Me</td>
<td>MeO\textsubscript{2}CCH=CH</td>
<td>Ph</td>
<td>84</td>
<td>118</td>
</tr>
<tr>
<td>i-Pr</td>
<td>CH\textsubscript{2}=CHCOMe</td>
<td>MeCOCH\textsubscript{2}CH\textsubscript{2}</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>82</td>
<td>119</td>
</tr>
<tr>
<td>i-Pr</td>
<td>CH\textsubscript{2}=CHCN</td>
<td>NCCH\textsubscript{2}CH\textsubscript{2}</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>82</td>
<td>119</td>
</tr>
<tr>
<td>PhCH\textsubscript{2}</td>
<td>CH\textsubscript{2}=CHCOMe</td>
<td>MeCOCH\textsubscript{2}CH\textsubscript{2}</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>89</td>
<td>119</td>
</tr>
<tr>
<td>PhCH\textsubscript{2}</td>
<td>CH\textsubscript{2}=CHCOPr</td>
<td>PrCOCH\textsubscript{2}CH\textsubscript{2}</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>85</td>
<td>119</td>
</tr>
<tr>
<td>PhCH\textsubscript{2}</td>
<td>CH\textsubscript{2}=CHCN</td>
<td>NCCH\textsubscript{2}CH\textsubscript{2}</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>87</td>
<td>119</td>
</tr>
<tr>
<td>PhCH\textsubscript{2}</td>
<td>CH\textsubscript{2}=CHCO\textsubscript{2}Me</td>
<td>MeO\textsubscript{2}CCH\textsubscript{2}CH\textsubscript{2}</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>83</td>
<td>119</td>
</tr>
</tbody>
</table>
and intramolecular Wittig reaction afford pyrroline-2-carboxylic acid esters 169 (Scheme 7.50).

ARYLATION. Arylation of 2,4-diaryl-5(4H)-oxazolones 170 with activated aryl halides has been reported to proceed under phase-transfer conditions (Scheme 7.51).122 The yields of 2,4-diaryl-4-(2,4-dinitroaryl)-5(4H)-oxazolones 171 are often modest. Heteroarylation of 170 was accomplished using 2-chloro-3,5-dinitropyridine. Representative examples are shown in Table 7.19 (Fig. 7.21).

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>Ar</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>4-MeOC₆H₄</td>
<td>2,4-(NO₂)₂C₆H₃</td>
<td>35</td>
</tr>
<tr>
<td>Ph</td>
<td>4-MeOC₆H₄</td>
<td>2,4,6-(NO₂)₃C₆H₂</td>
<td>34</td>
</tr>
<tr>
<td>i-Pr</td>
<td>Ph</td>
<td>2,4-(NO₂)₂C₆H₃</td>
<td>28</td>
</tr>
<tr>
<td>Ph</td>
<td>i-Pr</td>
<td>2,4-(NO₂)₂C₆H₃</td>
<td>49</td>
</tr>
<tr>
<td>4-CIC₆H₄</td>
<td>4-MeC₆H₄</td>
<td>2,4-(NO₂)₂C₆H₃</td>
<td>20</td>
</tr>
<tr>
<td>4-MeOC₆H₄</td>
<td>4-MeC₆H₄</td>
<td>2,4-(NO₂)₂C₆H₃</td>
<td>52</td>
</tr>
</tbody>
</table>

a Data from Ref. 122.
ACYLATION. Acylation at C-4 of 4-unsubstituted or 4-monosubstituted 5(4H)-oxazolones 172 has been described using two different strategies. Depending on the nature of the substituents in the starting oxazolone, the nature of the acylating agent and the experimental conditions, two different products can be obtained. In general, it should be noted that, in the presence of triethylamine, acylation occurs at C-4, although in some cases the major product is the 5-acyloxyoxazole 173 that arises from O-acylation. In these cases, 173 can be rearranged to the desired 4-acyl-5(4H)-oxazolone 174 with 2- or 4-picoline (Scheme 7.52). For example, acylation of 2-phenyl-5(4H)-oxazolone 172 (R₁ = Ph, R₂ = H) with propionyl chloride in the presence of 2-picoline gives 2-phenyl-4-propionyl-5(4H)-oxazolone.123 However, acylation of the same oxazolone with ethyl 7-(chloroformyl)heptanoate in the presence of triethylamine gives the corresponding 5-acyloxy-2-phenyloxazole that rearranges to the desired 5(4H)-oxazolone in 4-picoline.124
Reaction of 4-alkyl(aralkyl)-2-phenyl-5(4)H-oxazolones 175 with difluoro- and trifluoroacetic anhydride yields z-(benzamidoalkyl)-difluoro- and trifluoroketones 178 in good yield in a one-pot procedure (Scheme 7.53).

Acylation of 179 with 2,2-difluoro-3-methyl-4-pentenoic acid anhydride yields z-amino ketones 180 that can serve as intermediates to prepare pseudopeptides such as peptidyl z,z-difluoroalkylketones 181 (Scheme 7.54) or ketomethylene pseudopeptides.127

In some cases, the product depends on the nature of the acylating agent. Acylation of 182 with 2,2-difluoro-4-pentenoic acid anhydride leads to acylation at C-4, whereas acylation with 2,2-difluoro-4-pentenoic acid chloride yields the 5-acyloxyoxazole 185 as the major compound.128 The 5-acyloxyoxazole can be rearranged to the 5(4)H-oxazolone 183 upon treatment with 4-(dimethylamino)pyridine. Treatment of 183 with anhydrous oxalic acid promotes decarbonylation to give fluorinated z-amino ketones 184 (Scheme 7.55). Selected examples of 4-acyl-5(4)H-oxazolones are shown in Table 7.20 (Fig. 7.22).
Acylation of 186 with an α-substituted ethyl succinyl chloride generates the expected 4-acyl-5(4H)-oxazolones 187 that serve as precursors to ketomethylene and dehydro ketomethylene pseudodipeptides (Scheme 7.56). 129

Scheme 7.56

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R2CO</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH₂</td>
<td>Ph</td>
<td>CF₃CO</td>
<td>63</td>
<td>125</td>
</tr>
<tr>
<td>i-Bu</td>
<td>Ph</td>
<td>CF₃CO</td>
<td>60</td>
<td>125</td>
</tr>
<tr>
<td>PhCH₂</td>
<td>Ph</td>
<td>CF₃HCO</td>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>i-Bu</td>
<td>Ph</td>
<td>CF₃HCO</td>
<td>22</td>
<td>125</td>
</tr>
<tr>
<td>PhCH₂</td>
<td>Ph</td>
<td>CH₂=CHCF₂CO</td>
<td>38</td>
<td>128</td>
</tr>
<tr>
<td>i-Bu</td>
<td>Ph</td>
<td>CH₂=CHCF₂CO</td>
<td>46</td>
<td>128</td>
</tr>
</tbody>
</table>
A general procedure for acylation of 2-aryl-5(4H)-oxazolones using an acylating agent in the presence of 4-(dimethylamino)pyridine and triethylamine has been described. The resulting products are useful intermediates for agrochemicals and drugs.

Intramolecular Alkylations. Intramolecular spiroalkylation of the suitably functionalized 5(4H)-oxazolone 188 produced 189 in good to excellent yield. Acid hydrolysis of 189 then gave the cyclic amino acid 190 required in the synthesis of the aldose reductase inhibitor sorbinil (Scheme 7.57).

![Scheme 7.57](image)

Imines and Carbonyl Compounds. Simple 2-alkyl(aryl)-5-(4H)-oxazolones like 191 can react with aldehydes, ketones, imines, and oximes to afford the corresponding unsaturated analogues 192 (Scheme 7.58). In some cases, this procedure is especially advantageous over the classical one-pot synthesis. The chemistry of unsaturated 5(4H)-oxazolones like 192 will be discussed in detail in Section 7.4.

![Scheme 7.58](image)

Imines are particularly useful reagents when hindered electrophiles are considered. In this context, \(N\)-(\(\alpha\)-methylbenzylidene)benzylamines have been described as alternatives to acetophenones. Similarly \(N\)-methylbenzophenonimine serves as an alternative to benzophenone itself in reactions with 2-phenyl-5(4H)-oxazolone 146 to prepare 2-phenyl-4-(\(\alpha\)-phenylethylidene)- and 4-(diphenylmethylene)-2-phenyl-5(4H)-oxazolone, respectively.

When carbonyl compounds are used as electrophiles reaction with 4-monosubstituted-5(4H)-oxazolones affords substituted serines after subsequent hydrolytic ring opening of the initial aldol product. As an example, 4-methyl-2-phenyl-5(4H)-oxazolone 193, prepared from alanine, reacts with benzaldehyde in a base-catalyzed addition to give, after hydrolysis, a 3:1 mixture of threo- and...
erythro-2-methyl-3-phenylserine 195 (Scheme 7.59). Iron sulfate has also been used to catalyze the condensation reaction of 2-phenyl-5(4H)-oxazolone and aromatic aldehydes.\(^{79}\)

![Scheme 7.59](image)

4-Monosubstituted-5(4H)-oxazolones behave differently upon reaction with imines. Here, 4-methyl-2-phenyl-5(4H)-oxazolone 196 (R\(_1\) = Ph, R\(_2\) = Me) reacts with imines derived from 2-furancarboxaldehyde or 2-thiophenecarboxaldehyde to give 3-amino-\(\beta\)-lactams 197.\(^{152,153}\) On the other hand, 196 reacts with chlorosulfonyl isocyanate in a [2 + 2] cycloaddition to give dioxazabicycloheptanones 198 as shown in Scheme 7.60.\(^{154}\)

![Scheme 7.60](image)

Reaction of carbon disulfide with 2-phenyl-5(4H)-oxazolone 146 followed by S-alkylation with a methyl halide gives 4-[bis(methylthio)methylene]-2-phenyl-5(4H)-oxazolone. The solvolysis and aminolysis of this compound have also been studied.\(^{155,156}\)

ENAMINES AND FORMAMIDINES. Enamines, prepared from methylpyridines, methylpyridazines, methylpyrimidines or methyltriazine, and N,N-dimethylformamide dimethylacetal or tert-butoxybis(dimethylamino)methane, react with 2-phenyl-5(4H)-oxazolone 146 to afford the unsaturated 5(4H)-oxazolones 199 and 201 that are intermediates in the synthesis of fused pyridones 200\(^{157}\) and pyridotriazines 202, respectively (Scheme 7.61).\(^{158}\)
Similarly, reaction of 2-dimethylaminomethylene-3-oxoalkanoates or 2-di-methylaminomethylene-1,3-cyclohexanediones with 2-phenyl-5(4\(H\))-oxazolone 146, generated in situ from hippuric acid, affords 6-substituted 3-(benzoylamino)-2-oxo-2\(H\)-pyran-5-carboxylates 204 and 3-(benzoylamino)-7,8-dihydro-2\(H\)-1-benzopyran-2,5(6\(H\))-diones 206, respectively. These compounds showed strong local anesthetic activity (Scheme 7.62). 159
Condensation of an N'-heteroaryl-N,N-dimethylformamidine or N,N'-diphenylformamidine with 2-phenyl-5(4H)-oxazolone 146 gives 4-(aminomethylene)-2-phenyl-5(4H)-oxazolones 207 that are synthetic equivalents of β-amino-α,β-dehydro-α-amino acid derivatives 208 (Scheme 7.63).

![Scheme 7.63](image)

AZINE N-OXIDES. Quinoline and isoquinoline N-oxides react readily with 2-phenyl-5(4H)-oxazolone 209 ($R_1 =$ Ph) and 2-methyl-5(4H)-oxazolone 209 ($R_1 =$ Me) in the presence of acetic anhydride to afford 2-substituted 4-(quinol-2-yl)- 210 and 4-(isoquinol-1-yl)-5(4H)-oxazolones 211, respectively, in good yields (Scheme 7.64).

![Scheme 7.64](image)

Similar results are obtained from reaction of pyridine N-oxide derivatives with 146 and several transformations, including ring opening, have been described.

Reaction of pyridinium salts and 146 gives the corresponding 4-substituted-1,4-dihydropyridine derivatives 212 (Scheme 7.65).
HALOGENATION REACTIONS. Chlorination of 4-acyl-2-phenyl-5(4H)-oxazolones 213 with sulfuryl chloride leads to the corresponding 4-chloro derivatives 214 (Scheme 7.66). These compounds are useful intermediates in organic synthesis. In particular, hydrolytic cleavage of 214 affords α-chloro-α-acylamino ketones 215. Moreover, they are the logical intermediates to prepare 4-(phosphoranylidene)-5(4H)-oxazolones that are very important and useful synthons.

The first attempt to prepare 2-phenyl-4-(phosphoranylidene)-5(4H)-oxazolone 219 started with 1-benzoylamino-(2,2-dichloroethenyl)triphenylphosphonium chloride 216 and involved the complex reaction sequence shown in Scheme 7.67. The structure and properties of 219 were studied and it was shown that 219 underwent Wittig olefination with benzaldehyde to give the well-known (Z)-4-benzylidene-2-phenyl-5(4H)-oxazolone.168

A more efficient one-pot procedure for the synthesis of 4-(phosphoranylidene)-2-substituted-5(4H)-oxazolones from the corresponding 4-unsubstituted-5(4H)-oxazolones has also been described and uses trialkyl- or triarylphosphines in the presence of a halogenation agent.169 Wittig reaction of 4-(phosphoranylidene)-2-substituted-5(4H)-oxazolones has been used to prepare fluoroazolones from fluorine-containing carbonyl compounds.170
Reaction of the 2-phenyl-4-(phosphoranylidene)-5(4H)-oxazolone 219 with alkyl halides gives 4-alkyl-2-phenyl-5(4H)-oxazolones 220 in good yields.171 Reaction of 219 with acyl iodides or bromides gives C-4- or O-acyl products 221 or 222. Reaction of 219 with acyl chlorides gives 4-(1-chloroalkylidene)-2-phenyl-5(4H)-oxazolones 224 that are Wittig-like products. The use of benzoyl fluoride gives rise to 4-(1-benzyloxybenzylidene)-2-phenyl-5(4H)-oxazolone 223.172 These reactions are summarized in Scheme 7.68.

\textbf{Diazonium Salts as Electrophiles.} 2-Aryl-5(4H)-oxazolones 225 couple readily with aryldiazonium salts to give the corresponding 4-arylazo derivatives 226 or 2-aryl-4,5-oxazolodione-4-arylhydrazones 227.173,174 Structural studies revealed that these compounds exist as the hydrazone tautomers 227.175 These compounds are valuable synthetic intermediates. For example, nucleophilic ring opening with active methylene compounds176,177 and alcohols178,179 has been described. More interestingly, ring opening with amines and subsequent recyclization affords 1,5-diaryl-1,2,4-triazole-3-carboxamides 228 (Scheme 7.69) that have been used in the preparation of agrochemicals, particularly, herbicides, and fungicides.180–195
7.3.1.4.4. From Unsaturated 5(4H)-Oxazolones

One strategy to prepare saturated 5(4H)-oxazolones from unsaturated oxazolones takes advantage of the reactivity of the exocyclic double bond. In this context, numerous reactions have been explored including reductions, Michael reactions, cycloaddition reactions, and many others. These reactions will be discussed in the context of the reactivity of the exocyclic double bond of the unsaturated oxazolones and will be described in Section 7.4.3.

7.3.1.5. 2-Alkoxy Derivatives

N-Alkoxy carbonyl-α-amino acids are chirally stable compounds under normal coupling conditions. In the presence of a tertiary amine, most activated _N_ -alkoxy carbonyl-α-amino acids generate 2-alkoxy-5(4H)-oxazolones that are not chirally stable in the presence of the base. Consequently, enantiomerization occurs in the presence of the tertiary amine if the activated residue is not immediately consumed by aminolysis. Many studies have explored this process to minimize the enantiomerization in the coupling reaction including isolation of the intermediate 2-alkoxy-5(4H)-oxazolones. Several methods are now available to prepare 2-alkoxy-5(4H)-oxazolones. For example, the action of triethylamine on _N_-benzyl-oxycarbonyl-α-amino acid chlorides gives the 2-benzyloxy-5(4H)-oxazolones. Similarly, 2-[(9-fluorenylmethyl)oxy]-5(4H)-oxazolones with acid-stable protecting groups are accessible from the acid chlorides. Other analogues can be obtained from carbodiimides including DCC and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDAC). A general route to all types of 2-alkoxy-5(4H)-oxazolones was developed using mixed anhydrides prepared from reaction of an acid with isopropenyl chloroformate in the presence of _N_-methylmorpholine. The general synthetic procedure is shown in Scheme 7.70.
In cases where 2-alkoxy-5(4H)-oxazolones are generated from N-alkoxycarbonyl-α-amino acids, the enantiomerization that occurs during preparation and incorporation of these residues into peptides, the properties, and methods of preparation of the 2-alkoxy-5(4H)-oxazolones together with the practical uses of these compounds have recently been reviewed. 196

For α,α-dialkylamino acids enantiomerization is not a problem. The preparation of 4,4-dimethyl-2-[(9-fluorenylmethyl)oxy]-5(4H)-oxazolone, an intermediate used in the synthesis of (−)-mirabazole C has been described. 197 Recently, two new 2-alkoxy-5(4H)-oxazolones derived from Toac (2,2,6,6-tetramethyl-4-amino-1-oxy-piperidine-4-carboxylic acid) that incorporate Z or 9-fluorenylmethoxycarbonyl (Fmoc) protection at C-2 have been described. 198 The Toac analogues were synthesized as part of a study of the crystal structure and ab initio calculations for these interesting systems.

Finally, cationic ring-opening polymerization of 2-alkoxy-5(4H)-oxazolones has been used to prepare poly N-alkoxycarbonyl amino acids. 199,200 The polymerization was found to be dependent on the nature of the amino acid side chain and the substituent on C-2.

7.3.2. Reactions

7.3.2.1. Hydrolysis and Alcoholysis

The most important reaction in the chemistry of oxazolones is nucleophilic ring opening of the heterocyclic ring. Hydrolysis of 5(4H)-oxazolones gives the corresponding N-acylamino acids that are the usual starting materials for the synthesis of these heterocyclic compounds. Therefore, in principle, this reaction is synthetically unimportant, although it is worth considering certain aspects about the process.

However, important transformations can be made, for example, at C-4 and thus the sequence of cyclization of a typical amino acid to the oxazolone, followed by modification at C-4 and subsequent hydrolysis, has become a useful strategy to prepare new, non-proteinogenic amino acids.

In addition, the use of an enantioselective or diastereoselective hydrolysis of racemic oxazolones offers another possibility to obtain new synthetic amino acids. Similarly, alcoholysis of 5(4H)-oxazolones gives the corresponding N-acylamino acid esters.
Finally, it is well known that amino acids can cyclize to oxazolones during the protection–activation reaction sequence. This important reaction must be avoided since tautomerism between saturated 5(4H)-oxazolones and 5(2H)-oxazolones results in undesired epimerization of the amino acid.

A number of points should be considered to determine the most appropriate experimental conditions for the desired reaction and, to that end, the kinetics of hydrolysis and ionization of 4-methyl-2-phenyl-, 4-benzyl-2-phenyl-, and 4-benzyl-2-methyl-5(4H)-oxazolones have been investigated. Deprotonation of 5(4H)-oxazolones in aqueous media, which leads to racemization of optically active 5(4H)-oxazolones, is a fast process that competes with the ring opening. The difference between the rate constant for racemization and the ring opening is greater in solvents with dielectric constants less than water and thus, oxazolones racemize faster than they hydrolyze.

The rate and equilibrium constants for the reaction of oxyanions with 2-phenyl-5(4H)-oxazolones has been also studied. This work suggests that attack of phenoxide ion at the carbonyl group is a concerted displacement.

In addition, detailed geometric and energetic characteristics of the elementary reaction pathways for the addition of water and ammonia to 2-methyl-5(4H)-oxazolone have been determined at the AM1 level using MOPAC programs. The authors concluded that an N-acetylamino acid or amide are formed through a two-step procedure that involves the formation of the α-hydroxyimine and subsequent tautomerization.

Ring opening of 2-aryl-5(4H)-oxazolones, obtained from N-acylglycines, with N,N-dimethyl-2-aminoethanol provides choline esters of N-substituted amino acids (Scheme 7.71).

The use of chiral organometallic compounds as catalysts in the enantioselective hydrolysis of saturated oxazolones was reported several years ago and the mechanism of the hydrolysis of 4-benzyl-2-methyl-5(4H)-oxazolone catalyzed by the copper(II) complex of (S)-[(N-benzylprolyl)amino]benzaldoxime has been described.

Other compounds studied as chiral catalysts include α- and β-cyclodextrins that were used in the hydrolysis of oxazolones although the enantioselectivity in the ring-opening reaction was rather low. When a phenyl group is present at C-2 in these systems the enantioselectivity of the reaction is somewhat higher.

Dynamic kinetic resolution is an excellent methodology to prepare enantiomerically pure compounds and, in this context, chiral 4-(dimethylamino)pyridine (DMAP) iron and ruthenium complexes have been reported to catalyze the
ring opening of 5(4H)-oxazolones by alcohols. As a result, the dynamic kinetic resolution (deracemization) of chiral saturated oxazolones is possible and leads to enantioenriched protected α-amino acids (Scheme 7.72). The solvent and nucleophile are critical variables that dramatically affect the levels of enantioselectivity observed in these reactions.

Chiral titanium complexes with α, α, α′, α′-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL) ligands are versatile auxiliaries in the Lewis acid catalyzed alcoholysis of racemic 4-(arylmethyl)-2-phenyl-5(4H)-oxazolones, providing the corresponding enantiomerically enriched N-protected amino acid esters (Scheme 7.73). The enantioselectivity of the reaction is dependent on the solvent, temperature, and chiral ligand. Selected examples of the alcoholysis of saturated 5(4H)-oxazolones are shown in Table 7.21 (Fig. 7.23).

Recently, it was reported that some dipeptide derivatives containing a histidine residue such as cyclo[(S)-His-(S)-Phe] (CHP) catalyze the alcoholysis of

![Scheme 7.72](image)

Scheme 7.72

![Scheme 7.73](image)

Scheme 7.73
4-benzyl-2-phenyl-5(4H)-oxazolone to afford the corresponding N-benzoyl-L-phenylalanine esters albeit with low or moderate enantioselectivity. Cyclo[(S)-His-(S)-Phe] was a more effective and enantioselective catalyst when used together with a chiral auxiliary that possessed both a hydrogen-bond donor and a hydrogen-bond acceptor.

Enzymatic systems have been used successfully to effect asymmetric synthesis of amino acids by dynamic kinetic resolution of saturated oxazolones. Oxazolones are versatile substrates for enzyme-catalyzed hydrolysis and alcoholysis using both lipases and proteases to catalyze the nucleophilic ring opening. The first attempts to hydrolyze 2,4-disubstituted-5(4H)-oxazolones using proteases such as \(\alpha \)-chymotrypsin, trypsin, and subtilisin were only moderately successful, but a significant breakthrough in this method was achieved when lipases were employed instead of proteases. Initially, it was shown that 4-methyl-2-phenyl-5(4H)-oxazolone undergoes Mucor miehei lipase-catalyzed enantioselective ring opening with 1-butanol in diisopropyl ether. This process, in conjunction with partial racemization of the less reactive isomer of the oxazolone under the reaction conditions, yields enantioenriched (S)-N-benzoxyalanine \(n \)-butyl ester but with modest optical purity.\(^{218}\)

Lipases from porcine pancreas (PPL) and from Aspergillus niger are uniquely suited for oxazolone hydrolysis since they catalyze the ring-opening reaction with a high degree of enantioselectivity. Moreover, these lipases exhibited opposite stereochemical preference, thus providing access to both enantiomers of N-benzoxyl
amino acids 237 and ent-237 in excellent chemical and optical yields. Although both lipases retained their chiral preference with variation of the C-4 substituent, the reaction rate and the degree of enantioselectivity varied markedly depending on the nature of the substituents \(^{219,220}\) and on the solvent used. \(^{221}\) For substrates with limited steric hindrance, the hydrolysis proceeded with moderate to good selectivities, but the reaction rate decreased for substrates bearing bulky C-4 substituents. More importantly, dynamic resolution is achieved owing to the low pK\(_a\) values of the C-4 proton. Thus, when the hydrolysis is conducted near the pH optimum of the lipase, in situ racemization is sufficient to ensure complete transformation of the substrate (Scheme 7.74).

![Scheme 7.74](image)

An elegant method to suppress the undesired spontaneous hydrolysis of a 5(4\(H\))-oxazolone in aqueous media uses a lipase-catalyzed alcoholysis reaction. Of particular importance is the synthesis of tert-leucine, \(^{222}\) a non-proteinogenic \(\alpha\)-amino acid that has found widespread use both as a chiral auxiliary and as a component of potentially therapeutic pseudopeptides. Racemic 4-tert-butyl-2-phenyl-5(4\(H\))-oxazolone 238 was submitted to \(Mucor\ mihei\) catalyzed alcoholysis using butanol as a nucleophile. Addition of a catalytic amount of triethylamine promoted in situ racemization. In this way, the enantiomerically pure butyl ester of (S)-N-benzoyl-tert-leucine 239 was obtained in excellent yield (Scheme 7.75).

![Scheme 7.75](image)

The preparation of protected derivatives of \(\nu\)-allo- and \(l\)-allo-threonine by enzymatic hydrolysis of 5(4\(H\))-oxazolones using hog kidney acylase has also been described. \(^{225}\) This methodology has been extended to a wide variety of amino acids and, at present, constitutes a general procedure to prepare non-quaternary amino acids in enantiomerically pure form. \(^{224–227}\) For example, racemic \(N\)-ethoxycarbonyl-2-amino-1-butanol, rac-240 was resolved via kinetic resolution using \(M.\ miehei\). In this case, 2-phenyl-5(4\(H\))-oxazolone 146 was used as a convenient derivatizing agent to afford 241, a precursor of Ethambutol as shown in Scheme 7.76. \(^{228}\)
Although 5(4H)-oxazolones have been considered too unstable stereochemically for use in peptide synthesis, it has been shown229 that they function as acyl donors in protease-catalyzed segment condensations. This methodology represents an interesting approach to prepare peptides containing acidic amino acids. As an example, \(\alpha\)-chymotrypsin reacts with the oxazolone ring of a peptide fragment to generate an acyl-enzyme intermediate. This activated intermediate then couples with an amino acid or with the N-terminus of another peptide chain to afford the corresponding oligopeptide. A limitation of this methodology occurs if hydrolysis of the acyl-enzyme intermediate is competitive with the coupling reaction.

7.3.2.2. Aminolysis with Amines

By far the most important ring-opening reaction using nitrogen nucleophiles is that using amino acids and this will be considered in Section 7.3.2.3. Apart from this very important case, other nitrogen nucleophiles have been used to prepare compounds of particular interest and some examples have been reported. The general aminolysis reaction is shown in Scheme 7.77 and has been applied to the synthesis of numerous compounds. For example, \(N,N\)-disubstituted amides of \(\alpha\)-methyltryptophan were synthesized by nucleophilic ring opening of the corresponding oxazolone.230 Acetamidopiperidines were prepared from 4-aminopiperidines and 2-phenyl-5(4H)-oxazolones and the resulting products have been shown to reduce blood pressure.231 2-(4-Nitrophenyl)-4-substituted-5(4H)-oxazolones were ring opened with thiosemicarbazides to prepare compounds with potential antitumor activity.232 Herbicidal benzenesulfonylcarboxamides were prepared by ring-opening oxazolones with \(p\)-toluenesulfonamide.233 Finally, ring opening of 2-(4-nitrophenyl)-4-substituted-5(4H)-oxazolones with bis(2-chloroethyl)amine afforded potential antitumor agents.234 2-Phenyl-5(4H)-oxazolone has been also used as an acylating agent for nitrogen-containing heterocycles.235

Nucleophilic ring opening of 2-phenyl-5(4H)-oxazolone 146 with (1S, 2R)-1-aminoindan-2-ol provides an amido alcohol that, upon treatment with
2-methoxypropene affords 243, a versatile chiral glycine enolate equivalent. Alkylation of 243 with a variety of alkyl halides gives the corresponding amino acid derivatives with 90–99% diastereoselectivity (Scheme 7.78). \(^{236}\)

![Scheme 7.78](image)

Ring opening of a 4-(hydroxyalkyl)-substituted oxazolone using dimethylamine gives an amide 245 that can be used as an intermediate in a subsequent intramolecular cyclization to prepare lactones 247 (Scheme 7.79). \(^{237}\)

![Scheme 7.79](image)

In some cases, ring opening of oxazolones and subsequent cyclization of the intermediate leads to new heterocyclic systems. For example, reaction of saturated 5(4\(H\))-oxazolones with hydrazonoyl halides under phase-transfer conditions yields the 5-pyrazolones 249. \(^{238}\) Ring opening of 248 with 2-aminothiophenol generates benzothiazoles 250 (Scheme 7.80). \(^{239}\)

![Scheme 7.80](image)
It was also reported240 that the reaction of 4,4-disubstituted-2-(trifluoromethyl)-5(4\,H\)-oxazolones 251 with 2,2-dimethyl-3-(dimethylamino)-2\,H-azirine afforded 5-(dimethylamino)-3,6-dihydropyrazin-2(1\,H)-ones 252 (Scheme 7.81). In this case, the reaction only occurs when electron-withdrawing substituents are present at C-2 of the oxazolone.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\text{Ph} \quad \text{R}}; \node (b) at (1,0) {\text{N}}; \node (c) at (2,0) {\text{Me}}; \node (d) at (3,0) {\text{Me}}; \node (e) at (4,0) {\text{N}}; \node (f) at (5,0) {\text{Me}};
\draw (a) -- (b) -- (c) -- (d) -- (e) -- (f);
\end{tikzpicture}
\end{center}

\textbf{Scheme 7.81}

Several papers have described attempted ring opening of an oxazolone with chiral amines to achieve stereoselective reactions. For example, a chiral bornyl-amine effected ring opening of racemic oxazolones to produce enantioenriched (S)-\text{N-acylamino acid bornylamides}.241 Ring opening of 4-isopropyl-, 4-sec-butyl- and 4-benzyl-5(4\,H)-oxazolones with (S)-phenylethylamine also produced some degree of chiral induction.242–244 In these cases, the reaction rate and the extent of chiral induction depended on the solvent and on the oxazolone substituent. Mechanistically, the authors attributed the results to involve neutral or ionic species.

\textbf{7.3.2.3. Aminolysis with Amino Acid Derivatives}

Amino acids have been used as nucleophiles to effect the ring opening of saturated 5(4\,H)-oxazolones 253 as a coupling method in an attempt to describe a general procedure for peptide synthesis (Scheme 7.82). However, the problems arising from racemization, that is, when a proton is present at C-4 of the oxazolone, render this procedure of limited synthetic utility.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\text{R}_2 \quad \text{CO}_2 \text{R}_4}; \node (b) at (1,0) {\text{H}}; \node (c) at (2,0) {\text{R}_3 \quad \text{H}}; \node (d) at (3,0) {\text{R}_4 \quad \text{R}_3}; \node (e) at (4,0) {\text{R}_3 \text{CONH}_2 \text{CO}_2 \text{R}_4};
\draw (a) -- (b) -- (c) -- (d) -- (e);
\end{tikzpicture}
\end{center}

\textbf{Scheme 7.82}

On the other hand, there have been several attempts to achieve some degree of asymmetric induction during the ring opening of racemic oxazolones with protected chiral amino acids. In these cases the influence of the solvent, temperature and, in general, the experimental conditions, has been studied extensively.245–248 Although some degree of asymmetric induction has been achieved in most cases, this methodology can not be considered as a general procedure for the stereoselective
synthesis of peptides. Nevertheless, the diastereoisomers obtained from the reaction of oxazolones with chiral amino acid derivatives are readily separated using high-performance liquid chromatography (HPLC), a fact that makes this technique suitable for the determination of enantiomeric ratios.249

Alternatively, oxazolones have been used as reagents to activate and to couple N-protected dicarboxylic amino acids wherein the carboxylate moiety acts as the nucleophile. For example, 2,4-dimethyl-5(4\textit{H})-oxazolone 255 reacts with \textit{N}-benzyloxycarbonyl-L-aspartic acid to give a mixture of the anhydrides 256 and 257. Subsequent reaction of 256 and 257 with phenylalanine methyl ester hydrochloride and \textit{N}-methylmorpholine produces a mixture of the \textit{\alpha}-isomer 258 and \textit{\beta}-isomer 259 of \textit{N}-benzyloxycarbonyl-aspartylphenylalanine methyl ester (Scheme 7.83).250

![Scheme 7.83](image)

Racemization is not encountered when 4-unsubstituted-5(4\textit{H})-oxazolones or 4,4-disubstituted-5(4\textit{H})-oxazolones are used as reagents. Indeed, 4-unsubstituted-5(4\textit{H})-oxazolones function as glycine synthons in the synthesis of \textit{N}-acylglycyl-\textit{\alpha}-amino acids. For example, aminolysis of 2-(trifluoromethyl)-5(4\textit{H})-oxazolone with \textit{\alpha}-methylphenylalanine affords \textit{N}-(trifluoroacetyl)glycyl-\textit{\alpha}-methylphenylalanine.251

4,4-Disubstituted-5(4\textit{H})-oxazolones, readily available by alkylation of the monosubstituted derivatives, are very useful intermediates in the synthesis of peptides that incorporate \textit{\alpha},\textit{\alpha}-disubstituted amino acids. As an example, 4-(aryl-methyl)-2-phenyl-4-(trifluoromethyl)-5(4\textit{H})-oxazolones 260 are key intermediates
in the synthesis of peptides that incorporate \(\alpha \)-(trifluoromethyl)amino acids 261 (Scheme 7.84).252

Modification of the properties of bioactive peptides incorporating constrained amino acids into the backbone structures has been explored in recent years. One of the best strategies to obtain good results in this area is to use an \(\alpha,\alpha \)-disubstituted amino acid, which has necessitated development of various methodologies to prepare these non-proteinogenic amino acids in enantiomerically pure form,253,254 Resolution of diastereoisomers derived from racemic \(\alpha,\alpha \)-dialkylamino acids has become a useful tool to isolate enantiomerically pure compounds. Among the different possibilities, Obrecht’s methodology, which is based on the facile separation of di- and triptides containing a phenylalanine residue and an N-acyl-\(\alpha,\alpha \)-dialkylamino acid, is particularly effective and versatile.255,256 The starting racemic 4,4-disubstituted-2-phenyl-5(4H)-oxazolones 262 are obtained from the corresponding N-benzoylamino acids through the action of an activating agent such as \(N,N \)-dicyclohexylcarbodiimide or 1,1\(^{0}\)-carbonyldimidazole. Alternatively, alkylation of a 2-phenyl-4-substituted-5(4H)-oxazolone with an electrophile in the presence of sodium hydride is also an effective synthetic strategy.111 Treatment of a dialkylated 5(4H)-oxazolone 262 with a chiral amide derived from phenylalanine provides the diastereomeric dipeptides 263 and 264 that are easily separated by crystallization or column chromatography.257 The best results are obtained when phenylalanine cyclohexylamide is used to resolve the \(\alpha,\alpha \)-dialkylamino acids. This methodology has afforded both enantiomers of \(\alpha \)-methylphenylalanine, \(\alpha \)-methylvaline, \(\alpha \)-methylphenylglycine,258 2-(aminomethyl)alanine, 2-(aminomethyl)leucine,259 \(\alpha \)-methylglutamic acid, \(\alpha \)-methylaspartic acid, \(\alpha \)-isobutylaspartic acid,260 and some \(\alpha,\alpha \)-disubstituted tyrosine analogues.261 These reactions are shown in Scheme 7.85.
The authors applied the same synthetic strategy to racemic 4-alkyl-4-(iodomethyl)-2-phenyl-5(4H)-oxazolones \(266\) and obtained a diastereomeric mixture of oxazolines \(267\) and \(268\) (Scheme 7.86). The diastereoisomers were separated chromatographically and then converted into dipeptides incorporating an \(\alpha\)-alkylserine residue.\(^{262,263}\)

![Scheme 7.86](image)

Finally, when oxazolones \(269\) bearing a carboxyalkyl chain at C-4 were used, the separation was effected on the mixture of diastereomeric succinimides \(270\) and \(271\).\(^{263}\) In this case, the resolved amino acid contains both an aspartic acid and a glutamic acid side chain (Scheme 7.87). Selected examples of amino acids that illustrate the general applicability of Obrecht’s methodology are shown in Table 7.22 (Fig. 7.24).

![Scheme 7.87](image)
7.3.2.4. Incorporation of Dialkylamino Acids into Peptides

The use of oxazolones that readily racemize as starting materials in peptide synthesis is precluded by the loss of optical purity during the coupling reactions used to prepare the oxazolones. Therefore, new reactants that prevent the formation of the oxazolone or minimize the racemization process have been developed. In the early 1960s Kenner and co-workers showed that the oxazolones obtained from \(\alpha,\alpha\)-dialkylamino acid derivatives are excellent intermediates to prepare peptides incorporating such amino acids. The process proceeds via ring opening with the appropriate nucleophile and is shown in Scheme 7.88.

Since then, this strategy, which implies the 4,4-disubstituted-5(4H)-oxazolones as intermediates, has been used extensively. In particular, for achiral analogues of 273 \((R_2 = R_3)\) the synthesis is easier.

TABLE 7.22. SUBSTITUTED AMINO ACID AMIDES VIA OBRECHT’S METHODOLOGY FOR AMINOLYSIS OF SATURATED 5(4H)-OXAZOLONES

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>(i)-Pr</td>
<td>Me</td>
<td>(S)-PhCH(_2)CONMe(_2)CH</td>
<td>80</td>
<td>257</td>
</tr>
<tr>
<td>H</td>
<td>PhCH(_2)</td>
<td>PhCH(_3)</td>
<td>(S)-PhCH(_2)CONMe(_2)CH</td>
<td>73</td>
<td>257</td>
</tr>
<tr>
<td>Me</td>
<td>4-MeOC(_6)H(_4)CH(_2)</td>
<td>Me</td>
<td>(S)-PhCH(_2)CONMe(_2)CH</td>
<td>72</td>
<td>257</td>
</tr>
<tr>
<td>Me</td>
<td>PhCH(_2)</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>78</td>
<td>257</td>
</tr>
<tr>
<td>Me</td>
<td>PhCH(_2)</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>77</td>
<td>258</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>95</td>
<td>258</td>
</tr>
<tr>
<td>Me</td>
<td>(i)-Pr</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>93</td>
<td>258</td>
</tr>
<tr>
<td>Me</td>
<td>PhCONHCH(_2)</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>80</td>
<td>259</td>
</tr>
<tr>
<td>(i)-Pr</td>
<td>PhCONHCH(_2)</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>86</td>
<td>259</td>
</tr>
<tr>
<td>Me</td>
<td>4-MeOC(_6)H(_4)CH(_2)</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>82</td>
<td>261</td>
</tr>
<tr>
<td>(i)-Pr</td>
<td>4-MeOC(_6)H(_4)CH(_2)</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>81</td>
<td>261</td>
</tr>
<tr>
<td>Ph</td>
<td>4-MeOC(_6)H(_4)CH(_2)</td>
<td>Ph</td>
<td>(S)-PhCH(_2)[CON(CH(_2)](_3)CH</td>
<td>87</td>
<td>261</td>
</tr>
</tbody>
</table>
The simplest amino acid in the series, dimethylglycine or 2-aminoisobutyric acid (Aib), has been widely studied and 4,4-dimethyl-2-substituted-5(4H)-oxazolones have been used to incorporate Aib into model small peptides and into linear oligopeptides in order to perform structural studies. Dipropylglycine (Dpg) has been incorporated into model peptides using 4,4-dipropyl-2-(trifluoromethyl)-5(4H)-oxazolone and the structures of the corresponding homooligopeptides have been studied. Similar studies have been published that involve dibenzylglycine (Dbg) and use 4,4-dibenzyl-2-(trifluoromethyl)-5(4H)-oxazolone as the starting material.

N-Acyl peptides containing an α,α-di(isopropylthio)glycine residue have also been described. These compounds were prepared as shown in Scheme 7.89. Thus, a 4,4-di(isopropylthio)-2-substituted-5(4H)-oxazolone was prepared from a 2-substituted-5(4H)-oxazolone by reaction with N-(isopropylsulfenyl)succinimide. The starting 2-substituted-5(4H)-oxazolone was prepared by cyclization of an N-acetylglycine.

It is more difficult to prepare a chiral α,α-dialkylamino acid. Nevertheless, when such analogues are incorporated into the backbone of a peptide chain, analogues with modified properties are obtained. In this context, such residues have been evaluated as a new type of conformational constraint for the synthesis of enzyme-resistant agonists and antagonists of bioactive peptides. Here, the asymmetric synthesis or the resolution of the chiral quaternary amino acid is necessary and numerous procedures, which have recently been reviewed, were developed to produce the requisite amino acids in enantiomerically pure form.

Incorporation of an α-methylamino acid into a small model peptide is achieved using oxazolone methodology. α-Methylvaline (αMe)Val and α-methylphenylalanine (αMe)Phe have been used frequently in such studies and conformational analyses of the corresponding peptides in solution and in the crystal state have been reported. A comparative study of the influence of the α-methylamino acid on conformation has also been published.

Achiral cycloalkyl quaternary amino acids have also been incorporated into model peptides using 5(4H)-oxazolones as intermediates. A comparative study between cyclic and acyclic derivatives has been described. The influence of the ring size of a homologous series from 1-aminocyclopropanecarboxylic acid to 1-aminocyclononanecarboxylic acid has been studied.
The oxidation by molecular oxygen297 or the base-catalyzed oxidative decarboxylation of saturated 5(4\textit{H})-oxazolones 278,298 yields diacylamines and provides an efficient procedure to prepare imides 279 from \textit{N}-acylamino acids (Scheme 7.90).

![Scheme 7.90](image)

Potassium superoxide in aprotic solvents has also been used as the oxidant but the resulting products depend on the substitution at C-4 of the oxazolone ring. Monosubstituted oxazolones give the corresponding imides. In contrast, with disubstituted analogues, such as 4,4-dimethyl-2-phenyl-5(4\textit{H})-oxazolone, potassium superoxide acts as a nucleophile and effects ring opening of the oxazolone to generate an \textit{N}-benzoylamino acid.299

Saturated oxazolones undergo an acylaminoacylation reaction with aromatic compounds in the presence of Lewis acids to give amino ketones. Subsequent cyclodehydration of these amino ketones then affords 2,5-diaryloxazoles. Some examples of 2,5-diaryloxazoles prepared in this manner are shown in Table 7.23 (Fig. 7.25).

The reaction also has been applied to the oxazolone derived from hippuric acid300,301 but it is particularly important for bis(oxazolones) such as 280 that are useful precursors to the bisoxazoles 281 (Scheme 7.91).302,303

<table>
<thead>
<tr>
<th>Table 7.23. 2,5-Diaryloxazoles from Reaction of Saturated 5(4\textit{H})-oxazolones with Arenes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(\text{R}_1)</td>
</tr>
<tr>
<td>4-FC\textsubscript{6}H\textsubscript{4}</td>
</tr>
<tr>
<td>4-FC\textsubscript{6}H\textsubscript{4}</td>
</tr>
<tr>
<td>4-FC\textsubscript{6}H\textsubscript{4}</td>
</tr>
<tr>
<td>4-FC\textsubscript{6}H\textsubscript{4}</td>
</tr>
</tbody>
</table>

aData from Ref. 300.
The same reaction applied to 2-styryl-5(4H)-oxazolone 282 gives simultaneous acylation and alkylation of the arene to produce the corresponding α-acylamino ketones 283. Cyclodehydration of 283 then readily affords a 2,5-disubstituted oxazole (e.g. 284 as shown in Scheme 7.92).

Wittig olefination of 5(4H)-oxazolones with triphenylphosphonium methyldene affords product mixtures that depend on the ylide and the starting oxazolone. The product mixtures can include, apart from the expected 5(4H)-oxazolylideneacetates, 5-oxazoleacetates, and other byproducts. Nevertheless, Wittig reaction of ethyl (triphenylphosphoranylidene)acetate with a 4,4-disubstituted-5(4H)-oxazolone 285 affords the corresponding ethyl 5(4H)-oxazolylideneacetates 286 in satisfactory yields (Scheme 7.93; Table 7.24, Fig. 7.26).
Heating 4-alkyl-2-substituted-5(4H)-oxazolones 287 (R₁ = Me, Ph) effects elimination of CO to generate N-acylimines 288 that rearrange to the more stable enamides 289 if an acidic α-hydrogen is present (Scheme 7.94). Representative examples of enamides prepared in this manner are shown in Table 7.25 (Fig. 7.27).

![Scheme 7.94]

TABLE 7.25. ENAMIDES FROM THERMOLYSIS OF SATURATED 5(4H)-OXAZOLONES

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>95</td>
</tr>
<tr>
<td>Me</td>
<td>H</td>
<td>Ph</td>
<td>99</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>100</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>95</td>
</tr>
<tr>
<td>i-Pr</td>
<td>H</td>
<td>Me</td>
<td>90</td>
</tr>
<tr>
<td>i-Pr</td>
<td>H</td>
<td>Ph</td>
<td>75</td>
</tr>
</tbody>
</table>

aData from Ref. 306.
However, in the presence of a quaternary α-carbon this rearrangement is precluded and the N-acylimines 288 may be isolated. Finally, pyrolysis of 4,4-dialkyl-5(4H)-oxazolones affords mixtures of N-acylimines and enamides. The composition of the mixture depends on the pyrolysis temperature. 306

The mechanism of the thermal conversion of 4-cyclopropenyl-4-substituted-5(4H)-oxazolones to pyridines has been studied. A stepwise cycloaddition of the initially generated nitrile ylide has been proposed to account for the observed products. 307

Flash vacuum pyrolysis of 2-phenyl-5(4H)-oxazolone 146 effects extrusion of carbon dioxide to produce 3-phenyl-2H-azirine 290 in moderate yield (Scheme 7.95). 308

7.3.2.6. Dimerization Reactions

Dimerization of 5(4H)-oxazolones affords two different products depending on the reaction conditions. In one case, 4-benzyl-2-phenyl-5(4H)-oxazolone 291 was converted to the pyrrolidinedione 292 with potassium carbonate followed by acidic hydrolysis (Scheme 7.96). 309

A kinetic study of the base-catalyzed dimerization of 5(4H)-oxazolones has shown that 5(4H)-oxazolones with sterically demanding or electron-donating substituents at C-2 are less prone to dimerization. 310

Dimerization can also be achieved using nickel peroxide 311,312 or through a photooxidation reaction. 313 In these cases, 4-monosubstituted-5(4H)-oxazolones 293 are converted to the corresponding 4,4'-bis(oxazolones) 294 (Scheme 7.97;
A variety of reactions involving free radical generation from such bis(oxazolones) have been described.314–317

7.3.2.7. Cycloaddition Reactions

Mesoionic oxazolones (munchnones)297 can be generated by cyclodehydration of N-substituted \(\alpha\)-amino acids295 or by alkylation of oxazolones296 (Scheme 7.98). These compounds are reactive and versatile 1,3-dipoles that undergo cycloaddition reactions with dipolarophiles to generate a variety of heterocyclic systems. In particular, this is an extremely versatile methodology to prepare pyrroles that result from elimination of carbon dioxide from the initial cycloadduct. Numerous examples have appeared in the literature in recent years and several have been selected for discussion. The reader should consult Part A, Chapter 4 for an extensive discussion and additional examples.

Table 7.26. 4,4\(^0\)-Bis(oxazolones) from dimerization of saturated 5(4\(^H\))-oxazolones

<table>
<thead>
<tr>
<th>(\text{R}_1)</th>
<th>(\text{R}_2)</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>4-MeOC(_6)H(_4)</td>
<td>> 75</td>
<td>311</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>> 75</td>
<td>311</td>
</tr>
<tr>
<td>4-ClC(_6)H(_4)</td>
<td>Ph</td>
<td>> 70</td>
<td>312</td>
</tr>
<tr>
<td>Ph</td>
<td>2-FC(_6)H(_4)</td>
<td>69</td>
<td>316</td>
</tr>
<tr>
<td>Ph</td>
<td>2-ClC(_6)H(_4)</td>
<td>66</td>
<td>316</td>
</tr>
<tr>
<td>Ph</td>
<td>4-ClC(_6)H(_4)</td>
<td>74</td>
<td>316</td>
</tr>
</tbody>
</table>
Munchones 298 obtained in situ by N-alkylation of 5(4H)-oxazolones undergo 1,3-dipolar cycloaddition with dimethyl acetylenedicarboxylate to give \(N \)-alkylpyrroles 299.\(^{318} \) 1,3-Dipolar cycloaddition of munchones with triphenylvinylphosphonium bromides affords tri- and tetrasubstituted pyrroles 300. In this case, the interaction of the phosphonium group with the carbonyl group leads to high levels of regioselectivity (Scheme 7.99; Table 7.27, Fig. 7.29).\(^{319} \)

Oxazolones\(^{320} \) react with fumarates and fumaronitrile or acrylates to afford the corresponding cycloadducts 302 or 304. These cycloadducts, in turn, rearrange to 303 and 305 depending on the substituents (Scheme 7.100).
Reaction of munchnones 306 with 2-phenylbenzazete provides a simple route to 1,3-benzodiazepines 307\(^{321}\) that thermally rearrange to the corresponding 3\(H\)-indoles 308. 1,3-Dipolar cycloaddition reactions of nitrosobenzene and munchnones give the corresponding cycloadducts 309 with a high degree of regioselectivity. Subsequent ring opening of the cycloadducts leads to a variety of substituted 1,2,4-oxadiazoline-3-carboxylic acids 310 (Scheme 7.101).\(^{322–325}\)
Cycloaddition reactions of N-(phenylmethylene)benzenesulfonamide with mesionic oxazolones 311 produces 2,5-disubstituted imidazoles 313 in a highly regioselective process via cycloreversion of cycloadduct 312 and subsequent loss of benzenesulfinic acid.

Finally, 5(4H)-oxazolones react as masked 1,3-dipoles with nitrileimines, 1-nitroso-2-naphthol and [60]fullerene to give 1,2,4-triazoles, naphth[1,2-d]-oxazoles and 5'-phenyl-2'H-pyrrolo[3',4':1,2][60]fullerene, respectively.

7.3.2.8. Reactions with Dienes and Azadienes

Reaction of oxazolones with 1-azadienes, for example, imines prepared from 3-(2-furyl)acrolein or cinnamaldehyde, affords 2-pyridones 316. Several mechanisms have been proposed to explain the formation of 316. However, products like 315 have also been isolated. The authors proposed that 315 arises from alklylation at C-4 of the oxazolone by the 1-azadiene. Subsequent nucleophilic attack by the amino group with ring opening then yields the 2-pyridone (Scheme 7.103). Representative examples of 2-pyridones prepared from 1-azadienes are shown in Table 7.28 (Fig. 7.30).
In a similar manner, aldazines afford pyridazinones 317 (Scheme 7.104). 335

1,3-Diazadienes such as 1-aryl-4-(dimethylamino)-2-phenyl-1,3-diaza-1,3-butadienes or 1-aryl-4-(dimethylamino)-2-methylthio-1,3-diaza-1,3-butadienes react with oxazolones and give rise to pyrimidin-6-ones 319 and 320 as single diastereo-

TABLE 7.28. 2-PYRIDONES FROM CYCLOADDITION REACTIONS OF SATURATED 5(4H)-OXAZOLONES WITH 1-AZADIENES

<table>
<thead>
<tr>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>R<sub>3</sub></th>
<th>R<sub>4</sub></th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>4-ClC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>Ph</td>
<td>74</td>
<td>332</td>
</tr>
<tr>
<td>Me</td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>4-ClC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>82</td>
<td>332</td>
</tr>
<tr>
<td>Me</td>
<td>4-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>72</td>
<td>332</td>
</tr>
<tr>
<td>Me</td>
<td>PhCH<sub>2</sub></td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>80</td>
<td>332</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>60</td>
<td>333</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>C<sub>6</sub>H<sub>11</sub></td>
<td>Ph</td>
<td>60</td>
<td>333</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>C<sub>6</sub>H<sub>11</sub></td>
<td>Me</td>
<td>78</td>
<td>334</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>C<sub>6</sub>H<sub>11</sub></td>
<td>Me</td>
<td>88</td>
<td>334</td>
</tr>
<tr>
<td>Me</td>
<td>PhCH<sub>2</sub></td>
<td>C<sub>6</sub>H<sub>11</sub></td>
<td>Me</td>
<td>78</td>
<td>334</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>i-Pr</td>
<td>Me</td>
<td>65</td>
<td>334</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>i-Pr</td>
<td>Me</td>
<td>72</td>
<td>334</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>T<sub>5</sub></td>
<td>Ph</td>
<td>80</td>
<td>339</td>
</tr>
</tbody>
</table>
isomers. Interestingly, 319 and 320 are formed with a reversal in stereochemistry (Scheme 7.105; Table 7.29, Fig. 7.31).336,337

Highly substituted cyclohexenones 321 are efficiently prepared from dienamines and 5(4H)-oxazolones (Scheme 7.106).338

TABLE 7.29. PYRIMIDIN-6-ONES FROM CYCLOADDITION REACTIONS OF SATURATED 5(4H)-OXAZOLONES WITH 1,3-DIAZADIENESa

<table>
<thead>
<tr>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>R<sub>3</sub></th>
<th>% Yield A</th>
<th>% Yield B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-CIC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>Ph</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Ph</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>4-CIC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>SMe</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>SMe</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>4-CIC<sub>6</sub>H<sub>4</sub></td>
<td>SMe</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

aData from Ref. 337.
Finally, reaction of 2,4-diphenyl-5(4H)-oxazolone 322 with 4-phenyl-N-tosyl-1-azabuta-1,3-diene was found to be highly dependent on the experimental conditions. At room temperature the sole product was 323 that arises from alkylation of 322 by addition at the imine carbon. However, heating 322 and 4-phenyl-N-tosyl-1-azabuta-1,3-diene gave rise to several products including a 2-pyridone 324, 2,3,6-triphenylpyridine 325, and the pentasubstituted pyrroles 326 and 327. The authors postulated two different reaction mechanisms. Here, both a 1,3-dipolar cycloaddition of the oxazolone and a nucleophilic addition of the oxazolone are possible and that may account for the formation of 324–327. The marked differences in reactivity of 4-phenyl-N-tosyl-1-azabuta-1,3-diene relative to N-alkyl- or N-aryl-1-aza-1,3-dienes was attributed to the powerful electron-withdrawing nature of the tosyl group (Scheme 7.107).

Much effort has been invested to use oxazolones as intermediates for the synthesis of polymers. Probably the most important group of oxazolones used for this purpose is the 2-alkenyl-4,4-disubstituted-5(4H)-oxazolones. The reactivity of the exocyclic double bond at C-2 can be exploited to prepare new functionalized oxazolones as well as for copolymerization with other monomers. This possibility, together with the facile ring opening with nucleophiles, has opened very interesting routes to new polymers of industrial interest.

7.3.2.9. Polymerization Reactions
4,4-Dimethyl-2-vinyl-5(4H)-oxazolone (VDMO) 140 and 4,4-dimethyl-2-isopropenyl-5(4H)-oxazolone 328 have been extensively investigated as monomers (Fig. 7.32). Copolymerization of 140 or 328 with other monomers, for example, acrylates or acrylamides produces reactive polymers that are conveniently further modified by nucleophilic reaction with alcohols, amines, or other nucleophiles. 340–383

The preparation of 2-(4-alkenylphenyl)-4,4-disubstituted-5(4H)-oxazolones 384 and their use as monomers has also been reported. 385

The second group of saturated 5(4H)-oxazolones used as intermediates for polymer synthesis are the 2,2'-bis(oxazolones) with 2,2'-bis[4,4-dimethyl-5(4H)-oxazolone] 329 being the simplest member of the series (Fig. 7.33). These compounds, are prepared by cyclization of the corresponding bis(amino acids) and give a wide variety of polymers after ring opening with diamines, dialcohols or other nucleophiles. The physical chemical properties of these polymers depend on the nature of the substituents and the size of the chain. Some selected references describe representative examples. 386–396

Alternatively, a spacer can be inserted between the heterocyclic rings to further modify the properties of the polymer. Although various spacers have been used, aromatic rings are probably the most frequently employed. In this case, 2,2'-(p-phenylene)bis[4,4'-dimethyl-5(4H)-oxazolone] 330 is the most common monomer (Fig. 7.34). Again, representative examples are described in selected references. 397–405

7.3.2.10. Organometallic Complexes

As multifunctional compounds, 5(4H)-oxazolones can act as ligands and, as such, they provide interesting organometallic transition metal complexes depending
upon the coordination mode of the 5(4H)-oxazolone to the metal atom. Reaction of \([n\text{-Bu}_3\text{PMCl}_2]_2\) with 2-phenyl-4-substituted-5(4H)-oxazolones 331 generates the corresponding palladium(II) and platinum(II) complexes 332 (Scheme 7.108). 406

When phenylene- and ethylene-bridged bis(oxazolones) are used as ligands, dinuclear palladium(II) and platinum(II) 333, 334, and 335 complexes are obtained (Fig. 7.35). 407 In some cases, the close proximity of the ortho phenyl-H-atom to the metal rendered these complexes suitable precursors for ortho metalation.

Figure 7.35. Dinuclear palladium(II) and platinum(II) complexes with phenylene- and ethylene-bridged bis(oxazolone) ligands.
If the anion of 2-(2’-hydroxyphenyl)-5(4H)-oxazolone 336 is used as a ligand, bis-chelate complexes 337 of copper(II), nickel(II), and zinc(II) have been prepared from the corresponding metal acetates. Alternatively, 336 and 2-(2’-aminophenyl)-5(4H)-oxazolone 340 can act as ligands with metals including palladium(II), platinum(II), ruthenium(II), nickel(II), and copper(II) to produce a variety of structurally diverse complexes 338, 339, and 341 as shown in Schemes 7.109 and 7.110.407

4-Alkyl-2-phenyl-5(4H)-oxazolones 342 react with the chloro-bridged iridium(III) complex \([\eta^5-C_5Me_5]IrCl_2\] to give cyclometalated mononuclear complexes 343.

\[
\text{MAc}_2 \\
\text{M} = \text{Ni, Cu, Zn}
\]

![Scheme 7.109](image)

![Scheme 7.110](image)
The same iridium(III) complex also reacts with 2-phenyl-5(4H)-oxazolone 146 to give dinuclear complexes 344 (Scheme 7.111). Anions of 2-phenyloxazolones 345 add to the π ligands of iron and chromium complexes, for example, [(η^5-C₅H₅)Fe(CO)_3]^+ and [(η^7-C₇H₇)Cr(CO)_3]^+ to give new organometallic complexes 346 and 347 (Scheme 7.112).
Ferrocenoylamino acids have been converted into 2-ferrocenyl-5(4H)-oxazolones 348 and 350 that act as N donors in palladium, platinum, and iridium complexes. Reaction of 348 with chloro-bridged palladium(II) and platinum(II) complexes affords a series of N-coordinated oxazolone complexes 349. Reaction of the unsubstituted 2-ferrocenyl-5(4H)-oxazolone 350 with the chloro-bridged iridium(III) complex \([([\eta^5-C_5Me_5]IrCl_2)_2]_2\) produces a dinuclear complex 351, analogous to that obtained from 2-phenyl-5(4H)-oxazolone (Scheme 7.113).

\[
\begin{array}{c}
\text{Fe} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{R}_1 \\
\text{M} \\
\text{P}(\text{R}_2)_3 \\
\text{Cl} \\
\end{array}
\quad \quad \quad \quad
\begin{array}{c}
\text{Fe} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{R}_1 \\
\text{M} \text{Cl} \\
\text{P}(\text{R}_2)_3 \\
\end{array}
\]

Scheme 7.113

7.3.3. Structural Analysis

A number of systematic structural analyses have been described for families of saturated oxazolones. First, as mentioned previously, detailed studies of \(^1\text{H}\) NMR long-range coupling in 2,4-disubstituted-5(4H)-oxazolones and in 5(2H)-oxazolones have been reported.\(^{11}\) Similarly, detailed \(^1\text{H}\) NMR studies of the kinetics of racemization of 2,4-disubstituted-5(4H)-oxazolones have been performed.\(^{12}\) A theoretical study of the spectral-luminescence properties of some 4-alkyl-2-phenyl-5(4H)-oxazolones has been reported\(^ {410}\) and an investigation of the infrared (IR) and Raman spectra of 5(4H)-oxazolones, particularly of the carbonyl group vibration, has been reported.\(^ {411}\) Electron impact mass spectra of saturated 5(4H)-oxazolones have been published.\(^ {412}\) More recently this technique has been used to distinguish between the stereoisomers of some spirocyclopropane oxazolones 352 (Fig. 7.36).\(^ {413}\) Finally, several studies of the HPLC behavior of 5(4H)-oxazolones complete a general view for this family of compounds.\(^ {414,415}\)
During the last 20 years, X-ray analyses of several saturated 5(4H)-oxazolones have been performed. Most of the compounds studied are 5(4H)-oxazolones derived from N-acylamino acids and, in particular, from quaternary amino acids since these compounds possess excellent chemical stability and high crystallinity. For example, the X-ray structure of 2-(4-bromophenyl)-4,4-dimethyl-5(4H)-oxazolone, derived from N-2-(4-bromobenzoylaminoisobutyric acid, 2-(4-bromophenyl)-4,4-diphenyl-5(4H)-oxazolone, derived from N-2-(4-bromobenzoyl)diphenylglycine, 2-(4-bromophenyl)-4-ethyl-4-methyl-5(4H)-oxazolone, derived from N-2-(4-bromobenzoyl)isovaline, and 2-(4-chlorophenyl)-4-(2-cyclohexen-1-yl)-4-phenyl-5(4H)-oxazolone have been reported. In general, the ring system of such 4,4-disubstituted-5(4H)-oxazolones is nearly planar and the two carbons at C-4 are displaced on the opposite sides of the average plane of the ring. It is noteworthy that the C–N bond length corresponds to a C=C bond that indicates that this bond is not conjugated with the carbonyl group of the oxazolone moiety. On the other hand, electron delocalization through the C=C=C group of the oxazolone moiety is small, although it is still significant.

X-ray crystal structures for spirooxazolones including 4-spirocyclopropane 353 (n = 1, R2 = H), 4-spiro-(phenyl)cyclopropane 353 (n = 1, R2 = Ph), 4-spiro-(triphenyl)cyclopropane, 4-spiro-(pivaloyloxy)cyclopropane 353 [n = 1, R2 = PivO (Piv = pivaloyl)], 4-spirocyclopropane 353 [n = 3, R2 = H], 4-spirocyclopentane 353 [n = 4, R2 = H], 4-spiro-(2,2,4,4-tetramethyl-3-oxyl-3-aza)cyclohexane, substituted 4-spirocyclohexane, substituted 4-spirocyclohexene, substituted 4-spirobicyclo[2.2.1]heptene 354 [n = 1, R2 = (S)-2,2-dimethyl-1,3-dioxolan-4-yl], and substituted 4-spirobicyclo[2.2.2]octene 354 [n = 2, R2 = (S)-2,2-dimethyl-1,3-dioxolan-4-yl] have been determined (Fig. 7.37). The X-ray data for the oxazolone moiety of these compounds did not show striking differences from other 4,4-disubstituted-5(4H)-oxazolones.

Figure 7.36. A spirocyclopropane 5(4H)-oxazolone studied by mass spectrometry.

Figure 7.37. General structure of spirocyclic 5(4H)-oxazolones analyzed by X-ray crystallography.
Crystal structures of the 2-alkoxy-5(4H)-oxazolones investigated 355 (Fig. 7.38) indicate that the oxazolone ring is also nearly planar with bond distances and bond angles similar to those of 2-alkyl-5(4H)-oxazolones.433,434 However, 355 do have a shorter (C-2)—O distance that indicates a slightly more effective intraring electron delocalization. In these compounds the lone pair of the exocyclic oxygen on C-2 is properly positioned for effective interaction with the C=N π-system and the length of the exocyclic C—O bond is shorter than that expected for an sp² single bond.

Finally, crystal structures of 5(4H)-oxazolones 356 obtained from peptides containing C-terminal 2-aminoisobutyric acid,435,436 isovaline,437,438 phenylalanine,439 α-methylphenylalanine,440 or α-methylleucine441 residues have been discussed (Fig. 7.39). In these compounds the conformation of the amino acid preceding that involved in the ring system is generally not helical even if this residue is a strong helix former. This may result from the minimization of intramolecular interactions between the atoms of the oxazolone ring, which is nearly planar, and those of the preceding residue.

![Figure 7.38](image1.png)

Figure 7.38. General structure of 2-alkoxy-5(4H)-oxazolones analyzed by X-ray crystallography.

![Figure 7.39](image2.png)

Figure 7.39. General structure of dipeptide 5(4H)-oxazolones analyzed by X-ray crystallography.

7.4. UNSATURATED 5(4H)-OXAZOLOONES (2-OXAZOLIN-5-ONES)

Unsaturated 5(4H)-oxazolones have been well known for many years and new examples are constantly described every year in specialized organic journals. In general, a wide variety of substituted unsaturated oxazolones have been prepared and many applications have been described for these compounds (Fig. 7.40).
Figure 7.40. Structurally diverse unsaturated 5(4H)-oxazolones and their applications.

Unsaturated 5(4H)-oxazolones have been studied as ultraviolet (UV)-absorbing layers, as fungicides, and as antibacterial agents. For example, 4-(3-phenoxybenzylidene)-2-substituted-5(4H)-oxazolones have been prepared and used as herbicides and fungicides. Many other applications have been described for these compounds and the list is so extensive that it is impossible to cover each example here. Nevertheless, it is noteworthy that appropriately substituted 4-arylidene-5(4H)-oxazolones have been reported as organic luminophores and electrophotographic light-sensitive materials, respectively. The use of apocarotenoid derivatives such as as monomolecular films has also been described.

For new materials, a number of water-insoluble oxazolones have been used for dyeing or printing synthetic fibers and, in this context, 4-(pyren-1-ylmethylene)-2-substituted-5(4H)-oxazolones, prepared from pyrene-1-carboxaldehyde, have
been used as dyes for polyester fibers. Applications of unsaturated 5(4H)-oxazolones, for example, as organic nonlinear optical materials have also been described.

Unsaturated 5(4H)-oxazolones have also been used as intermediates to prepare analogues with diverse biological activities. For example, the oxazolone derived from 4-biphenylcarboxaldehyde is a synthetic precursor of the antiinflammatory agent 4-biphenylacetic acid. In addition, 2-substituted oxazolones derived from 2-thioarylbenzaldehydes are starting materials for the preparation of dibenzothiepine derivatives that are useful to treat schizophrenia. Other oxazolones have been used as intermediates to prepare insecticides and acaricides.

7.4.1. Synthesis

7.4.1.1. From N-Acylglycines and Carbonyl Compounds

The first procedure to prepare unsaturated 5(4H)-oxazolones was the Erlenmeyer synthesis that was described more than one hundred years ago and is still used extensively with some variations in the experimental conditions. In general, the reaction employs an acylamino acid, for example, N-acetyl- or N-benzoylglycine are the most common, and a carbonyl compound, usually an aldehyde, in the presence of a cyclodehydrating agent such as acetic anhydride (Scheme 7.114).

Heterocyclic aldehydes have been used as the carbonyl component and yield the corresponding 4-(heteroarylmethylene)-2-substituted-5(4H)-oxazolones that are also valuable synthetic intermediates. Examples of (heteroarylmethylene)-5(4H)-oxazolones of particular interest that have been synthesized include oxazolones derived from furfural, pyrazolecarboxaldehyde, and chromonecarboxaldehyde. Indole-containing oxazolones are of special interest owing to the
diverse biological and pharmacological properties and numerous derivatives have been prepared and studied.472–476

A limited number of references have appeared that use ketones as the carbonyl component. The first example reported477 that acetophenones condense with N-benzoylglycine under Erlenmeyer conditions to afford a mixture of (Z- and (E-)unsaturated 5(4H)-oxazolones 364 and 365 in which the (Z)-isomer 364 is the major compound, obtained in moderate to good stereoselectivity (Scheme 7.115). The pure (Z) isomer was obtained by recrystallization of the mixture.

\begin{equation}
\text{Me} + \text{CO}_2\text{H} \underset{\text{NaOAc}}{\xrightarrow{\text{Ac}_2\text{O}}} \begin{array}{c}
\text{R}_1 \\
\text{NHCOPh}
\end{array}
\begin{array}{c}
\text{Me} \\
\text{O}
\end{array} + \begin{array}{c}
\text{R}_1 \\
\text{O}
\end{array} + \begin{array}{c}
\text{Me} \\
\text{O}
\end{array} \quad (Z \text{ isomer}) \quad (E \text{ isomer})
\end{equation}

\textbf{Scheme 7.115}

In the second study, diketones were used as electrophiles and reacted with N-benzoylglycine to give a (Z/E) mixture of oxazolones 366 and 367 derived from condensation at the less hindered carbonyl group of the 1,2-dicarbonyl compound (Scheme 7.116). The (E)-isomers 367 were used as starting materials to prepare (Z)-5-alkylidene-3-(benzoylamino)-2(5H)-furanones 368.478

\begin{equation}
\text{O} \quad \text{CO}_2\text{H} \underset{\text{NaOAc}}{\xrightarrow{\text{Ac}_2\text{O}}} \begin{array}{c}
\text{R}_1 \\
\text{NHCOPh}
\end{array}
\begin{array}{c}
\text{O} \\
\text{R}_2
\end{array} + \begin{array}{c}
\text{R}_1 \\
\text{O}
\end{array} + \begin{array}{c}
\text{R}_2 \\
\text{O}
\end{array} \quad (Z \text{ isomer}) \quad (E \text{ isomer})
\end{equation}

\textbf{Scheme 7.116}

Mechanistic studies of the Erlenmeyer reaction suggest that the reaction proceeds through initial rapid and reversible formation of the saturated oxazolone followed by an aldol condensation of the latter with the carbonyl compound and subsequent dehydration.479
The classical experimental conditions of the Erlenmeyer synthesis use anhydrous sodium acetate and acetic anhydride to effect cyclodehydration. However, many other reagent combinations have been used to improve the yield and the stereoselectivity of the reaction. With these aims in mind, zinc acetate, trimethylsilyl chloride, trimethylsilylacetamide, and a mixture of alumina–boric acid in the presence of acetic anhydride have also been used. Diethyl pyrocarbonate or haloiminium salts, such as N,N-dimethylchloro-sulfite methaniminium chloride or 2-chloro-1,3-dimethylimidazolium chloride have also been described as suitable cyclodehydrating agents. Ion-exchange resins, potassium fluoride and alumina and zeolites under mild conditions are examples of heterogeneous catalysts to prepare unsaturated 5(4H)-oxazolones. Interestingly, microwave accelerated condensations using DCC and dimethylacetamide (DMA) are reported to furnish 4-arylidene-2-phenyl-5(4H)-oxazolones in better yields than simply heating the reagents. A variety of 5(4H)-oxazolones prepared via the Erlenmeyer synthesis are shown in Table 7.30 (Fig. 7.41).

Since most procedures afford the more stable (Z)-isomer, some attention has been focused to find specific methods to generate the (E)-isomer. Among these

| Table 7.30. Synthesis of Unsaturated 5(4H)-Oxazolones from N-Acylglycines and Carbonyl Compounds |
|---|------------|-------------|---------------|-----------------|-----------------|
| R₁ | R₂ | R₃ | Cyclodehydrating Agent | % Yield | Reference |
| H | 2-NO₂C₆H₄ | Me | Ac₂O/NaOAc | 63 (Z + E) | 465 |
| H | Ph | Me | zeolite-HY | 73 | 488 |
| H | 4-AcOC₆H₄ | Me | zeolite-HY | 70 | 488 |
| H | 3,4-(MeO)₂C₆H₃ | Me | zeolite-HY | 78 | 488 |
| H | Ph | Ph | zeolite-HY | 80 | 488 |
| H | 4-Me₂NC₆H₄ | Ph | zeolite-HY | 85 | 488 |
| H | 3-MeO-4-HOC₆H₃ | Ph | zeolite-HY | 72 | 488 |
| H | CF₃MeCH | Ph | Zn(OAc)₂ | 100 (Z + E) | 480 |
| H | 5-ethoxycarbonylmethylfur-2-yl | Ph | Ac₂O/NaOAc | 70 | 468 |
| H | thien-2-yl | Ph | ion-exchange resin | 38 | 486 |
| H | 5-nitrothien-2-yl | Ph | ion-exchange resin | 62 | 486 |
| H | fur-2-yl | Ph | ion-exchange resin | 71 | 486 |
| H | 5-nitrofur-2-yl | Ph | ion-exchange resin | 77 | 486 |
| Me | Ph | Ph | Ac₂O/Pb(OAc)₂ | 46 | 477 |
| Me | 4-MeC₆H₄ | Ph | Ac₂O/Pb(OAc)₂ | 38 | 477 |
| Me | 4-ClC₆H₄ | Ph | Ac₂O/Pb(OAc)₂ | 40 | 477 |
| Me | MeCO | Ph | Ac₂O/Pb(OAc)₂ | 36 | 478 |
| Me | EtCO | Ph | Ac₂O/Pb(OAc)₂ | 25 | 478 |
| Me | PhCO | Ph | Ac₂O/Pb(OAc)₂ | 86 | 478 |
procedures isomerization using hydrobromic acid,\cite{477} polyphosphoric acid,\cite{491} or irradiation through a pyrex filter with a 450 W medium pressure mercury arc lamp\cite{492} are the most noteworthy (Scheme 7.117). Representative examples are shown in Table 7.31 (Fig. 7.42).

Other electrophiles such as succinic anhydride,\cite{493} imines,\cite{494} or 2-(2-amino-methylene)-3-indolinones\cite{495} have also been used to prepare 5(4H)-oxazolones.

7.4.1.2. From Other N-Acylamino Acid Derivatives and Glycine Equivalents

Other amino acid precursors have been used as starting materials in the Erlenmeyer reaction. A classical reaction of oxazolones is ring opening to give dehydroamino acid derivatives but there are a number of examples when the reverse reaction has been exploited including cyclizations of N-benzoyl-\(\alpha,\beta\)-dehydrophenylalanine,\cite{496} \(\alpha\)-(acetylamino)cinnamic esters,\cite{497} and 2-(acylamino)-2-alkenamides (Scheme 7.118).\cite{498}

TABLE 7.31. UNSATURATED (E)-5(4H)-OXAZOLONES VIA ISOMERIZATION OF UNSATURATED (Z)-5(4H)-OXAZOLONES

<table>
<thead>
<tr>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>R<sub>3</sub></th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Ph</td>
<td>Ph</td>
<td>90</td>
<td>491</td>
</tr>
<tr>
<td>H</td>
<td>2-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>90</td>
<td>491</td>
</tr>
<tr>
<td>H</td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>96</td>
<td>491</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>90</td>
<td>477</td>
</tr>
<tr>
<td>Me</td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>90</td>
<td>477</td>
</tr>
<tr>
<td>Me</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>92</td>
<td>477</td>
</tr>
<tr>
<td>Me</td>
<td>4-ClC<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>89</td>
<td>477</td>
</tr>
<tr>
<td>Me</td>
<td>4-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>85</td>
<td>477</td>
</tr>
</tbody>
</table>

Unsaturated 5(4H)-Oxazolones (2-Oxazolin-5-ones)\cite{213}

Figure 7.42

![Diagram](image1)

Scheme 7.117

Other electrophiles such as succinic anhydride,\cite{493} imines,\cite{494} or 2-(2-amino-methylene)-3-indolinones\cite{495} have also been used to prepare 5(4H)-oxazolones.
When β-arylserines rather than glycine are used as the starting amino acid, cyclization occurs concomitant with dehydration to afford the corresponding unsaturated 5(4H)-oxazolone.499

Iminophosphoranes derived from readily available α-azidocinnamates react with aroyl chlorides to give the corresponding 2-aryl-4-arylidene-5(4H)-oxazolones 372.500,501 Alternatively, these iminophosphoranes are converted to the corresponding 2-arylamino-4-arylidene-5(4H)-oxazolones 373 via heterocyclization of an intermediate carbodiimide as shown in Scheme 7.119 (Table 7.32, Fig. 7.43).502,503
Isocyanides have also been used to prepare unsaturated 5(4H)-oxazolones and they are particularly useful for the synthesis of 4-(aminomethylene)-5(4H)-oxazolones 374. For instance, cyclization of an unsaturated isocyanide obtained from condensation of alkyl isocyanatoacetates and lactam acetals has been reported (Scheme 7.120). 504

![Scheme 7.120](image)

Reaction of methyl 3-(dimethylamino)-2-isocyanoacrylate (R₁ = Me) with acyl chlorides gave 2-acyl-4-(dimethylaminomethylene)-5(4H)-oxazolones 375. 505 The same reaction with arenesulfenyl chlorides gave either 2-arylthio-4-(dimethylaminomethylene)-5(4H)-oxazolones 376 or an unsaturated 5(4H)-oxazolone 377 containing an imidazole at C-2 depending on the substitution present in the arenesulfenyl chloride. Nitroarenesulfenyl chlorides favored 376. 506, 507 Selected examples of 372, 375, and 376 are shown in Table 7.33 (Fig. 7.44; Scheme 7.121).

4-(Dimethylaminomethylene)-5(4H)-oxazolones 378 can also be obtained directly from N-acylamino acids, 508 N-acylamino esters, 509 or N-acylamino

![Scheme 7.121](image)
amides using the Vilsmeier reagent. In some cases ring opening followed by nitrosation of the intermediate \(\alpha,\beta \)-didehydroamino acid derivative affords the corresponding alkyl 5-substituted-1,2,4-oxadiazole-3-carboxylate (Scheme 7.122; Table 7.34, Fig. 7.45).

![Chemical Structure](image)

Figure 7.44

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(Y)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-MeC(_6)H(_4)</td>
<td>N=PPh(_3)</td>
<td>4-NO(_2)C(_6)H(_4)</td>
<td>4-NO(_2)C(_6)H(_4)</td>
<td>78–82</td>
<td>501</td>
</tr>
<tr>
<td>2-MeOC(_6)H(_4)</td>
<td>N=PPh(_3)</td>
<td>4-MeC(_6)H(_4)</td>
<td>4-MeC(_6)H(_4)</td>
<td>78–82</td>
<td>501</td>
</tr>
<tr>
<td>3,4-(MeO)(_2)C(_6)H(_3)</td>
<td>N=PPh(_3)</td>
<td>Ph</td>
<td>Ph</td>
<td>78–82</td>
<td>501</td>
</tr>
<tr>
<td>3,4-(MeO)(_2)C(_6)H(_3)</td>
<td>N=PPh(_3)</td>
<td>4-ClC(_6)H(_4)</td>
<td>4-ClC(_6)H(_4)</td>
<td>78–82</td>
<td>501</td>
</tr>
<tr>
<td>Me(_2)N</td>
<td>NC</td>
<td>Me</td>
<td>Me</td>
<td>not described</td>
<td>505</td>
</tr>
<tr>
<td>Me(_2)N</td>
<td>NC</td>
<td>Ph</td>
<td>Ph</td>
<td>not described</td>
<td>505</td>
</tr>
<tr>
<td>Me(_2)N</td>
<td>NC</td>
<td>2-NO(_2)-4ClC(_6)H(_3)</td>
<td>2-NO(_2)-4ClC(_6)H(_3)</td>
<td>78–82</td>
<td>506</td>
</tr>
<tr>
<td>Me(_2)N</td>
<td>NC</td>
<td>2-NO(_2)C(_6)H(_4)</td>
<td>2-NO(_2)C(_6)H(_4)</td>
<td>78–82</td>
<td>506</td>
</tr>
<tr>
<td>Me(_2)N</td>
<td>NC</td>
<td>2,4-(NO(_2))(_2)C(_6)H(_4)</td>
<td>2,4-(NO(_2))(_2)C(_6)H(_4)</td>
<td>78–82</td>
<td>506</td>
</tr>
</tbody>
</table>

Table 7.33. Synthesis of unsaturated 5(4H)-oxazolones via cyclization of \(\alpha,\beta \)-unsaturated iminophosphoranes or \(\alpha,\beta \)-unsaturated isocyanides

![Scheme 7.122](image)
7.4.1.3. From Other Unsaturated 5(4H)-Oxazolones

There are cases in which appropriate modification of one unsaturated oxazolone yields a new unsaturated oxazolone analogue. Most of the examples described in the literature involve modification of the substituent on the exocyclic double bond. For example, a series of 4-[2-hydroxy-3-(aminomethyl)benzylidene]-5(4H)-oxazolones \(382\) that were evaluated for bactericidal and fungicidal activities were obtained from Mannich reaction of 4-(2-hydroxybenzylidene)-5(4H)-oxazolones \(381\) (Scheme 7.123).\(^{511}\)

The exocyclic double bond of 4-arylidene-5(4H)oxazolones \(383\) reacts with diazomethane in a 1,3-dipolar cycloaddition reaction to give the corresponding

TABLE 7.34. SYNTHESIS OF UNSATURATED 5(4H)-OXAZOLONES FROM N-ACYLAMINO ACID DERIVATIVES AND VILSMEIER-HAACK REAGENT

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>COX</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH=CH</td>
<td>CO(_2)H</td>
<td>77</td>
<td>508</td>
</tr>
<tr>
<td>4-MeC(_6)H(_4)CH=CH</td>
<td>CO(_2)H</td>
<td>68</td>
<td>508</td>
</tr>
<tr>
<td>2-MeOC(_6)H(_4)CH=CH</td>
<td>CO(_2)H</td>
<td>64</td>
<td>508</td>
</tr>
<tr>
<td>Ph</td>
<td>CONHPh</td>
<td>90</td>
<td>510</td>
</tr>
<tr>
<td>4-MeOC(_6)H(_4)</td>
<td>CONH-4-MeC(_6)H(_4)</td>
<td>87–94</td>
<td>510</td>
</tr>
<tr>
<td>4-MeC(_6)H(_4)</td>
<td>CONH-4-MeC(_6)H(_4)</td>
<td>87–94</td>
<td>510</td>
</tr>
<tr>
<td>4-ClC(_6)H(_4)</td>
<td>CONH-4-MeOC(_6)H(_4)</td>
<td>87–94</td>
<td>510</td>
</tr>
<tr>
<td>4-NO(_2)C(_6)H(_4)</td>
<td>CONH-4-MeOC(_6)H(_4)</td>
<td>87–94</td>
<td>510</td>
</tr>
<tr>
<td>Ph</td>
<td>CONHNHPH</td>
<td>90</td>
<td>510</td>
</tr>
</tbody>
</table>

Figure 7.45

Scheme 7.123
spiropyrazolines 384, which usually cannot be isolated. Further reaction of 384 gives a mixture of diastereomeric spiroxazolones 386 together with a 4-(α-arylethylidene)-5(4H)-oxazolone 385 in which the double-bond geometry of 383 has been retained (Scheme 7.124). The ratio of the isolated products depends on the stereochemistry of the starting oxazolone and on the experimental conditions of the cycloaddition reaction. Starting from (Z)-oxazolones the 4-(α-arylethylidene)-5(4H)-oxazolone 385 is the major product when the reaction is carried out in polar solvents.477,512 Representative examples are shown in Table 7.35 (Fig. 7.46).

The synthesis and reactivity of 4-heteromethylene-2-substituted-5(4H)-oxazolones has been reviewed.513 These readily available compounds are easily interconverted using a classical addition–elimination reaction (Scheme 7.125).

TABLE 7.35. SYNTHESIS OF 4-(α-ARYLETHYLIDENE)-5(4H)-OXAZOLONES FROM REACTION OF 4-ARYLIDENE-5(4H)-OXAZOLONES WITH DIAZOMETHANEa

<table>
<thead>
<tr>
<th>R$_1$</th>
<th>R$_2$</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Me</td>
<td>42</td>
</tr>
<tr>
<td>4-MeOC$_6$H$_4$</td>
<td>Me</td>
<td>33</td>
</tr>
<tr>
<td>4-MeC$_6$H$_4$</td>
<td>Me</td>
<td>28</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>48</td>
</tr>
<tr>
<td>4-MeOC$_6$H$_4$</td>
<td>Ph</td>
<td>50</td>
</tr>
<tr>
<td>4-MeC$_6$H$_4$</td>
<td>Ph</td>
<td>30</td>
</tr>
</tbody>
</table>

aData from Ref. 477.
Reaction of unsaturated 5(4H)-oxazolones with appropriate nucleophiles affords new unsaturated 5(4H)-oxazolone analogues used as intermediates to prepare a variety of interesting compounds. 4-(Chloromethylene)-5(4H)-oxazolones react with a variety of nucleophiles. For example, 4-(chloromethylene)-2-phenyl-5(4H)-oxazolone \(395\) reacts with imidazole to afford 4-[((imidazol-1-yl)methylene]-2-phenyl-5(4H)-oxazolone \(396\). The authors found no evidence for the product derived from carbon–carbon bond formation, that is, 4-[((imidazol-4-yl)methylene]-2-phenyl-5(4H)-oxazolone (Scheme 7.126).
The displacement of the chlorine atom in 395 by triphenylphosphine or other phosphorus derivatives leads to the corresponding phosphorylated oxazolones 397 or 398 that have been used to prepare new and interesting substituted vinylphosphonium salts (Scheme 7.127).515,516 Of particular interest is the synthesis of \(N\)-acyl-\(\alpha\)-(triphenylphosphonio)glycinates as new cationic glycine equivalents.517

![Scheme 7.127](image)

Displacement of the chlorine atom in 395 by sodium thiomethoxide or other mercaptans was reported recently.518 The same authors also described an efficient synthesis of 4-arylidene-2-phenyl-5(4\(H\))-oxazolones 399 from 395 and organostannanes via palladium catalyzed Stille reaction (Scheme 7.128).519 Selected examples are shown in Table 7.36 (Fig. 7.47).

<table>
<thead>
<tr>
<th>R(_1)</th>
<th>X</th>
<th>R(_2)</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Cl</td>
<td>Ph</td>
<td>98</td>
</tr>
<tr>
<td>Ph</td>
<td>Cl</td>
<td>4-MeO(_2)C(_6)H(_4)</td>
<td>80</td>
</tr>
<tr>
<td>Ph</td>
<td>Cl</td>
<td>fur-2-yl</td>
<td>97</td>
</tr>
<tr>
<td>Ph</td>
<td>Cl</td>
<td>thien-2-yl</td>
<td>82</td>
</tr>
</tbody>
</table>

\(\text{a Data from Ref. 519.}\)
The reaction of 4-(dichloromethylene)-2-phenyl-5(4H)-oxazolone 400 and triphenylphosphine affords the vinylphosphonium salt 401, from which N-benzoyl (triphenylphosphoranylidene)ketenimine 403 is obtained by hydrolytic ring opening of 401 and subsequent treatment of 402 with triethylamine (Scheme 7.129). 520

Scheme 7.129

4-(Ethoxymethylene)-2-phenyl-5(4H)-oxazolone 404, readily available from hippuric acid and triethyl orthoformate, has also been used as a starting material for other unsaturated oxazolones via addition–elimination reactions. Nitrogen nucleophiles are most commonly used and amines give rise to 4-(aminomethylene)-2-phenyl-5(4H)-oxazolones 405 (Scheme 7.130; Table 7.37, Fig. 7.48) which, in many cases have been evaluated as antihypertensives. 521–526

TABLE 7.37. SYNTHESIS OF 4-(AMINOMETHYLENE)-5(4H)-OXAZOLONES FROM 4-HETEROMETHYLENE-5(4H)-OXAZOLONES

<table>
<thead>
<tr>
<th>R₁</th>
<th>X</th>
<th>R₂R₃N</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Cl</td>
<td>imidazol-1-yl</td>
<td>~ 50</td>
<td>514</td>
</tr>
<tr>
<td>Ph</td>
<td>Cl</td>
<td>2-methylimidazol-1-yl</td>
<td>~ 50</td>
<td>514</td>
</tr>
<tr>
<td>Ph</td>
<td>Cl</td>
<td>4-methylimidazol-1-yl</td>
<td>~ 50</td>
<td>514</td>
</tr>
<tr>
<td>Ph</td>
<td>EtO</td>
<td>2-MeOC₆H₄CH₂NH</td>
<td>97</td>
<td>522</td>
</tr>
</tbody>
</table>
Heterocyclic amines also react as nucleophiles and, in this context, indole reacts with 404 to yield the unsaturated oxazolone 406, an intermediate in the synthesis of tryptophan (Scheme 7.131). 527,528 It is noteworthy that 406 is the product of carbon–carbon bond formation. Imidazole also reacts with 404 but in this case the product is 396, identical with that obtained from the 4-(chloromethylene) derivative 395. 528

4-(Hydroxymethylene)-2-phenyl-5(4H)-oxazolone 392, obtained from 404, can be used to prepare indoles 408, pyrazoles 409, and fused 1,2,4-triazoles 411 by reaction with phenylhydrazines 529 or heteroarylhydrazines. 530 Selected examples are shown in Scheme 7.132.
4-(Aminomethylene)-5(4H)-oxazolones 412 have also been used as starting materials to prepare unsaturated oxazolones. Alkylation of the exocyclic nitrogen gives 4-(N,N-disubstituted-1-aminoalkylidene)-5(4H)-oxazolones 413 that are intermediates for peptides, pharmaceuticals and pesticides (Scheme 7.133).531,532

Heterocyclic rings such benzimidazole or benzotriazole have been prepared as well (Scheme 7.134).533

![Scheme 7.133](image)

Carefully controlled base hydrolysis of a 2-aryl-4-(dimethylaminomethylene)-5(4H)-oxazolone 416 affords a 2-aryl-4-(hydroxymethylene)-5(4H)-oxazolone 417 (Scheme 7.135).534

4-(Aminomethylene)-2-phenyl-5(4H)-oxazolone 418 has been converted to 4-(alkylthiomethylene)-2-phenyl-5(4H)-oxazolones 419 by treatment with carbon disulfide and subsequent alkylation. These 4-(alkylthiomethylene) analogues are useful intermediates for biologically active peptides, pharmaceuticals, and plant-protective agents (Scheme 7.136; Table 7.38, Fig. 7.49).535,536

![Scheme 7.135](image)

Unsaturated 5(4H)-Oxazolones (2-Oxazolin-5-ones) 223
Transamination reactions have also been described for 4-(aminomethylene)-2-substituted-5(4H)-oxazolones. As an example, displacement of the \(N\)-methyl-heteroarylamino group of a 4-[(N-heteroaryl-N-methyl)aminomethylene]-2-phenyl-5(4H)-oxazolone \(420\) by an \(\alpha\)-amino acid derivative produces \(\beta\)-amino-\(\alpha\),\(\beta\)-dehydro-\(\alpha\)-amino acid precursors \(421\) (Scheme 7.137).

![Figure 7.49](image)

Scheme 7.137

Enamine exchange with the weakly basic amino group of 4-(aminomethylene)-2-phenyl-5(4H)-oxazolone \(418\) leads to the 4-[(N-cycloalkenyl)aminomethylene]-5(4H)-oxazolones \(422\), that thermally cyclize to afford \([b]\)-fused bicyclic 4-pyridones \(423\) (Scheme 7.138).

![Scheme 7.138](image)
4-(N,N-Dimethylaminomethylene)-2-phenyl-5(4H)-oxazolone and 4-(anilinomethylene)-2-phenyl-5(4H)-oxazolone react readily with primary alkylamines via transamination to provide an efficient route to 4-(alkylaminomethylene)-2-phenyl-5(4H)-oxazolones.\(^{539}\)

Reaction of hippuric acid and N,N-dimethylacetamide in the presence of phosphorous oxychloride affords 4-[1-(dimethylamino)ethylidene]-2-phenyl-5(4H)-oxazolone \(^{424}\) that is converted to 4-benzoylaminopyrazolones \(^{425}\) via ring opening and cyclization with hydrazines (Scheme 7.139).\(^{540}\) 4-(N,N-Dimethylaminomethylene)-2-substituted-5(4H)-oxazolones react similarly.\(^{541}\)

\[
\begin{align*}
\text{CO}_2\text{H} & \quad \text{NHCOPh} \quad \text{N} \\
\text{N} & \quad \text{Me} \quad \text{Me} \quad \text{O} \\
\text{Me} & \quad \text{N} \quad \text{O} \quad \text{Me} \\
\text{Ph} & \quad \text{N} \quad \text{Me} \quad \text{Me} \quad \text{O} \\
\text{H} & \quad \text{R} \quad \text{PhCONH} \\
\end{align*}
\]

Scheme 7.139

4-[2-Bromo-1-(dimethylaminoethylidene)]-2-phenyl-5(4H)-oxazolone \(^{426}\), obtained by bromination of \(^{424}\), reacts with N,N-dimethyl-N'-heteroarylformamidines to afford the interesting heterocyclic unsaturated oxazolones \(^{428}\) (Scheme 7.140).\(^{542}\)

\[
\begin{align*}
\text{Me} & \quad \text{N} \quad \text{N} \quad \text{O} \\
\text{Me} & \quad \text{O} \quad \text{Me} \quad \text{N} \\
\text{Ph} & \quad \text{N} \quad \text{Me} \quad \text{Me} \quad \text{Br} \\
\end{align*}
\]

\[
\begin{align*}
\text{Br} & \quad \text{Me} \quad \text{N} \quad \text{N} \quad \text{O} \\
\text{BrCH}_2 & \quad \text{Me} \quad \text{N} \quad \text{Me} \quad \text{O} \\
\text{Ph} & \quad \text{N} \quad \text{Me} \quad \text{Me} \quad \text{Br} \\
\end{align*}
\]

Scheme 7.140

Finally, 4-[(1,2,4-oxadiazol-3-yl)aminomethylene]-2-phenyl-5(4H)-oxazolone \(^{430}\) has been prepared from 4-[(cyanoamino)methylene]-2-phenyl-5(4H)-oxazolone \(^{429}\) (Scheme 7.141).\(^{543}\)
7.4.2. Ring-Opening Reactions

In general, unsaturated oxazolones are very useful synthetic intermediates. In this context, one of the most important reactions is the classical nucleophilic opening of the oxazolone ring; the key-step in the synthesis of a wide array of compounds. Hydrolysis, alcoholysis, aminolysis, hydrazinolysis, as well as many other reactions of 2-alkyl(aryl)-4-arylidene-5(4H)-oxazolones, \(^{544-546}\) 2-alkyl(aryl)-4-heteroarylidene-5(4H)-oxazolones, \(^{547-552}\) or 2-2'-(m-phenylene)bis[4-arylidene-5(4H)-oxazolones] \(^{553}\) lead to heterocyclic ring opening to afford the corresponding acids, esters, amides, hydrazides, hydroxamic acids, etc. (Scheme 7.142). In some cases, sonication has been used to promote the nucleophilic ring opening. \(^{554}\)

![Scheme 7.141](image)

In this chapter, when the product arising from the ring opening is used as a synthetic intermediate, the subsequent reaction of this intermediate will be also considered.

7.4.2.1. Hydrolysis and Alcoholysis

One of the fundamental cleavage reactions of the heterocyclic ring in unsaturated oxazolones is the conversion to acids or esters. This process leads to dehydroamino acid derivatives from which a wide variety of amino acids are prepared by hydrogenation. The side chain of the final amino acid is determined by the aldehyde used to prepare the unsaturated oxazolone. For example, benzaldehyde and an \(N\)-acylglycine afford 2-acylaminoctylic acids \(^{434}\) after hydrolysis of the oxazolone \(^{433}\). In turn, \(^{434}\) are excellent precursors to phenylalanine.
The mechanism of the hydrolysis of 4-benzylidene-2-methyl(phenyl)-5(4H)-oxazolone has been studied.558 There are several general procedures to prepare 2-acylamino-3-arylpropenoic acids that employ various experimental conditions559–561 including phase-transfer catalyzed hydrolysis.562,563 In addition, general procedures for alcoholysis of unsaturated oxazolones leading to the corresponding acrylates have been published.564 Hydrolysis and alcoholysis have been applied to prepare compounds of special interest. For example, 2-acylamino-2-butenoic acid esters prepared from 2-methoxacetaldelyde have been evaluated as plant growth regulators.565 2-Methoxy-1-naphthaldehyde has been used to generate an unsaturated oxazolone that was hydrolyzed to the corresponding acrylic acid using barium hydroxide in aqueous alcohol.566 Other acrylic acid derivatives that have herbicidal activity567 or are useful intermediates for the synthesis of the antiinflammatory agent lonazolac have been prepared via this methodology.568

Other alcohols ring-open unsaturated oxazolones including glycerol that was used to prepare monoglycerides of acylamino acids.569 In addition, alcoholysis with 3,4,4-trifluorobut-3-enol leads to amino acid fluorobutenyl esters that are used as pesticides.570 Finally, (dimethylamino)ethanol571 and other amino alcohols572 have also been used to obtain the corresponding aminoalkyl esters.

The hydrolysis and alcoholysis reactions have been extended to the heterocyclic series. A systematic study has been published of the hydrolysis of unsaturated oxazolones derived from a selection of heterocyclic aldehydes.573 A detailed study574 of the synthesis and stereospecific hydrolysis and methanolysis of the (Z) and (E) isomers of 2-methyl (or phenyl)-4-(thienylmethylene)-5(4H)-oxazolones 435 and 437 has also been described (Scheme 7.144). The synthesis of 2-acylamino-3-(indol-3-yl or carbazol-3-yl)acrylic acid derivatives as potential antifertility agents via oxazolone hydrolysis has also been published.575
4-Heteromethylene-5(4H)-oxazolones 439 show similar behavior to that described above. Hydrolysis or alcoholysis of 439 provides the corresponding β-substituted acrylic acids or acrylates 440 (Scheme 7.145). In this context, ring-opening reactions of 4-bis[(methylthio)methylene]- and 4-bis[(benzylthio)-methylene]-, 576 4-(alkylaminomethylene)-, 577 4-(dialkylaminomethylene)-, 578 and other 4-heteromethylene-5(4H)-oxazolones579 have recently been described.

Both stereoisomers of a 4-(α-arylethylidene)-5(4H)-oxazolone 441 and 443, undergo stereospecific hydrolysis–methanolysis to furnish the corresponding (Z) and (E) isomers of 2-acetylamino(or benzoylamino)-3-aryl-2-butenoic acid or methyl ester, 442 and 444, respectively (Scheme 7.146). 580,581 The requisite starting oxazolones were prepared by condensation of an acetophenone with an acylglycine or by methylene insertion into the vinyl C–H bond of a 4-arylidene-5(4H)-oxazolone.

If the starting N-acylamino acid contains a leaving group in the acyl group moiety then hydrolysis of the corresponding oxazolone 445 generates an acrylic acid derivative such as 446. Treatment of 446 with ammonia then produces glycyl-(β-aryl)-dehydroalanines 447. 582 This interesting procedure opens the way for the
synthesis of peptides directly incorporating dehydroamino acids (Scheme 7.147). Representative examples of dehydroamino acids and esters prepared via hydrolysis and alcoholysis of unsaturated 5(4H)-oxazolones are shown in Table 7.39 (Fig. 7.50).

![Scheme 7.147](image)

TABLE 7.39. N-ACYL DEHYDROAMINO ACIDS AND ESTERS FROM HYDROLYSIS AND ALCOHOLYSIS OF UNSATURATED 5(4H)-OXAZOLONES

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Ph</td>
<td>Me</td>
<td>H</td>
<td>98</td>
<td>560</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>Ph</td>
<td>H</td>
<td>60</td>
<td>559</td>
</tr>
<tr>
<td>H</td>
<td>3-NO₂C₆H₄</td>
<td>Ph</td>
<td>H</td>
<td>58</td>
<td>559</td>
</tr>
<tr>
<td>H</td>
<td>fur-2-y1</td>
<td>Ph</td>
<td>H</td>
<td>55</td>
<td>559</td>
</tr>
<tr>
<td>H</td>
<td>PhCH=CH</td>
<td>Ph</td>
<td>H</td>
<td>84</td>
<td>559</td>
</tr>
<tr>
<td>H</td>
<td>thien-2-y1</td>
<td>Me</td>
<td>H</td>
<td>50</td>
<td>573</td>
</tr>
<tr>
<td>H</td>
<td>pyrid-3-y1</td>
<td>Me</td>
<td>H</td>
<td>70</td>
<td>573</td>
</tr>
<tr>
<td>H</td>
<td>quinol-3-y1</td>
<td>Me</td>
<td>H</td>
<td>65</td>
<td>573</td>
</tr>
<tr>
<td>H</td>
<td>thien-2-y1</td>
<td>Ph</td>
<td>H</td>
<td>70</td>
<td>573</td>
</tr>
<tr>
<td>H</td>
<td>pyrid-3-y1</td>
<td>Ph</td>
<td>H</td>
<td>48</td>
<td>573</td>
</tr>
<tr>
<td>H</td>
<td>quinol-3-y1</td>
<td>Ph</td>
<td>H</td>
<td>50</td>
<td>573</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>CH₂Cl</td>
<td>H</td>
<td>72</td>
<td>582</td>
</tr>
<tr>
<td>H</td>
<td>4-MeOC₆H₄</td>
<td>CH₂Cl</td>
<td>H</td>
<td>45</td>
<td>582</td>
</tr>
<tr>
<td>H</td>
<td>4-MeC₆H₄</td>
<td>CH₂Cl</td>
<td>H</td>
<td>75</td>
<td>582</td>
</tr>
<tr>
<td>H</td>
<td>thien-2-y1</td>
<td>CH₂Cl</td>
<td>H</td>
<td>93</td>
<td>582</td>
</tr>
<tr>
<td>H</td>
<td>thien-2-y1</td>
<td>Me</td>
<td>Me</td>
<td>81</td>
<td>574</td>
</tr>
<tr>
<td>H</td>
<td>thien-3-y1</td>
<td>Me</td>
<td>Me</td>
<td>73</td>
<td>574</td>
</tr>
<tr>
<td>H</td>
<td>thien-2-y1</td>
<td>Ph</td>
<td>Me</td>
<td>87</td>
<td>574</td>
</tr>
<tr>
<td>H</td>
<td>thien-3-y1</td>
<td>Ph</td>
<td>Me</td>
<td>65</td>
<td>574</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>87</td>
<td>581</td>
</tr>
<tr>
<td>Me</td>
<td>4-MeOC₆H₄</td>
<td>Me</td>
<td>Me</td>
<td>85</td>
<td>581</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>95</td>
<td>581</td>
</tr>
<tr>
<td>Me</td>
<td>4-MeOC₆H₄</td>
<td>Ph</td>
<td>Me</td>
<td>93</td>
<td>581</td>
</tr>
</tbody>
</table>
More drastic hydrolysis conditions of unsaturated oxazolones 448 leads to further hydrolysis of the intermediate 2-acylamino-2-alkenoic acid 449 and produces the corresponding \(\alpha\)-keto acids 450. For example, phenylpyruvic acid\(^{583,584}\) and other aryl(heteroaryl)pyruvic acids\(^{585-587}\) of biological interest have been obtained in this manner (Scheme 7.148).

The \(\alpha\)-keto acids are extremely versatile intermediates. For example, reduction of an arylpyruvic acid 450 yields the corresponding \(\beta\)-aryllactic acid 451,\(^{588,589}\) condensation of 450 with amines followed by reduction affords amino acid derivatives 454,\(^{590}\) and condensation of 450 with hydroxylamine yields \(\alpha\)-oximinoacids 452 as shown in Scheme 7.149.\(^{591}\)

The dehydroamino acids or esters obtained have been used as intermediates to prepare a diverse array of interesting compounds and some important, representative examples are described in the following sections.

CATALYTIC HYDROGENATION OF DEHYDROAMINO ACID DERIVATIVES. Probably the most important reaction of dehydroamino acid derivatives obtained from \(5(4H)\)-oxazolones is hydrogenation of the double bond. Typically, this reaction is performed
using catalytic systems such as Raney Ni, Na/Hg, or a metal on a support and leads to amino acids after removal of the protecting groups. Among such metal systems, Pd/C or other supports is used most frequently and usually leads to easy and quantitative hydrogenations. This general methodology is a well-known procedure and is especially useful for the synthesis of phenylalanine, aryl-substituted analogues of phenylalanine, tyrosine analogues and 3,4-dihydroxyphenylalanine (DOPA).

In all cases, the amino acids are prepared from the corresponding benzaldehyde and proceed via the intermediate unsaturated oxazolone. In the heterocyclic series, racemic 3-(fur-2-yl)alanine has been prepared from furfural using this approach. In addition, β-(pyrid-3-yl)alanine, β-(quinol-3-yl)alanine, a β-(benzofuranyl)alanine derivative, 2-amino-3-(2,2′-bipyridinyl)propanoic acid, and some interesting derivatives of histidines—in particular 1-alkylhistidines with amphiphilic properties have all been synthesized using this methodology. The complete reaction sequence starting from an aldehyde and an N-acylamino acid derivative is shown in Scheme 7.150.

Scheme 7.150

Racemic [3-11C] phenylalanine and [3-11C] DOPA have been prepared using this methodology starting with aldehydes labeled at the carbonyl carbon. In addition, fluorine-containing amino acids such as N-acylated 2- and 4-fluorophenylalanines, 4-(polyfluoromethyl)phenylalanines, 4-(trifluoromethyl)valine, 3-(2,6-difluoro-3,4-dihydroxyphenyl)alanine, as well as other fluoro analogues of amino acids have all been prepared starting from the appropriate fluorine-containing carbonyl compound. New metallocene phenylalanine analogues were obtained from the appropriate aldehyde following similar methodology. For example, the unsaturated oxazolone prepared from cyclopentadienylcarboxaldehyde manganese tricarbonyl is an intermediate in the synthesis of the corresponding phenylalanine analogue.

Several cases warrant special mention. As an example, ring opening, hydrogenation, and subsequent transformations of the 5(4H)-oxazolone derived from 2,3-dihydroxy-4-methoxybenzaldehyde affords a biomimetic synthesis of racemic stizolobinic acid as shown in Scheme 7.151.
Hydrogenation of the double bond in dehydroamino acids prepared from unsaturated $5(4H)$-oxazolones derived from unsymmetrical ketones gives rise to two stereogenic centers. As a consequence, four stereoisomers are possible. If the hydrogenation of each geometric isomer is performed separately, then the erythro and threo pair of enantiomers can be obtained independently. In this respect, the unsaturated oxazolones from 2-butanone have been prepared as a (Z/E) mixture. The mixture was separated and each stereoisomer was independently converted to the erythro and threo pairs of enantiomers.621

The geometric isomers 464 and 467 of $5(4H)$-oxazolones prepared from acetophenones can be separated. Alternatively, the mixture can be isomerized under the appropriate reaction conditions to obtain the pure of (Z) or (E) isomer. Each isomer can be converted to a pair of enantiomers 466 and 469 (only one enantiomer shown) (Scheme 7.152).622 The β-methyl phenylalanine analogues thus obtained are constrained phenylalanines and the effect of incorporation of a β-MePhe or β-MeTyr residue on the biological properties of H-Tyr-Tic-Phe-Phe-NH$_2$ (TIPP, where Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) a delta opioid receptor antagonist, has been studied.623

The traditional approaches to obtain enantiomerically pure amino acid derivatives from racemic amino acids involve classical chemical resolution using chiral amines624 or enzymatic procedures using hydrolytic enzymes.$^{593–595,603,605–608,617,618}$ Alternatively, the diastereoselective or enantioselective hydrogenation of the double bond has been explored as a means to prepare amino acid derivatives asymmetrically. To that end ring opening of an unsaturated oxazolone with a chiral alcohol followed by hydrogenation of the double bond has been investigated but the degree of asymmetric induction is usually not very high.
Asymmetric hydrogenation of dehydroamino acids or their esters with homogeneous organometallic catalysts containing chiral ligands has revolutionized the synthesis of enantiomerically pure amino acids. Many modifications have been described in terms of the nature of the catalyst and/or the nature of the amino acid obtained. Rhodium catalysts that incorporate chiral ligands, particularly diphosphines or aminophosphines among others are usually the most efficient. Starting from the requisite unsaturated 5(4H)-oxazolone such rhodium catalysts permit access to phenylalanine,625 most analogues of phenylalanine,626–628 and a wide variety of fluorine-containing phenylalanines,629 all obtained with extremely high enantiomeric purity. Of particular interest is the synthesis of L-4-boronophenylalanine (BPA) in 96\% ee starting from the oxazolone derived from 4-boronobenzaldehyde.630

In the heterocyclic series several heteroarylalanines have been obtained by asymmetric hydrogenation using chiral homogeneous catalysts. For example, replacement of the phenyl ring by furan, thiophene, selenophene, pyridine, or indole yields furylalanines,631,632 thienylalanines,633 2- and 3-selenienylalanines,634 3- and 4-pyridylalanines,635,636 or tryptophan,637 respectively. A comparative study of the reaction rates and enantioselectivities in substrates with different heterocyclic rings during homogeneous catalytic hydrogenation has been reported.638

A study on the combined use of a chiral substrate obtained by alcoholysis of a 4-benzylidene-5(4H)-oxazolone with a chiral alcohol coupled with hydrogenation using a chiral catalyst has also been described.639 This work shows that the matching effect of double asymmetric induction in hydrogenation can be modulated by a solvent effect.

In the case of electron-rich aromatic rings, for example, \textbf{472} it is possible to take advantage of the activating substituents to effect a Pictet–Spengler reaction to prepare the tetrahydroisoquinoline derivative \textbf{473} as shown in Scheme 7.153.640
1,3-Dipolar Cycloaddition Reactions. Dehydroamino acid derivatives behave as dipolarophiles in 1,3-dipolar cycloaddition reactions that leads to a variety of interesting compounds. For example, 1,3-dipolar cycloaddition of diazomethane to dehydroamino acid esters 475 and 481 gives the corresponding pyrazolines 476 and
Thermal or photochemical extrusion of nitrogen from trans-pyrazolines, for example, 482 gives trans-cyclopropylamino acid derivatives 483. Photochemical decomposition of cis-pyrazolines 476 leads to cis-cyclopropylamino acid derivatives 477 whereas thermal decomposition affords the corresponding 2-acylamino-2-butoenoic acid derivatives 478 via methylene insertion into the vinyl C=H bond. Moreover, in the presence of a Lewis acid, cis-pyrazolines eliminate the acylamino substituent to afford the corresponding 4-substituted-pyrazole-3-carboxylic acid esters 479 (Scheme 7.154).

1,3-Dipolar cycloadditions of nitrile oxides and nitrile imines with dehydroamino acid derivatives have also been described.

Decarboxylation. Under certain experimental conditions dehydroamino acid derivatives can decarboxylate to produce unsaturated benzamides. In particular, N-[2-(p-hydroxyphenyl)ethyl]-p-chlorobenzamide and N-(E)-(4-methoxystyryl)-benzamide (alatamide) have been prepared in this manner.

Synthesis of Heterocyclic Compounds. In some cases, dehydroamino acids obtained from unsaturated 5(4H)-oxazolones have been used as intermediates to prepare other heterocyclic compounds. For example, reaction of 2-benzoylamino-3-substituted-2-alkenoic acids with alkyl or arylisothiocyanates affords 4-aryl-methylene-1,2-disubstituted-5-oxo-4,5-dihydroimidazoles (Scheme 7.155).

Depending on the reaction conditions used for hydrolysis, either 3-benzoylmino-5-methylpyran-2-one or 3-methylpyrrole have been obtained from the 3-ethoxy-2-methylpropanal derived unsaturated oxazolone (Scheme 7.156).

Nitrosation of methyl 2-acylamino-3-(dimethylamino)propenoates obtained from the corresponding oxazolones effects the conversion of N-acylglycines to 5-substituted-1,2,4-oxadiazole-3-carboxylates as shown in Scheme 7.157.

7.4.2.2. Aminolysis with Amines and Related Compounds

In general, the reaction of unsaturated 5(4H)-oxazolones with nitrogen nucleophiles effects ring opening to give the corresponding unsaturated acylamino amides. Depending on the nucleophile, for example, amines, hydrazines, oximes, and so on, the products obtained can be cyclized and this process allows the synthesis of a wide variety of new heterocyclic compounds.
There are a number of comprehensive studies reported of the reactions of a particular unsaturated oxazolone with nitrogen nucleophiles. On the other hand, unsaturated 5(4H)-oxazolones react with a variety of amines to yield acylamino amides with interesting agrochemical properties.
The mechanism of the aminolysis and the electronic effects of substituents at C-2 or C-4 on the kinetics of amide bond formation have been studied. In some cases, ring opening with amines occurs with partial isomerization of the exocyclic double bond. However, with more hindered compounds, such as unsaturated oxazolones derived from ketones, ring opening is stereospecific. Ring opening using diamines has also been described. Selected examples of dehydroamino acid amides prepared by aminolysis of unsaturated 5(4H)-oxazolones are shown in Table 7.40 (Fig. 7.51).

The direct condensation of unsaturated oxazolones with tryptamine in hydrochloric acid is an important and interesting case that deserves special attention. The reaction occurs via \textit{in situ} hydrolysis of the oxazolone to a keto acid followed by a Pictet–Spengler-like reaction with tryptamine. This protocol affords a tetrahydro-\(\beta\)-carboline wherein the oxazolone is the synthetic equivalent of an arylacetaldehyde. The reaction has been extended to substituted tryptamines thus, allowing access to 1,3,4-trisubstituted tetrahydro-\(\beta\)-carbolines as shown in Scheme 7.159. Some of these compounds have shown promising central nervous system activity.

Bis-4-arylidene-5(4H)-oxazolones are easily obtained from aromatic dialdehydes by the Erlenmeyer synthesis. Such bis(oxazolones) react with \(\alpha,\omega\)-diamines to provide a convenient approach to macrolactams. Tandem Erlenmeyer condensation-macrolactamization (TECM) has been used to prepare analogues of naturally occurring, biologically active cyclic peptides such as bastadin-5.

TABLE 7.40. \(N\)-ACLYDEHYDROAMINO ACID AMIDES FROM AMINOLYSIS OF UNSATURATED 5(4H)-OXAZOLONES

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4-CNC(\text{H}_4)</td>
<td>Ph</td>
<td>(i)-Pr</td>
<td>83</td>
<td>658</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>Ph</td>
<td>Ph</td>
<td>88</td>
<td>684</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>Ph</td>
<td>(n)-Bu</td>
<td>93</td>
<td>684</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>Ph</td>
<td>Ph(\text{CH}_2)</td>
<td>80</td>
<td>684</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>90</td>
<td>684</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>4-Me(\text{C}_6\text{H}_4)</td>
<td>68</td>
<td>664</td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>4-Me(\text{C}_6\text{H}_4)</td>
<td>69</td>
<td>664</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>4-MeOC(\text{C}_6\text{H}_4)</td>
<td>71</td>
<td>664</td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>4-MeOC(\text{C}_6\text{H}_4)</td>
<td>79</td>
<td>664</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>Ph(\text{CH}_2)</td>
<td>98</td>
<td>664</td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>Ph(\text{CH}_2)</td>
<td>86</td>
<td>664</td>
</tr>
</tbody>
</table>
Cyclization of Dehydroamino Amides to Imidazolones. Aminolysis of unsaturated oxazolones has been studied extensively. However, the major focus has been directed to use of the resulting acylamino amides as starting materials to prepare novel heterocyclic compounds. Among these possibilities, cyclization of acylamino amides to unsaturated imidazolinones has been studied in great depth given that these compounds have a diverse range of biological and pharmacological activities. Hundreds of unsaturated oxazolones with a wide variety of substituents at C-2 and C-4 have been described. Most of these compounds were reacted with amines to give the corresponding acylamino amide that can be cyclized to the corresponding imidazolinones. The sheer number of compounds described makes coverage of this area beyond the scope of this chapter.

Generally speaking, cyclization occurs in the presence of a cyclodehydrating agent to give 4-alkylidene(arylidene)-1,2-disubstituted-2-imidazolin-5(4H)-ones in which the configuration of the exocyclic double bond is retained (Scheme 7.160). The most typical case is exemplified by the reaction of 4-arylidene-5(4H)-oxazolones with a wide variety of substituted anilines or alkylamines and subsequent cyclization of the product. Indeed, numerous papers have been published on this subject and many pharmacological assays have been performed on the resulting products.

For amides obtained by stereospecific ring opening of (Z)- and (E)-2-phenyl-4-(α-phenylethylidene)-5(4H)-oxazolone and 5(2H)-oxazolones and 5(4H)-Oxazolones, cyclization gives the imidazolone or 4-methyl-1-phenyl-3-isoquinolinecarboxylic acid anilide. The products are determined by the double-bond geometry in the starting material and by the experimental conditions (Scheme 7.161).
Aminolysis of 1,4-phenylene bis(oxazolones) 511 and subsequent cyclization to the bis-2-imidazolin-5(4H)-ones 513 has also been described (Scheme 7.162). 694

N^1-(Sulfonamidophenyl)imidazolones are of particular interest as antineoplastic, antibacterial, and antifungal agents and a number of examples have been prepared analogously using the appropriate sulfonamidoaniline. 695–697

Diamines have also been used to ring-open unsaturated 5(4H)-oxazolones. Here, one amino group reacts with the oxazolone while the other amino group is used to incorporate other substituents. Examples include aliphatic diamines, 698–700 o-phenylenediamines, 701,702 and p-phenylenediamines. 703–709

Heterocyclic amines have also been used for aminolysis. Subsequent cyclization of the acylamino amides leads to imidazolones that show a diverse range of biological activities as antibacterial, antifungal, antiviral, anthelmintic, and anti-Parkinsonian agents, as well as central nervous systems (CNS) stimulants.
Noteworthy among these systems are aminopyrazolones, 3-aminoindoles, 2-aminothiazoles, 2-amino-1,3,4-oxadiazoles, 2-amino-1,3,4-thiadiazoles, and aminoquinazolinones together with other heterocyclic compounds.

Unsaturated 5(4H)-oxazolones derived from aromatic and heterocyclic aldehydes including phthalic anhydride, antipyrine, chromone, indoles, pyridines, quinolines, diazines, benzoazoles, and benzimidazoles have been prepared. Reaction with nitrogen nucleophiles and subsequent cyclization leads to the expected 5(4H)-imidazolones.

Amino acids and aminobenzoic acids react as nitrogen nucleophiles to effect ring opening of unsaturated 5(4H)-oxazolones. Cyclization of the intermediate acylamino amide has opened the way for the synthesis of new series of imidazolones that now incorporate a carboxylic acid moiety into the N-1 substituent. These compounds are readily further elaborated into derivatives with diverse biological activity.

7.4.2.3. Reductive Aminolysis

Ring opening of unsaturated 5(4H)-oxazolones with a chiral amine, usually (S)-α-phenylethylamine (although chiral amino acids can be also used), in the presence of a catalyst under a hydrogen atmosphere is an excellent procedure for the direct synthesis of chiral amino acid precursors. The reaction occurs sequentially via hydrogenation of the dehydroamino acid that is generated in situ from ring opening of the oxazolone. This method has been applied for the synthesis of numerous amino acids with moderate optical purity (Scheme 7.163; Table 7.41, Fig. 7.52). Prior to the development of efficient chiral catalysts for enantioselective hydrogenation of dehydroamino acid derivatives, this procedure was explored as an interesting methodology for the asymmetric synthesis of new non-proteinogenic amino acids.

The influence of different variables including the solvent and experimental conditions has been studied and attempts to improve the results using polymer-bonded palladium catalysts or chiral palladium-containing macromolecular catalysts have been reported. The reductive cleavage of heteromethylene oxazolones using NaBH₄ in the presence of NH₃ has generated racemic β-(heteroarylamino)-α-amino acid derivatives.
7.4.2.4. Aminolysis with Amino Acids

Unsaturated 5(4H)-oxazolones react with amino acids to produce acylamino amides. Ring closure of the acylamino amides leads to the corresponding imidazolinones (cf. Section 7.4.2.2) or, alternatively, to 3-ylidenepiperazine-2,5-diones that are versatile organic substrates.771 Ring opening in the presence of hydrogen and a catalyst affords the corresponding amino acid derivatives (cf. Section 7.4.2.3). However, ring opening in the absence of a reducing agent generates an \(\alpha,\beta\)-dehydropeptide. \(\alpha,\beta\)-Dehydropeptides are very interesting compounds that are found in natural peptides of biological interest. In addition, incorporation of an \(\alpha,\beta\)-dehydropeptide residue into peptides can restrict the conformational freedom of the peptide thereby allowing the design of new compounds with improved biological and pharmacological properties.

Therefore, suitable unsaturated oxazolones can be used as intermediates to prepare dehydropeptides wherein the synthetic strategy used will depend on the position of the double bond in the final compound. If the double bond is located in the N-terminal amino acid, ring opening of the oxazolone \textit{516} with the appropriate amino acid or peptide generates the desired dehydropeptide \textit{517} directly.772–775 This reaction, shown in Scheme 7.164, has been used frequently starting from 4-arylmethylene-776–778 or 4-heteroarylmethylene-5(4H)-oxazolones reacting with a series of amino acid esters.779–781
This synthetic strategy has been used to prepare some interesting dehydropeptides such as chromophoric dehydro analogues of leucine enkephalin,782 potential angiotensin-converting enzyme inhibitors,783 and dehydropeptides substituted with a β-lactam moiety.784

Alternatively, if the dehydroamino acid is C-terminal or is central in the peptide chain, then the oxazolone precursor to the dehydropeptide must be in position two in order to apply this methodology (Scheme 7.165). The requisite unsaturated $5(4\text{H})$-oxazolone intermediate 518 is obtained from the appropriate precursors following standard cyclization procedures and avoiding experimental conditions that would epimerize the chiral center. This methodology has been applied to access analogues of important peptides including dehydroaspartame,785 somatostatin,786 and dermorphin.787 In these cases, a dehydroamino acid was incorporated into the peptide backbone to study the relationship between conformational restriction and biological properties of the modified peptide.
SYNTHESIS OF PEPTIDES BY HYDROGENATION OF DEHYDROPEPTIDES. In addition to the interest in dehydropeptides in their own right, these compounds are also used to prepare non-proteinogenic peptides by simple reduction. For example, the electrochemical reduction of dehydropeptides derived from 2,3-dimethoxybenzaldehyde has been described. 788

Asymmetric reduction of the double bond of the dehydroamino acid residue in 522 can be effected in different ways since the peptide moiety can act as a chiral auxiliary. Heterogeneous hydrogenations using a Pd/C catalyst are the most frequently used conditions.789 Among the different amino acids evaluated as chiral auxiliaries, proline is the auxiliary of choice and has led to the best diastereodifferentiation.790 It is noteworthy that complexation of a dehydropeptide with Ca$^{2+}$ or Mg$^{2+}$ prior to hydrogenation has been reported to improve diastereoselection. 791 In cases where a glycine moiety is used, an asymmetric hydrogenation has to be performed (Scheme 7.166). For achiral dehydroamino acids the influence of ligand chirality on the enantioselectivity of hydrogenation has been studied.792

![Chemical structure](image)

Scheme 7.166

Finally, the appropriate combination of both chiral auxiliary and chiral organometallic catalyst can lead to excellent levels of stereodifferentiation.793–796

7.4.2.5. Other Nitrogen Nucleophiles

Other nitrogen nucleophiles such as hydrazines, hydrazides, and Schiff bases have affected ring opening of oxazolones. Most often, hydrazine or substituted hydrazines are used. For example, hydrazinolysis of 525 affords the corresponding hydrazides 526 that, depending upon the substituents and the reaction conditions, can cyclize in the reaction medium to the aminoimidazolone 527 (Scheme 7.167;
Starting from an \((E)\)-oxazolone affords an \((E)\)-configured hydrazide.\(^{797–798}\) Hydrazinolysis products obtained from oxazolones \(528\) are versatile synthetic intermediates and can be further elaborated to a variety of different heterocycles depending on the substituents and on the experimental conditions. For example, \(N\)-aminoimidazolones \(529\), isolated from reaction of \(528\) and hydrazine, have been acylated\(^{810}\) or condensed with carbonyl compounds\(^{811}\) to produce \(530\) and \(531\), respectively. On the other hand, ring-opening \(528\) with hydrazine affords a dehydroamino acid hydrazide \(532\). Condensation of \(532\) with aldehydes yields a hydrazone \(533\) that can be cyclized to an \(N\)-iminoimidazolone \(534\) (Scheme 7.168).\(^{812}\)

Table 7.42. \(\alpha\)-ACYLAMINO HYDRAZIDES FROM REACTION OF UNSATURATED 5(4\(H\))-OXAZOLONES WITH HYDRAZINES

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>22–52</td>
<td>798</td>
</tr>
<tr>
<td>4-ClC(_6)H(_4)</td>
<td>Ph</td>
<td>H</td>
<td>22–52</td>
<td>798</td>
</tr>
<tr>
<td>4-NO(_2)C(_6)H(_4)</td>
<td>Ph</td>
<td>H</td>
<td>22–52</td>
<td>798</td>
</tr>
<tr>
<td>3,4-(MeO)(_2)C(_6)H(_3)</td>
<td>Ph</td>
<td>H</td>
<td>22–52</td>
<td>798</td>
</tr>
<tr>
<td>2-HO(_3)C(_6)H(_4)</td>
<td>Ph</td>
<td>H</td>
<td>22–52</td>
<td>798</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>H</td>
<td>90</td>
<td>799</td>
</tr>
<tr>
<td>fur-2-yl</td>
<td>Ph</td>
<td>H</td>
<td>72</td>
<td>799</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Ph</td>
<td>60</td>
<td>799</td>
</tr>
<tr>
<td>fur-2-yl</td>
<td>Ph</td>
<td>Ph</td>
<td>70</td>
<td>799</td>
</tr>
<tr>
<td>4-chloro-6-methylpyrimidin-2-yl</td>
<td>Ph</td>
<td>H</td>
<td>92</td>
<td>770</td>
</tr>
<tr>
<td>4,6-dimethylpyrimidin-4-yl</td>
<td>Ph</td>
<td>H</td>
<td>55</td>
<td>770</td>
</tr>
<tr>
<td>6-chloropyridazin-3-yl</td>
<td>Ph</td>
<td>H</td>
<td>65</td>
<td>770</td>
</tr>
</tbody>
</table>
In some cases triazines have been reported from the reaction of unsaturated oxazolones with hydrazine or via alkaline cyclization of the initially formed acylamino hydrazide. For example, cyclization of an acylamino hydrazide by heating in the presence of sodium hydroxide affords 1,2,4-triazin-6-ones. In contrast, heating an acylamino hydrazide in the absence of base leads to pyrazolidin-5-ones (Scheme 7.169). In the particular case where the original oxazolone was derived from cyclohexanone, a spiropyrazolidin-5-one was obtained.
Pyrazolinoxazolines have been isolated, albeit in low yields, from the reaction of some oxazolones with phenylhydrazine.819

Hydrazides have also been used as nucleophiles for ring opening to give the corresponding bis(acylhydrazides) 540.820 Subsequent cyclodehydration of 540 leads to the 4-alkylidene(arylidene)imidazolones 541 that have been evaluated as anticonvulsant, antihelmintic, antibacterial, antifungal, antiviral, and antitubercular agents (Scheme 7.170).821–824

\begin{equation}
\text{Scheme 7.170}
\end{equation}

Reaction of 4-(ethoxymethylene)-2-phenyl-5(4\textit{H})-oxazolone 542 with a hydrazide gives 1-acyl-3-hydroxy-1\textit{H}-pyrazoles 544 via an addition–elimination sequence to generate 543 followed by cyclization as shown in Scheme 7.171.825

\begin{equation}
\text{Scheme 7.171}
\end{equation}

Schiff bases also react with unsaturated 5(4\textit{H})-oxazolones and afford different products depending on the substituent at C-2. With 2-methyl-5(4\textit{H})-oxazolones 545 as starting materials, 2-styryl-1-substituted imidazolones 546 are obtained (Scheme 7.172).826–830 Selected examples are shown in Table 7.43 (Fig. 7.54).

\begin{equation}
\text{Scheme 7.172}
\end{equation}
On the other hand, if a 2-phenyl-5(4H)-oxazolone is the starting material, N-(benzoyl)dehydroamino acid amides or unsaturated imidazolones are obtained depending on the reaction conditions (Scheme 7.173).

![Scheme 7.173](image)

Table 7.43. 2-Styryl-1-substituted imidazolones from reaction of unsaturated 5(4H)-oxazolones with Schiff bases

<table>
<thead>
<tr>
<th>R<sub>1</sub></th>
<th>R<sub>2</sub></th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>85</td>
<td>826</td>
</tr>
<tr>
<td>Ph</td>
<td>4-ClC<sub>6</sub>H<sub>4</sub></td>
<td>63</td>
<td>826</td>
</tr>
<tr>
<td>3-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>Ph</td>
<td>66</td>
<td>826</td>
</tr>
<tr>
<td>Ph</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>67</td>
<td>827</td>
</tr>
<tr>
<td>Ph</td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>68</td>
<td>827</td>
</tr>
</tbody>
</table>

On the other hand, if a 2-phenyl-5(4H)-oxazolone is the starting material, N-(benzoyl)dehydroamino acid amides or unsaturated imidazolones are obtained depending on the reaction conditions (Scheme 7.173).

![Scheme 7.173](image)

7.4.2.6. 1,3-Bis(nucleophiles)

Reaction of unsaturated 5(4H)-oxazolones with bis(nucleophiles) opens the way for the preparation of diverse heterocyclic compounds depending on the nucleophilic atoms of the reagent. First, if we consider nitrogen-containing bis(nucleophiles), the reaction of anthranilic acid with unsaturated oxazolones gives rise to substituted 3,1-benzoxazin-4-ones (Scheme 7.174).
A widely used bis(nucleophile) is \(o \)-phenylenediamine. Several heterocyclic systems have been synthesized depending on the experimental conditions, although benzimidazoles are obtained as the major reaction products (Scheme 7.175). Alternatively, ring-opening with \(o \)-phenylenediamine can produce an \(N' \)-(2-aminophenyl)imidazolone that cyclizes to an imidazobenzimidazole. A complete study of the reactivity of 4-arylidene-2-phenyl-5(4H)-oxazolones with various nitrogen-containing bis(nucleophiles) and evaluation of the products as antimicrobial agents has recently been published.

\(o \)-Aminothiophenol also reacts analogously as a bis(nucleophile) to afford benzothiazoles. Finally, 1,8-diaminonaphthalene reacts with unsaturated 5(4H)-oxazolones to afford perimidines. Examples of benzimidazoles and benzothiazoles derived from unsaturated 5(4H)-oxazolones are shown in Table 7.44 (Fig. 7.55).

Azoles or azines with an amino group at C-2 have also been used as bis(nucleophiles) to prepare a variety of fused heterocyclic systems. In these cases, the geometry of the bis(nucleophile) permits reaction with both electrophilic centers of the oxazolone. Thus, initial Michael reaction and subsequent ring
opening of the oxazolone leads to new heterocyclic compounds. The nature of the bis(nucleophile) and the β-substituent at the C-4 vinyl group determine the structure of the products. Among the 2-aminoheterocycles employed in this reaction are 2-aminopyridines \(851\) (Scheme 7.176) and 2-aminoazoles \(852\) including pyrazoles, \(853–855\) imidazoles, \(856\) thiazoles, \(851\) oxadiazoles, \(857–859\) thiadiazoles, \(858,860\) and triazoles \(853–855\) (Scheme 7.177).

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>Y</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>NH</td>
<td>70–75</td>
<td>841</td>
</tr>
<tr>
<td>4-MeOC_6H_4</td>
<td>Ph</td>
<td>NH</td>
<td>70–75</td>
<td>841</td>
</tr>
<tr>
<td>4-NO_2C_6H_4</td>
<td>Ph</td>
<td>NH</td>
<td>70–75</td>
<td>841</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>NH</td>
<td>72</td>
<td>842</td>
</tr>
<tr>
<td>4-ClC_6H_4</td>
<td>Ph</td>
<td>NH</td>
<td>78</td>
<td>842</td>
</tr>
<tr>
<td>thien-2-yl</td>
<td>Ph</td>
<td>NH</td>
<td>66</td>
<td>842</td>
</tr>
<tr>
<td>Ph</td>
<td>4-NO_2C_6H_4</td>
<td>NH</td>
<td>75</td>
<td>842</td>
</tr>
<tr>
<td>4-MeOC_6H_4</td>
<td>4-NO_2C_6H_4</td>
<td>NH</td>
<td>70</td>
<td>842</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>S</td>
<td>56</td>
<td>842</td>
</tr>
<tr>
<td>4-ClC_6H_4</td>
<td>Ph</td>
<td>S</td>
<td>72</td>
<td>842</td>
</tr>
<tr>
<td>thien-2-yl</td>
<td>Ph</td>
<td>S</td>
<td>55</td>
<td>842</td>
</tr>
<tr>
<td>Ph</td>
<td>4-NO_2C_6H_4</td>
<td>S</td>
<td>75</td>
<td>842</td>
</tr>
<tr>
<td>4-MeOC_6H_4</td>
<td>4-NO_2C_6H_4</td>
<td>S</td>
<td>75</td>
<td>842</td>
</tr>
</tbody>
</table>

Reaction of α-hydrazino-heterocycles with 4-(hydroxymethylene)-2-phenyl-5(4H)-oxazolone \(406\) gives rise to N-benzoyl-α-(heteroaryl)glycinates \(563\) containing a fused 1,2,4-triazole after oxidative cyclization (Scheme 7.178).\(^{861}\)

Urea, thiourea, and S-alkylisothiouronium halides have also been used as bis(nucleophiles) in reactions with unsaturated oxazolones.\(^{862–865}\) Reaction with urea and thiourea leads to the corresponding imidazolones. The use of
S-alkylisothiouronium halides usually leads to 2-amino-5-imidazolones 565 although in some cases, depending on the substituents and on the experimental conditions, other products such as pyrimidines 566 have been obtained. In this case, Michael reaction and ring opening lead to the observed product (Scheme 7.179).
Antimicrobial imidazotriazoles 568 are obtained when a hydrazidimide, for example, 5-nitro-2-furancarboximidic acid hydrazide, reacts as the bis(nucleophile) with 567 (Scheme 7.180).

![Scheme 7.180](image)

A variety of N,S-bis(nucleophiles) react with unsaturated 5(4H)-oxazolones to produce triazolo-1,3-thiazin-4-ones 570 and 1,3-thiazin-4-ones 572. Mechanistically, Michael addition of the bis(nucleophile) to 569 and 571 followed by ring opening with concomitant cyclization leads to the observed products.

3-Mercapto-1,2,4-triazoles,867–869 2-imidazolidinethione, 2-mercaptobenzimidazole,870 and N-substituted dithiocarbamic acids 871–873 have also been used frequently as bis(nucleophiles) (Scheme 7.181).

![Scheme 7.181](image)

Bis(nucleophiles) involving carbon atoms also react with unsaturated 5(4H)-oxazolones. Among these, enamines874–877 and other related compounds such as iminophosphoranes878 and 2-benzimidazolyl-, 2-benzoxazolyl-, and 2-benzothiazolylacetates879,880 are commonly used. A mechanistically similar process involving initial Michael reaction to the exocyclic double bond followed by ring opening gives 2-pyridones. The degree of unsaturation in the 2-pyridone depends on the
starting unsaturated 5(4H)-oxazolones; 4-alkylidene(arylidene)-5(4H)-oxazolones 573 lead to dihydropyridone derivatives 574, whereas 4-(ethoxymethylene)-5(4H)-oxazolones 575 give pyridones 576 (Scheme 7.182).

Bis C-alkylation is observed using N,N-disubstituted enamines of cycloalkanones and leads to the bicyclic β-diketones 578 (Scheme 7.183). Reaction of suitably functionalized phosphonium ylides with unsaturated 5(4H)-oxazolones 579 has opened the way for the use of new C,C-bis(nucleophiles). Of particular interest is ethyl 3-oxo-4-(triphenylphosphoranylidene)butyrate used to prepare dihydrobenzoxazoles 582 and diastereoisomeric 1,3-cyclohexanedione ylides 583 (Scheme 7.184).

In contrast, ethyl 3-oxo-4-(triphenylphosphoranylidene)butyrate behaves as a C,O-bis(nucleophile) when reacted with unsaturated 5(4H)-oxazolones 584 with a leaving group at the exocyclic β-carbon. In this case, initial Michael reaction generates 585 that eliminates HX to produce a resonance stabilized ylide 586. Cyclization of 586 with ring opening leads to the interesting ylide intermediate 587 used for the synthesis of 2H-pyran-2-ones (Scheme 7.185).
Similar reactivity was observed with typical activated methylene compounds such as dimethyl 1,3-acetonedicarboxylate. With this C,O-bis(nucleophile) the products are also 2H-pyran-2-ones 589 (Scheme 7.186). 884

![Scheme 7.186](image1)

7.4.2.7. Other Nucleophiles

A variety of other nucleophiles effect ring opening of unsaturated 5(4H)-oxazolones. Reaction with active methylene compounds containing an electrophilic center is a known procedure to prepare heterocyclic compounds through ring opening and subsequent cyclization. 885–887 For example, reaction of unsaturated 5(4H)-oxazolones 590 with alkyl cyanoacetates gives 3-acylamino-1-cyano-2-hydroxy-4-substituted-1,3-butadiencarboxylates 591 that are cyclized to pyrrolidin-3-ones 592 (Scheme 7.187).

![Scheme 7.187](image2)

Reaction of 4-arylidene-2-phenyl-5(4H)-oxazolones 593 with N-phenacylpyridinium bromide 888 proceeds by the same sequence to give oxazolo[5,4-b]pyridines 594 (Scheme 7.188) while the reaction of 4-(aminomethylene)-2-phenyl-5(4H)-oxazolone 418 and phenyl isothiocyanate 889 gives pyrimidin-2-thiones 595 (Scheme 7.189). In this latter case initial attack of the exocylic amino group produces an intermediate thiourea (not shown) that subsequently cyclizes to 595.

![Scheme 7.188](image3)
Hydride reduction of a 4-arylidene-5(4H)-oxazolone can also be considered as a nucleophilic ring opening. Here, this process, shown in Scheme 7.190, generates α-(benzoylamino)cinnamyl alcohols 597.890

Unsaturated 5(4H)-oxazolones undergo a Friedel–Crafts reaction with aromatic hydrocarbons in the presence of a Lewis acid. In particular, a 2-aryl-4-benzylidene-5(4H)-oxazolone 598 reacts with o- or p-xylene in the presence of aluminum chloride via ring opening and subsequent dearylation to yield 599 as indicated in Scheme 7.191.891

In a similar manner, an intramolecular Friedel–Crafts reaction of 2-aryl-4-(2-thienylidine)-5(4H)-oxazolones 600 has been reported and, in this case, cyclization and decarboxylation generates thienopyridines 601 (Scheme 7.192).892
Finally, the intramolecular ring opening of unsaturated 5(4H)-oxazolones derived from 2-hydroxybenzaldehyde is noteworthy. Here, the condensation of hippuric acid and 2-hydroxybenzaldehyde under classical conditions gives a 3-(acylamino)coumarin \(602\) directly without isolation of an intermediate oxazolone.\(^{893}\) Suitably protected 2-hydroxybenzaldehyde derivatives react similarly (Scheme 7.193).\(^{894–896}\)

![Scheme 7.193](image)

Deacetylation of 4-[(o-acetoxy)benzylidene]-2-phenyl-5(4H)-oxazolone also immediately affords \(602\). The starting oxazolone was obtained by cyclodehydration of the corresponding cinnamic acid precursor or by condensation of hippuric acid with 2-acetoxybenzaldehyde in the absence of base. In examples using 2-hydroxyacetophenone, 4-methyl-3-(acylamino)coumarins are obtained.\(^{897}\)

7.4.3. Reactions Involving the Exocyclic Double Bond

Classical ring-opening reactions of unsaturated oxazolones are the most well studied reactions and generate a wide variety of interesting products. However, reactions of the exocyclic double bond have also been investigated and open the way to a tremendous variety of new possibilities.

7.4.3.1. Hydrogenation

It is well known that hydrogenation of dehydroamino acid derivatives derived from ring opening of unsaturated 5(4H)-oxazolones affords new racemic amino acids and, in some cases, enantiomerically pure compounds. On the other hand, a number of attempts have been made to hydrogenate the double bond of the unsaturated oxazolone itself. For example, 4-benzyl-2-methyl-5(4H)-oxazolone was prepared from 4-benzylidene-2-methyl-5(4H)-oxazolone using Raney Ni as a catalyst. This process is reported to be a general procedure to prepare saturated oxazolones directly (Scheme 7.194).\(^{898,899}\)

![Scheme 7.194](image)
Reduction in the presence of methanolic sodium methoxide produces the corresponding N-acetylphenylalanine methyl ester as the final product.900,901 Enzymatic resolution of N-acetylphenylalanine methyl ester then gives phenylalanine in high enantiomeric purity. Magnesium in methanol has also been used to produce nearly quantitative yields of the N-acetylphenylalanine methyl ester without isolation of the intermediate saturated oxazolone.902

Catalytic hydrogenation of the (E)-unsaturated oxazolone 605 and the (Z)-unsaturated oxazolone 608, both derived from acetoxyacetone, affords 606 and 609 respectively. Subsequent ring opening of 606 and 609 generated erythro and threo diastereoisomers of racemic γ-hydroxyvaline acetates 607 and 610 (Scheme 7.195).903 Further, enantioselective oxidation of the D- or L-enantiomer with D- or L-amino acid oxidase gives the corresponding α-keto acid. The unreacted enantiomer was isolated by ion exchange chromatography.

Catalytic hydrogenation of the exocyclic double bond of several oxazolones 611, in the presence of acetic acid, gives α-acylamino alcohols 613 via the saturated derivatives 612 (Scheme 7.196).904 Selected examples of amino acid derivatives and amino alcohols available from reduction of unsaturated oxazolones are shown in Table 7.45 (Fig. 7.56).
7.4.3.2. Michael Reactions

Some examples of the Michael reaction on the exocyclic double bond of an unsaturated oxazolone have been discussed in previous sections. The synthesis of unsaturated 5(4H)-oxazolones from unsaturated 5(4H)-oxazolones via an addition–elimination sequence and the sequential reaction of unsaturated 5(4H)-oxazolones with a 1,3-bis(nucleophile) have already been considered. This section will review Michael additions exclusively and, in this respect, a wide array of nucleophiles has been studied.

Although it is well known that sulfur nucleophiles are excellent candidates for Michael reactions, they have scarcely been examined with unsaturated oxazolones. Nevertheless, 4-methyltoluene-α-thiol reacts with 4-benzylidene-2-methyl-5(4H)-oxazolone 614 to give 615 as a mixture of erythro and threo isomers (Scheme 7.197).905

Ring opening 615 to the methyl ester and separation gives rise to a procedure for the synthesis of S-(4-methylbenzyl)-β-phenylcysteine. Carboxypeptidase A
conveniently resolves the N-(trifluoroacetyl)- derivatives of erythro and threo S-(4-methylbenzyl)-β-phenylcysteine.

Organophosphorous compounds have also been used as nucleophiles with unsaturated oxazolones. Initially, Michael reaction of a trialkyl- or dialkylphosphite gives 617 or 619 that undergo subsequent ring opening to yield a 2-acylamino-3-phosphonyl-618 or 2-acylamino-3-phosphinyl-620 derivative of the corresponding carboxylic acid, respectively (Scheme 7.198). 906–909

\[\text{Scheme 7.198} \]

4-benzylidene-2-phenyl-5(4H)-oxazolone 621 reacts with hexamethylphosphorus triamide to give 4-α-[bis(dimethylamino)phosphoryl]benzyl-5-(dimethylamino)-2-phenyloxazole 622 (Scheme 7.199). 910

\[\text{Scheme 7.199} \]

For carbon nucleophiles sequential addition of 2-potassio-2-nitropropane and oxygen to 4-arylidene-2-phenyl-5(4H)-oxazolones 623 has been reported (Scheme 7.200). 911 The process involves a Michael reaction of the 2-nitropropane anion followed by reaction with molecular oxygen and elimination of nitrous acid to yield 2-aryl butenoic acid imides 626.

Previously, Friedel–Crafts alkylation of unsaturated oxazolones with xylenes leading to the ring-opened products was described in Section 7.4.2.7. In contrast,
reaction of 2,2'-(1,4-phenylene)-bis(4-phenylmethylene)-5(4H)-oxazolone with toluene in the presence of aluminium trichloride gives the addition adduct (Scheme 7.201). Sulfur ylides are among the most interesting carbon nucleophiles and their synthetic importance has been recently reviewed. One especially interesting use of these ylides is their application to the synthesis of cyclopropane derivatives using unsaturated oxazolones. For example, stabilized sulfur ylides react with unsaturated oxazolones via a Michael reaction to give oxazolone spirocyclopropanes as shown in Scheme 7.202 and Table 7.46 (Fig. 7.57), whereas the less stabilized sulfur ylides give ring-opened products as the major compounds (Scheme 7.202). Starting from the chiral oxazolone derived from 1,2-O-isopropylidene-D-glyceraldehyde, diastereoselective cyclopropanation has been reported to occur with dimethyloxosulfonium methyldie or (diethylamino)phenyloxosulfonium.
methylide as cyclopropanating agents (Scheme 7.203). The reaction produces mixtures of cis- and trans-spirooxazolones 633 and 634. The influence of the oxosulfonium methylide and experimental conditions on the cis/trans ratio and on cis and trans diastereoselectivities has been studied. The results are complementary to those obtained from cyclopropanation of 632 using diazomethane (see scheme 7.217). The use of chiral oxazolone 632 provides an entry to versatile precursors leading to enantiomerically pure 2-substituted-1-aminocyclopropanecarboxylic acids.

Unsaturated 5(4H)-Oxazolones (2-Oxazolin-5-ones)
During the last two decades, the importance of the dipolarophilic nature of unsaturated 5(4H)-oxazolones has been widely recognized and studied with a variety of 1,3-dipoles. Among the systems studied, diazoalkanes, particularly diazomethane, are the most frequently used and have opened the way for the synthesis of aminocyclopropanecarboxylic acid derivatives.

There are a number of stereochemical considerations that have to be taken into account in this reaction. 1,3-Dipolar cycloaddition with diazoalkanes occurs to generate an intermediate spiropyrazoline \(\text{636} \) that, in most cases has not been isolated. The presence of EWG on the alkene moiety results in the formation of only one regioisomer of the spiropyrazoline. Two competitive processes are possible upon decomposition of the spiropyrazoline and, apart from the formation of cyclopropane derivatives \(\text{637} \) and \(\text{638} \), homologation of the starting unsaturated 5(4H)-oxazolone to afford \(\text{639} \) is also possible. The stereochemistry of the starting oxazolone, the experimental reaction conditions and the nature and polarity of the solvent can all result in C-methylene insertion as the main reaction.\(^{512}\) Moreover, the decomposition of pyrazolines is not a stereospecific reaction although partial retention of configuration is usually observed. Mixtures of cis- and trans-cyclopropane derivatives are obtained in which the predominant product retains the same relative configuration as the starting compound (Scheme 7.204).

Since \((Z)\)- and \((E)\)-stereoisomers of unsaturated oxazolones can be obtained using appropriate isomerization procedures, cis and trans isomers of cyclopropane derivatives can be obtained in a stereoselective manner, although special care must be taken with experimental conditions to obtain the best stereoselectivity. Both racemic cis- and trans-1-amino-2-phenylcyclopropanecarboxylic acid \(\text{641} \) and \(\text{644} \) have been obtained from the corresponding \((Z)\)- or \((E)\)-4-benzylidene-2-phenyl-5(4H)-oxazolone \(\text{621} \) and \(\text{642} \) using diazomethane. Care was taken to affect the
nucleophilic ring opening of the oxazolone to avoid cleavage of the cyclopropane ring (Scheme 7.205). 422

Extension of this reaction to other 4-arylmethylene-5(4H)-oxazolones and a careful study of the cyclopropanation of (Z)-4-(ethylidene)-2-phenyl-5(4H)-oxazolone have also been reported.917,918 This methodology was used to prepare cyclopropyl tyrosine and 1-amino-2-(4-hydroxyphenyl)cyclopropenecarboxylic acid.919 However, all attempts to obtain 1-amino-2-(3,4-dihydroxyphenyl)cyclopropenecarboxylic acid, the cyclopropane analogue of DOPA via cyclopropanation of the oxazolone were unsuccessful. In this case, the intermediate spiropyrazoline 646 was isolated in excellent yield. However, pyrolysis of 646 only produced the homologated oxazolone 647 (Scheme 7.206).920

When 4-heteromethylene-2-phenyl-5(4H)-oxazolones 648 are reacted with diazomethane, a five component mixture 649-653 was obtained. The product ratio depends on the β-heteroatom of double bond (Scheme 7.207).424 4-(Chloromethylene)-2-phenyl-5(4H)-oxazolone 394921 and 2-(acyloxy methylene)-5(4H)-oxazolone 424 mainly give a mixture of 2-hetero substituted spirocyclopropanes. For example, the 2-chloro derivatives 654 and 655 have been isolated and further elaborated to both stereoisomers of 1-amino-2-chlorocyclopropenecarboxylic acid 656 and 657 (Scheme 7.208).

In contrast, when the same reaction was carried out on 4-(bromomethylene)-2-phenyl-5(4H)-oxazolone 658 (X = Br)922 or 4-(iodomethylene)-2-phenyl-5(4H)-oxazolone 658 (X = I)424 serendipitous formation of the 2-(halomethyl)spirocyclopropanes 659 and 660 was observed. Both diastereoisomers of 2,3-methanomethionine 663 and 664 have been prepared from the isolated 2-(bromomethyl)-spirocyclopropane oxazolones, 659 and 660, respectively. The isolated 2-(iodomethyl)spirocyclopropane oxazolones have been hydrolyzed to furnish the
Scheme 7.206

Scheme 7.207

Scheme 7.208

264 5(2H)-Oxazolones and 5(4H)-Oxazolones
cyclopropylhomoserine derivatives, 661 and 662. In this case, the trans-cyclopropylhomoserine lactonized to 662 under the reaction conditions (Scheme 7.209).

The reaction of diazomethane with 2-phenyl-4-(sulfanylmethylene)-5(4H)-oxazolone 665, readily obtained from 4-(chloromethylene)-2-phenyl-5(4H)-oxazolone 394, generates the intermediate spirocyclopropane oxazolones 666 and 667, respectively. Both 666 and 667 were independently elaborated to the 2-sulfanyl-1-aminocyclopropanecarboxylic acid derivatives 668 and 669—a novel class of conformationally constrained masked cysteines (Scheme 7.210). Representative examples of spirocyclopropane oxazolones are shown in Table 7.47 (Fig. 7.58).

Diphenyldiazomethane has also been used in 1,3-dipolar cycloadditions with 4-arylmethylene-5(4H)-oxazolones 670 to prepare gem-diphenyl-spirocyclopropane oxazolones 671. A number of 671 analogues were evaluated as antibacterial agents. In addition, 671 derivatives were precursors for new 1-aminocyclopropanecarboxylic acid derivatives 672, for example, 1-(benzoylamino)triphenylcyclopropanecarboxylic acid 672 (R = Ar = Ph) (Scheme 7.211).

Nitrile imines, generated in situ from the corresponding N-(phenyl)arylhydrazonoyl chlorides, react with unsaturated 5(4H)-oxazolones 673 to give the corresponding spiropyrazoline oxazolones 674. The reaction is regioselective and in each case only one regioisomeric cycloadduct is formed. The process is also stereoselective. However, some partial isomerization of an (E)-oxazolone to the (Z)
Scheme 7.210

TABLE 7.47. OXAZOLONE SPIROCYCLOPROPANES FROM 1,3-DIPOLAR CYCLOADDITION REACTION OF UNSATURATED 5(4H)-OXAZOLONES WITH DIAZOMETHANE

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Ph</td>
<td>Ph</td>
<td>45</td>
<td>918</td>
</tr>
<tr>
<td>Ph</td>
<td>H</td>
<td>Ph</td>
<td>50</td>
<td>918</td>
</tr>
<tr>
<td>H</td>
<td>4-MeC₆H₄</td>
<td>Ph</td>
<td>60</td>
<td>918</td>
</tr>
<tr>
<td>4-MeC₆H₄</td>
<td>H</td>
<td>Ph</td>
<td>40</td>
<td>918</td>
</tr>
<tr>
<td>H</td>
<td>4-MeOC₆H₄</td>
<td>Ph</td>
<td>55</td>
<td>918</td>
</tr>
<tr>
<td>4-MeOC₆H₄</td>
<td>H</td>
<td>Ph</td>
<td>45</td>
<td>918</td>
</tr>
<tr>
<td>H</td>
<td>4-ClC₆H₄</td>
<td>Ph</td>
<td>45</td>
<td>918</td>
</tr>
<tr>
<td>4-ClC₆H₄</td>
<td>H</td>
<td>Ph</td>
<td>50</td>
<td>918</td>
</tr>
<tr>
<td>H</td>
<td>3,4-(MeO)₂C₆H₃</td>
<td>2-MeO₂CC₆H₄</td>
<td>33</td>
<td>920</td>
</tr>
<tr>
<td>H</td>
<td>Cl</td>
<td>Ph</td>
<td>73 (Z + E)</td>
<td>424</td>
</tr>
<tr>
<td>H</td>
<td>AcO</td>
<td>Ph</td>
<td>76 (Z + E)</td>
<td>424</td>
</tr>
<tr>
<td>H</td>
<td>MeS</td>
<td>Ph</td>
<td>70 (Z + E)</td>
<td>518</td>
</tr>
<tr>
<td>H</td>
<td>PhS</td>
<td>Ph</td>
<td>73 (Z + E)</td>
<td>518</td>
</tr>
<tr>
<td>H</td>
<td>PhCH₂S</td>
<td>Ph</td>
<td>54 (Z + E)</td>
<td>518</td>
</tr>
<tr>
<td>H</td>
<td>Ph₂CS</td>
<td>Ph</td>
<td>67 (Z + E)</td>
<td>518</td>
</tr>
<tr>
<td>H</td>
<td>(S)-2,2-dimethyl-1,3-dioxolan-4-yl</td>
<td>Ph</td>
<td>73</td>
<td>933</td>
</tr>
</tbody>
</table>
isomer prior to the cycloaddition reaction has been observed. Contradictory regiochemical assignments have been made although alternative syntheses of products obtained from the cycloadducts support the regiochemistry shown in Scheme 7.212. Representative examples are shown in Table 7.48 (Fig. 7.59).

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Ph</td>
<td>30–70</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>4-MeC₆H₄</td>
<td>30–70</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>4-ClC₆H₄</td>
<td>30–70</td>
</tr>
<tr>
<td>4-MeC₆H₄</td>
<td>Ph</td>
<td>4-MeC₆H₄</td>
<td>30–70</td>
</tr>
<tr>
<td>4-MeC₆H₄</td>
<td>Ph</td>
<td>Ph</td>
<td>30–70</td>
</tr>
<tr>
<td>4-MeC₆H₄</td>
<td>Ph</td>
<td>4-MeOC₆H₄</td>
<td>30–70</td>
</tr>
<tr>
<td>4-MeC₆H₄</td>
<td>Ph</td>
<td>4-ClC₆H₄</td>
<td>30–70</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>4-MeOC₆H₄</td>
<td>30–70</td>
</tr>
</tbody>
</table>

aData from Ref. 927.
The reaction of nitrile oxides with 4-arylmethylene-5(4\textsubscript{H})-oxazolones \textit{675} to give the corresponding spiroisoxazoline oxazolones \textit{676} is also well known.647,927,928 The regiochemistry of this cycloaddition reaction was initially incorrectly assigned but a careful study of the reaction showed that the regiochemistry of the 1,3-dipolar cycloaddition of nitrile oxides is the same as that observed with nitrile imines (Scheme 7.213). Examples of spiroisoxazoline oxazolones are shown in Table 7.49 (Fig. 7.60).

Both reactions have been utilized to prepare heterocyclic compounds such as pyrazoles \textit{681} (X = N-Ph) and isoxazoles \textit{681} (X = O) as shown in Scheme 7.214.647 Starting from an unsaturated 5(4\textsubscript{H})-oxazolone \textit{677}, either a cycloaddition–ring-opening reaction sequence (\textit{677} \rightarrow \textit{678} \rightarrow \textit{680}) or a ring-opening–cycloaddition reaction sequence (\textit{677} \rightarrow \textit{679} \rightarrow \textit{680}) affords the same product.

<table>
<thead>
<tr>
<th>R\textsubscript{1}</th>
<th>R\textsubscript{2}</th>
<th>R\textsubscript{3}</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>76</td>
</tr>
<tr>
<td>4-MeC\textsubscript{6}H\textsubscript{4}</td>
<td>Ph</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>47</td>
</tr>
<tr>
<td>4-ClC\textsubscript{6}H\textsubscript{4}</td>
<td>Ph</td>
<td>2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{2}</td>
<td>62</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>2,6-Cl\textsubscript{2}C\textsubscript{6}H\textsubscript{3}</td>
<td>82</td>
</tr>
<tr>
<td>4-MeC\textsubscript{6}H\textsubscript{4}</td>
<td>Ph</td>
<td>2,6-Cl\textsubscript{2}C\textsubscript{6}H\textsubscript{3}</td>
<td>80</td>
</tr>
<tr>
<td>4-ClC\textsubscript{6}H\textsubscript{4}</td>
<td>Ph</td>
<td>2,6-Cl\textsubscript{2}C\textsubscript{6}H\textsubscript{3}</td>
<td>40</td>
</tr>
</tbody>
</table>

aData from Ref. 928.
If 4-(ethoxymethylene)-2-phenyl-5(4H)-oxazolone 403 is used as the dipolarophile, reaction with nitrile oxides yields cycloadducts 682 with reversed regiochemistry. Further reaction of 682 can then yield 4-aminoisoxazoline-4-carboxylic acids 683 or 4-amino-3-arylisoxazoles 684 depending on the reaction conditions (Scheme 7.215).929

7.4.3.4. Diastereoselective Cyclopropanations

Cyclopropanation of the chiral oxazolone 632 derived from 1,2-O-isopropylidene-α-glyceraldehyde with diazomethane affords a mixture of five compounds.
These include the four possible diastereomeric spirocyclopropane derivatives 633, 685, 634, and 686 resulting from methylene insertion into the double bond and a spirocyclopropane 687 derived from methylene insertion into the double bond of a homologated 5(4H)-oxazolone. The amount of 687, the cis/trans selectivity and both the cis and trans diastereoselectivities depend on the reaction conditions. Use of nonpolar solvents avoids formation of 687. In addition, the cis/trans selectivity and both cis and trans diastereoselectivities are very high such that the major compound 633 can be isolated in 75% yield (Scheme 7.216). 930

![Scheme 7.216](image)

The stereochemical course of this reaction can be rationalized by considering attack of the 1,3-dipole on the Cα-Re face of the exocyclic double bond. This process is in accord with the calculated energies of reactants, transition structures, and reaction intermediates at semiempirical and ab initio theory levels.931 The major isolated compound 633 has been transformed into several interesting and enantiomERICALLY pure cyclopropylamino acids 690 via the β-formyl intermediate 689 (Scheme 7.217).932–934
Despite the importance and well-known reactivity of the exocyclic double bond of unsaturated oxazolones, this aspect has only recently been exploited in Diels–Alder reactions with dienes. Reaction of (Z)-4-benzylidene-2-phenyl-5(4H)-oxazolone 621 with an excess of butadiene or 2,3-dimethylbutadiene in the presence of Lewis acid catalysts, gives the corresponding spirooxazolone adducts 691. Ring opening of 691 followed by hydrogenation and hydrolysis then leads to the synthesis of new constrained phenylalanine analogues. For example, methanolysis of the cyclohexene adduct 691 (R = Me) yields 694 that was hydrogenated to give a mixture from which the major diastereoisomer was isolated. Subsequent acid hydrolysis of this diastereoisomer then gave the corresponding stereoisomerically constrained phenylalanine analogue 695 (Scheme 7.218).

Racemic cis-1-amino-2-phenylcyclohexane-1-carboxylic acid 693 can be prepared by Diels–Alder reaction of (Z)-4-benzylidene-2-phenyl-5(4H)-oxazolone 621 and butadiene in an analogous manner. Coupling N-tert-butyloxycarbonyl-L-proline with 693 yielded diastereomeric dipeptides that were separated chromatographically. The behavior of the individual dipeptides was studied as a means to effect β-turn modulation by such cyclohexane analogues of phenylalanine.

In general, enantiomerically pure analogues of constrained phenylalanes with a cyclohexane skeleton have been obtained from the racemic butadiene Diels–Alder oxazolone adduct. The double bond was hydrogenated and both enantiomeric compounds were resolved using Obrecht’s methodology for resolution of quaternary amino acids. Following ring opening of the oxazolone with the (S)-phenylalanine cyclohexylamide, both diastereomeric dipeptides were separated and isolated by column chromatography. Subsequent hydrolysis then leads to (1R, 2R)- and (1S, 2S)-1-amino-2-phenylcyclohexane-1-carboxylic acid.
Methanolysis of 696 followed by reaction with iodine, leads to syn \(\gamma \)-hydroxylation relative to the amide group. Further, deiodination and subsequent hydrolysis affords the \(\gamma \)-hydroxy-\(\alpha \)-amino acid derivative 698.938 This interesting reaction sequence opens the way for the synthesis of hydroxy substituted constrained phenylalanines with defined stereochemistry (Scheme 7.219).

Scheme 7.218

\[(\text{Z})-4\text{-Benzylidene-2-phenyl-5(4H)-oxazolone}}\ 621\ also\ reacts\ with\ cyclopentadiene\ in\ the\ presence\ of\ a\ Lewis\ acid.\ In\ this\ case,\ the\ reaction\ leads\ to\ a\ mixture\ of\ cycloadducts 699\ and\ 700\ derived\ from\ endo\ and\ exo\ attack\ of\ the\ diene.\ The\ mixture\ of\ 699\ and\ 700\ can\ be\ separated\ chromatographically\ or\ simply\ by\ filtration\ after\ a\ typical\ iodolactonization\ reaction.\ 939,940 In\ contrast, (E)-4-benzylidene-2-phenyl-5(4H)-oxazolone 642 gave considerable isomerization due to the presence of the Lewis acid under the same reaction conditions necessitating avoidance of these catalysts. Reaction of 642 and cyclopentadiene in mixtures of acetone–water gives the corresponding endo- and exo-cycloadducts 703 and 704 in very high yields after 6 days at room temperature.940 Once again iodolactonization allows the separation of 703 and 704. Each endo- and exo-cycloadduct was
converted to the corresponding amino acid by hydrogenation of the double bond and subsequent hydrolysis (Scheme 7.220). This reaction sequence independently provides the four d,l-pairs of 2-amino-3-phenylnorbornane-2-carboxylic acids 701, 702, 705, and 706 from (Z)- and (E)-4-benzylidene-2-phenyl-5(4H)-oxazolones.

The Diels–Alder reaction of (Z)-4-arylidene-2-phenyl-5(4H)-oxazolone 707 and Danishefsky’s diene is best conducted in toluene at reflux to produce both the endo and the exo stereoisomers of 708. Base treatment of the cycloadduct mixture promotes aromatization through spontaneous oxidative decarboxylation to give 3-aryl-4-benzamidophenols that are converted to 3-aryl-4-aminophenols 709 by acid
hydrolysis.942 On the other hand, treatment of the cycloadduct mixture with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in methanol leads to ring opening and elimination to produce enone 710. Incorporation of an oxygenated functional group at C-4 renders 710 a valuable intermediate for the synthesis of \(\delta\)-substituted conformationally restricted \(\alpha\)-amino acids (Scheme 7.221).941

For example, hydrogenation of 711 followed by hydrolysis of the ester and benzamide gives 1-amino-4-oxo-2-phenyl-1-cyclohexanecarboxylic acid 713.941 Stereoselective reduction of the carbonyl group of 712 opens the way for the synthesis of new analogues of 4-hydroxy-1-aminocyclohexanecarboxylic acids 715 and 719 of defined stereochemistry.943 In addition, 714, the stereoisomer with trans disposed benzamide and hydroxy groups, undergoes cyclization and hydrolysis to produce 2-phenyl-7-azabicyclo[2.2.1]heptane-1-carboxylic acid 717—a new constrained proline analogue (Scheme 7.222).944

Hydroxylation of 711 at C-2 can be achieved by an intramolecular conjugate addition of the benzamide to the enone system. The reaction takes place in high yield in the presence of a Lewis acid and affords direct hydroxylation with a syn relationship to the amide group via an intermediate 1,3-oxazoline (Scheme 7.223).945

To extend this methodology, Diels–Alder reactions of several (\(Z\))-4-arylidene (heteroarylidene)-2-phenyl-5(4\(H\))-oxazolones with butadiene, 2,3-dimethylbutadiene, cyclopentadiene and Danishefsky’s diene have been studied. This work demonstrated that the products depended on the nature of the aromatic ring and the diene used.946 An interesting application of this methodology is the synthesis of racemic epibatidine 729, a new alkaloid with a 7-azabicyclo[2.2.1]heptane skeleton that has proven to be a very potent analgesic. Preparation of 729 began with the Diels–Alder adduct 726 obtained from (\(Z\))-4-[5\(^{'}\)-(2\(^{'}\)-chloropyridylmethylene)]-2-
Scheme 7.222

Scheme 7.223
phenyl-5(4H)-oxazolone 725 and Danishefsky’s diene. Elaboration of 726 to 729 was accomplished readily as shown in Scheme 7.224.947

A number of other specific reactions have been studied. For example, Diels–Alder reactions of the unsaturated 5(4H)-oxazolone derived from piperonal with 2-tert-butyldimethylsilyloxy-1,3-butadiene, piperylene, 1-acetoxy-1,3-butadiene, and Danishefsky’s diene have been described. In these cases, the results are variable and are dependent on the diene with poor yields often obtained even at high temperatures. Moreover, the stereochemical outcome of these reactions has not been determined.948

A tandem Dakin–West/Diels–Alder reaction sequence has been proposed to explain the (trifluoromethyl)bicyclo[2.2.1]heptane α-amino acid precursors 731 and 732 isolated from hippuric acid, trifluoroacetic anhydride, and cyclopentadiene (Scheme 7.225).949

Irradiation of 4-(but-3-enylidene)-2-phenyl-5(4H)-oxazolone 733 leads to the [4 + 2] adduct 734 derived from 733 acting as both a diene and a dienophile in a solid-state photo Diels–Alder reaction (Scheme 7.226).950

\[
\begin{align*}
\text{CO}_2\text{H} & \xrightarrow{\text{TFAA}} \text{CF}_3\text{CO}_2 \quad \text{CF}_3\text{CO}_2 \quad \text{CF}_3\text{CO}_2 \\
\text{NHCOPh} & \quad \text{Ph} \quad \text{Ph} \quad \text{Ph}
\end{align*}
\]

Scheme 7.225
Diels–Alder reactions of 4-heteromethylene-5(4H)-oxazolones have been described. (E)-4-(Chloromethylene)-5(4H)-oxazolone 737 reacts with 2,3-dimethylbutadiene in the presence of ethylaluminum dichloride to afford the cycloadduct 738. The cycloaddition reaction is characterized by high diastereoselectivity and occurs without appreciable isomerization of the dienophile. Further synthetic transformations of 738 yield 1-amino-3,4-dimethyl-6-hydroxy-cyclohex-3-enecarboxylic acid 739 (Scheme 7.227). \(^\text{951}\) Examples of Diels–Alder reactions of acyclic dienes and unsaturated 5(4H)-oxazolones are shown in Table 7.50 (Fig. 7.61).

7.4.3.6. Diastereoselective Diels–Alder Reactions

(Z)-4-[(S)-2,2-Dimethyl-1,3-dioxolan-4-ylmethylene]-2-phenyl-5(4H)-oxazolone 632 can react as a dienophile in diastereoselective Diels–Alder reactions. Thus, 632 undergoes a thermally induced Diels–Alder reaction with cyclic dienes, for example, cyclopentadiene and cyclohexadiene, to afford a mixture of the four
possible Diels–Alder adducts. In both reactions the diastereofacial selectivities are extremely high and the adduct mixture is mainly composed of one endo- and one exo-adduct. With cyclopentadiene exo-adducts predominate slightly whereas reaction with cyclohexadiene shows a slight endo selectivity and endo-adduct is the major compound. Solvent polarity does not have a noticeable effect on either the exo–endo selectivity or on diastereofacial selectivities at room temperature. However, if the reaction is performed at low temperature even better diastereofacial selectivities are obtained. Thermally, the reaction with cyclohexadiene is very slow although it can be accelerated by Lewis acid catalysts. Here, in some cases, the formation of cycloadducts from the (E)-oxazolone is also observed but use of lithium perchlorate can minimize these compounds. After isolation, the major cycloadducts have been transformed into a new class of conformationally constrained (S)-aspartic analogues as shown in Scheme 7.228.

Examples of Diels–Alder adducts from unsaturated oxazolones and cyclic dienes are shown in Table 7.51 (Fig. 7.62).

In contrast, 632 does not react or reacts very slowly in thermal Diels–Alder reactions with acyclic dienes such as butadiene, 2-methyl-1,3-butadiene, and 2,3-dimethylbutadiene. This behavior results in extensive formation of adducts derived from the (E)-oxazolone isomer. However, 632 and acyclic dienes do give good conversions in reasonable reaction times using lithium perchlorate, which also minimizes the formation of adducts derived from the (E)-oxazolone. In all cases the diastereofacial selectivities are very high and additionally, reaction of 632 with 2-methyl-1,3-butadiene \((R_1 = \text{Me}, \ R_2 = H)\) gives a high para-regioselectivity leading to 750 (Scheme 7.229).
 Unsaturated 5(4H)-Oxazolones (2-Oxazolin-5-ones)

Scheme 7.228

Scheme 7.229
The chiral \((E)\)-oxazolone derived from 1,2-\(O\)-isopropylidene-\(\alpha\)-glyceraldehyde has also been used as a dienophile in the Diels–Alder reaction and, in this case, \((E/Z)\) isomerization of the oxazolone can be avoided using heterogeneous catalysts that promote the synthesis of trans-adducts. \(^{429}\)

The Diels–Alder reaction of \(632\) and activated dienes, such as 1-trimethylsilyloxy-1,3-butadiene and Danishefsky’s diene, can be induced thermally. In both cases, adducts \(751\) derived from endo and exo addition are obtained. There was no endo–exo selectivity in this reaction using Danishefsky’s diene. However, 1-trimethylsilyloxy-1,3-butadiene gave rise to a slight preference for exo attack and was a completely diastereoselective reaction. In both cases, further elaboration of \(751\) led to a single diastereoisomer, \(752\) and \(753\), respectively, in good yields. \(^{428,954,955}\) The cycloadduct from \(632\) and Danishefsky’s diene has also been converted to highly functionalized and interesting analogues including the 1-benzamido-4-\(\alpha\)-oxo-1,2-cyclohexanedicarboxylic acid 1-methyl ester \(754\) \(^{955}\) and the tetrahydrobenzoxazole derivative \(755\) (Scheme 7.230; Table 7.52, Fig. 7.63). \(^{954}\)

A model to rationalize the stereochemical course of the reaction has been proposed. Evaluation of the conformational energy curve derived from rotation around the \((C_1–C_2)\) bond by AM1 semiempirical calculations shows only one deep minimum that points to the existence of a single conformation. In this conformation, which is supported by NMR studies, the \(C_2\)-Si side of the olefinic bond is shielded so that attack of the diene should come almost exclusively from the \(C_2\)-Re side as, indeed, has been observed in all cases. \(^{952}\)
TABLE 7.52. DIELS–ALDER ADDUCTS FROM REACTION OF UNSATURATED 5(4H)-OXAZOLONES AND ACTIVATED DIENES

<table>
<thead>
<tr>
<th>(\text{R}_1)</th>
<th>(\text{R}_2)</th>
<th>(\text{R}_3)</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>MeO</td>
<td>TMSO</td>
<td>71</td>
<td>942</td>
</tr>
<tr>
<td>2-NO(_2)C(_6)H(_4)</td>
<td>MeO</td>
<td>TMSO</td>
<td>64</td>
<td>942</td>
</tr>
<tr>
<td>3-MeO(_2)C(_6)H(_4)</td>
<td>MeO</td>
<td>TMSO</td>
<td>52</td>
<td>942</td>
</tr>
<tr>
<td>2-MeO(_2)C(_6)H(_4)</td>
<td>MeO</td>
<td>TMSO</td>
<td>68</td>
<td>942</td>
</tr>
<tr>
<td>4-ClC(_6)H(_4)</td>
<td>MeO</td>
<td>TMSO</td>
<td>65</td>
<td>942</td>
</tr>
<tr>
<td>3,4-methylenedioxyphenyl</td>
<td>MeO</td>
<td>TMSO</td>
<td>100</td>
<td>948</td>
</tr>
<tr>
<td>3,4-methylenedioxyphenyl</td>
<td>H</td>
<td>TBSO</td>
<td>50</td>
<td>948</td>
</tr>
<tr>
<td>3,4-methylenedioxyphenyl</td>
<td>AcO</td>
<td>H</td>
<td>72</td>
<td>948</td>
</tr>
<tr>
<td>(S)-2,2-dimethyl-1,3-dioxolan-4-yl</td>
<td>TMSO</td>
<td>H</td>
<td>70</td>
<td>428</td>
</tr>
<tr>
<td>(S)-2,2-dimethyl-1,3-dioxolan-4-yl</td>
<td>MeO</td>
<td>TMSO</td>
<td>90</td>
<td>955</td>
</tr>
</tbody>
</table>
A number of other interesting reactions of unsaturated $5(4H)$-oxazolones can not be readily classified among the characteristic reactions described in Sections 7.4.2 and 7.4.3. For example, 4-cycloalkylidene-2-phenyl(methyl)-$5(4H)$-oxazolones 756 are oxygenated in basic medium to give the cycloalkenyl imides 757. This reaction involves a base-catalyzed isomerization, followed by oxygenation and subsequent fragmentation of an intermediate peroxide (Scheme 7.231). Oxygen addition to 4-arylidene-$5(4H)$-oxazolones also leads to the corresponding ring-opened products.

Fluorination of unsaturated $5(4H)$-oxazolones 758 affords the expected difluorinated derivatives 759. Basic hydrolysis of 759 yields a β-fluoro-α-keto acid 760 that is reductively aminated to give an erythro-β-fluoro-α-amino acid 761 (Scheme 7.232).

Electrochemical reduction of 4-benzylidene-2-methyl-$5(4H)$-oxazolone to produce racemic N-acetylphenylalanine has been accomplished using lead and cadmium cathodes.

The π-donor behavior of 4-arylmethylene-2-phenyl-$5(4H)$-oxazolones 762 with the π-acceptor tetracyanoethylene has also been studied. The initially formed charge-transfer complex is converted via intermediate 763 to a new compound for which a 2-aryl-1-benzamido-3,3,4,4-tetracyanocyclobutanecarboxylic acid 764 has been proposed on the basis of the NMR spectral data (Scheme 7.233).

Charge-transfer complexes of 2-aryl-4-arylidene-$5(4H)$-oxazolones with di- and trinitrobenzene as π acceptors have also been prepared.

Photoreactivities of some (Z)-unsaturated oxazolones 765 have been studied. The authors found that irradiation of 765 with a 450-W medium pressure mercury
lamp and a Pyrex filter effected (Z/E) isomerization as the major reaction. In the absence of a Pyrex filter 765 decarbonylated to a ketenimine 767 that was trapped by protic solvents to afford N-acylimidates 768 and imides 769 (Scheme 7.234).963,964

Solid-state irradiation of 2-aryl-4-cycloalkylidene-5(4H)-oxazolones 770 effects photodimerization to produce centrosymmetric 1,3-diazetidines 771 in very high yields via an uncommon C–N cycloaddition (Scheme 7.235).965
Spectrometric determination of microgram levels of Zn and Cu has been achieved through complexation with unsaturated 5(4H)-oxazolones. Unsaturated 5(4H)-oxazolones react with ethers under ultrasonic conditions to afford esters. In addition, poly(5-imidazolones) with good thermal properties have been prepared from the bis(oxazolone) derived from terephthalaldehyde and primary amines while new sensitizing dyes containing unsaturated 5(4H)-oxazolone moieties have been synthesized.

7.4.5. Structural Analysis

Spectroscopic studies of series of unsaturated 5(4H)-oxazolones have been performed to correlate spectroscopic behavior with a characteristic substituent parameter. In this context, some authors have described little effect on the C=N and C=O IR frequencies in some 4-arylidene-2-phenyl-5(4H)-oxazolones by p-substituents on the C-4 aryl group. However, other authors have reported a linear correlation of the IR frequency of the C=O group with substituent constants in some 4-arylidene-2-phenyl-5(4H)-oxazolones. This would be expected for a high transmission of the substituent effect through the ring. Note that the carbonyl group has a two-component band in the 1768–1812-cm\(^{-1}\) region that is sensitive to conformational changes and solvent effects.

Studies of the UV–visible absorption spectra of 4-arylidene-2-phenyl-5(4H)-oxazolones show that the sign of the solvatochromism is substituent dependent in hydrogen-bonding solvents. On the other hand, in non-hydrogen-bonding solvents all substituents show a positive solvatochromism.

Hydroxy-substituted oxazolones show an additional long-wavelength band in the visible absorption spectra in triethanolamine–acetone mixtures. Prototropic equilibrium constants at different temperatures were determined by detailed studies of this new absorption band.

In measurements of absorption and fluorescence parameters for various oxazolones, the fluorescence quantum yields are usually <0.01. Oxazolones substituted with a naphthyl group or a p-(dimethylaminophenyl) group are exceptions.

Rotational barriers about the exocyclic C—N bond of 2-aryl-4-[\(N,N\)-dimethylamino)methylene]-5(4H)-oxazolones were determined by careful analysis of NMR spectral data for the methyl protons. A correlation was established between the energy barriers and Hammett’s constants for substituents on the 2-aryl group. Electron-withdrawing substituents in the para position increase the barrier heights, whereas electron-donating substituents have the opposite effect.

It must be borne in mind that two geometric isomers are possible for unsaturated 5(4H)-oxazolones. In a review published in 1975, Rao showed that in those cases where both geometric isomers had been prepared, different spectroscopic behavior was observed. Different spectroscopic behaviors of the two geometric isomers have been studied further and, in some cases, the data allows configurational assignments to be made. More recent results on this subject follow.
NMR is a useful technique to determine the stereochemistry of double bonds and recently it has been applied to the configurational assignment of geometric isomers of some unsaturated 5(4H)-oxazolones. For example, geometric isomers can be distinguished in 1H NMR by benzene-induced shifts. This technique was used to correctly assign the configuration of the (E, Z)- and (E, E)-geometric isomers of unsaturated 5(4H)-oxazolones prepared from (E)-cinnamaldehyde.977

The value of the long-range 13C–1H coupling constants between the olefinic proton and the C-5 carbonyl carbon in the fully coupled 13C NMR (75 MHz) spectra can be used to assign the configuration of (Z)- and (E)-unsaturated 5(4H)-oxazolones because $^{1,3}J_{CH}^{(Z)} > ^{1,3}J_{CH}^{(E)}$. The coupling constants for (Z)-oxazolones772 are ~ 5.5 Hz, whereas for (E)-oxazolones773 the coupling constants are ~ 12.5 Hz.978 For chiral oxazolones derived from 1,2-O-isopropylidene-D-glyceraldehyde these values are $^{1,3}J_{CH} = 5.5$ Hz for the (Z)-oxazolone and $^{1,3}J_{CH} = 12.5$ Hz for the (E)-oxazolone930 (Fig. 7.64).

The stereochemistry of the double bond in 4-(α-arylethylidene)-2-phenyl-5(4H)-oxazolones can be determined by measurements of long-range heteronuclear selective carbon-13 {proton} nuclear Overhauser enhancements. In the (Z)-isomers774, large nuclear Overhauser enhancements are observed for the carbonyl carbon atom upon presaturation of the methyl group (Fig. 7.65). These effects are much smaller for the (E) isomers.979

Electron impact mass spectrometry is not effective to distinguish between the (Z) and (E) isomers of 4-benzylidene-2-phenyl-5(4H)-oxazolone and 4-(α-phenylethylidene)-2-phenyl-5(4H)-oxazolones because the spectra show only minor differences.

Figure 7.64. The $^{1,3}J_{CH}$ coupling constants for (Z)- and (E)-unsaturated 5(4H)-oxazolones.

Figure 7.65. Long-range heteronuclear selective carbon-13 {proton} nuclear Overhauser enhancements in (Z)-2-phenyl-4-(α-arylethylidene)-5(4H)-oxazolones.
in relative abundances of product ions. Nevertheless, collisional spectroscopy has been applied successfully to isomer differentiation. Collisional mass spectra show clear differences for the (Z) and (E) isomers in the relative abundances of ions arising from competing fragmentations. For (E) isomers the [M−CO]⁺ ion is the base peak in the spectrum, while for (Z) isomers the PhCO⁺ ion is the base peak.

The (Z) and (E) isomers of 4-benzylidene-2-phenyl-5(4H)-oxazolone and 4-(α-phenylethylidene)-2-phenyl-5(4H)-oxazolone also show different behavior as far as dipole moments are concerned. The solution conformation of the phenyl group relative to the degree of substitution and double bond stereochemistry has been studied by comparison of experimental and calculated values of dipole moments.

The (Z) and (E) isomers of 2-aryl-4-arylidene-5(4H)-oxazolones show different chromatographic behavior. In general, the relative chromatographic mobility of the (Z) and (E) isomers is dependent upon the oxazolone substituent and the chromatographic conditions.

Finally, X-ray analyses of several unsaturated oxazolones have been reported. In some cases an X-ray study has been used to determine the stereochemistry of the double bond, as for (E)-4-(but-2-en-1-yldene)-2-phenyl-5(4H)-oxazolone, (Z)-4-[(1-ethoxethylidene)-2-phenyl-5(4H)-oxazolone, (Z)-(N-acetyl-4-[(2-phenyl-5-oxo-4(5H)-oxazolidine)methyl]-2H-1-imidazole, or (Z)-4-(acetoxymethylene)-2-phenyl-5(4H)-oxazolone. X-ray analyses of other 4-heteroarylmethylen-5(4H)-oxazolones have been reported and were directed to elucidating the structural features. For example, 4-(aminomethylene)-5(4H)-oxazolones show almost perfect planar arrangement of the oxazolone ring and the substituted amino group. This situation indicates the existence of extended conjugation involving the carbonyl group, the exocyclic double bond and the nitrogen atom.

Other structural features of unsaturated-5(4H)-oxazolones can be deduced from crystallographic data including the effect on planarity of substituents on the exocyclic double bond. For example, 4-benzylidene-5(4H)-oxazolones show a completely planar conformation that favors strong electronic conjugation in both (Z) and (E) isomers. The same effect has been reported for other 4-arylidene-5(4H)-oxazolones. In contrast, the presence of ortho substituents on the arylidene group force the aryl group to twist out of the plane, as seen in 2-phenyl-4-(2,4,6-trimethylbenzylidene)-5(4H)-oxazolone.

The phenyl group of trisubstituted 4-benzylidene-5(4H)-oxazolones is nearly planar whereas the styryl moieties in (Z)-2-phenyl-4-(α-phenylethylidene)-5(4H)-oxazolone and (Z)-2-methyl-4-(α-phenylethylidene)-5(4H)-oxazolone show significant deviations from planarity.

The X-ray crystal structure of (Z)-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylene]-2-phenyl-5(4H)-oxazolone has been determined. The analysis shows an almost planar disposition for the entire molecule with the exception of the dioxolane ring that adopts an envelope conformation. As such, the dioxolane ring is mainly situated on the si,si diastereotopic face of the olefinic bond, a situation that accounts for the observed diastereoselectivity in Diels–Alder reactions.
7.5. SUMMARY

Many aspects of the chemistry of the oxazolones have been considered in this chapter including the extensive use of these compounds as key intermediates for the synthesis of interesting and valuable products.

The synthesis of new heterocyclic structures with interesting pharmacological properties will be the objective of numerous research groups during the coming years. Oxazolones will be critical intermediates to prepare new specifically substituted heterocycles as chemists design molecules for improved pharmacological properties. For material scientists, polymerization reactions of oxazolones will be an important tool to prepare polymers with specific physical and chemical characteristics.

On the other hand, as synthetic equivalents of amino acids, unsaturated oxazolones are and will continue to be very important intermediates for the synthesis of new non-proteinogenic \(\alpha\)-amino acids, particularly for the asymmetric synthesis of these compounds using diastereo- or enantioselective methodologies. In addition, the exocyclic double bond will continue as an important focus to build new constrained amino acids for the design of peptides with improved properties.

7.6 ADDENDUM

7.6.1. Saturated 5(4H)-Oxazolones (2-Oxazolin-5-ones)\(^{995a}\)

7.6.1.1. Synthesis

A number of recent papers have appeared in the literature related to the synthesis of saturated 5(4H)-oxazolones that were not yet covered in our contribution. 4-Acyl-2,4-dialkyl-5(4H)-oxazolones \(^{776}\) have been obtained from \(N\)-acylglycines. Thus, cyclization of an \(N\)-acylglycine in the presence of thionyl chloride affords a monosubstituted 5(4H)-oxazolone \(^{775}\). Acylation of \(^{775}\) with an aryl chloride in the presence of magnesium chloride occurred at C-4 to produce \(^{776}\).\(^{995b}\) Hydrolysis and decarboxylation of \(^{776}\) gave the \(N\)-acylamino ketones \(^{777}\) that are valuable intermediates to prepare oxazoles \(^{778}\) (Scheme 7.236).

2-Benzylxy-4-isopropyl(or 4-tert-butyl)-4-methyl-5(4H)-oxazolones \(^{780}\) have been prepared from an \(N\)-benzylxycarbonyl amino acid \(^{779}\) using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDAC·HCl) as the cyclization agent (Scheme 7.237).\(^{996}\) Treatment of \(^{780}\) with tetramethylfluoroformamidinium hexafluorophosphate (TFFH) has shown that they are possible intermediates in the fluorination of \(\alpha\)-methyl-\(\alpha\)-alkyl amino acids by TFFH.

Several small peptides \(^{781}\) possessing an N-terminal \(\beta\)-hydroxy acid have been obtained using the azirine–oxazolone method developed by Heimgartner.\(^{997}\)
Treatment of these compounds with HCl\(_{\text{(g)}}\) leads to an intermediate 5(4H)-oxazolone 782 that, in absence of an external nucleophile, is captured intramolecularly and undergoes a ring enlargement to afford the corresponding cyclic pentadepsipeptides 783 (Scheme 7.238).
7.6.1.2. Reactions

Some new ring-opening reactions of saturated 5(4H)-oxazolones have recently appeared in the literature. For example, the reaction of 4-substituted-4-(triphenylphosphonio)-5(4H)-oxazolones with methanol in the presence of DBU depends on the steric bulk of the substituent at C-4. The 5(4H)-oxazolones having a bulky C-4 substituent suffer ring opening whereas those having a small C-4 substituent undergo competitive substitution of the triphenylphosphonium group by methanol.998

Recently, Candida antarctica lipase B (Novozyme) has been used to develop an effective and versatile dynamic kinetic resolution of 2-phenyl-4-substituted-5(4H)-oxazolones 784.999 This catalyst tolerates a wide range of substrates that are transformed into optically active N-benzoylamino acid esters 785 in high yield and ee. The presence of a catalytic amount of an organic base usually increases the enantioselectivity of the reaction. However, optimal results are obtained in the absence of a base when tetrahydrofuran or acetonitrile are used as solvents (Scheme 7.239).

\[
\begin{align*}
R_1 & \quad \text{Novozyme} \\
& \quad \text{CO}_2R_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{ent-784} \\
\text{784} \\
\end{align*}
\]

\[
\begin{align*}
R_1 & \quad \text{Novozyme} \\
& \quad \text{CO}_2R_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{ent-784} & \quad \text{784} \\
\end{align*}
\]

\[
\begin{align*}
R_1 & \quad \text{Novozyme} \\
& \quad \text{CO}_2R_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{ent-784} & \quad \text{784} \\
\end{align*}
\]

Examples of homooligomer series of new model peptides that incorporate the \(\alpha,\alpha\)-disubstituted amino acid 2\',1':1,2;1''\,2''':3,4-dibenzocyclohepta-1,3-diene-6-amino-6-carboxylic acid (Bip) have been obtained using 5(4H)-oxazolones 787 as key intermediates (Scheme 7.240).1000

N-Acylamino aromatic ketones 790 can be prepared by arylation of saturated oxazolones in the presence of Lewis acids. Cyclodehydration of 790 leads to 2,5-diaryloxazoles 791. For example, saturated 5(4H)-oxazolones 789 from N-benzoylalanine or N-benzoylvaline undergo Friedel–Crafts arylation to afford substituted N-benzoylphenacylamines 790. In the presence of POCl\(_3\), 790 cyclizes to produce 5-aryl-2-phenyloxazoles 791 (Scheme 7.241).1001

Dimerization of 4-monosubstituted-5(4H)-oxazolones 792 has been reported1002 to occur in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy, free radical (TEMPO) to give the corresponding 4,4'-bis(oxazolones) 793 (Scheme 7.242).

1,3-Dipolar cycloaddition of 4-arylmethyleneisoxazol-5-ones 794 and 2-methyl-4-phenyl-5(4H)-oxazolone 795 leads to pyrrole-3-carboxylic acids that have been isolated as hydroxamates 796. The authors carried out this cycloaddition–nitrile oxide addition as a one-pot reaction (Scheme 7.243).1003
Scheme 7.240

Scheme 7.241

Scheme 7.242
Finally, new palladium(II) and platinum(II) complexes from 4-benzyl-4-methyl-2-phenyl-5(4H)-oxazolone or \(C_2 \) symmetric bis(oxazolone) ligands have been described.\(^{1004}\)

7.6.1.3. Structural Analysis

Molecular orbital calculations have been carried out on 2-(aminomethyl)-5(4\(H \))-oxazolone, 2-(aminomethyl)-4-methyl-5(4\(H \))-oxazolone, 2-phenyl-5(4\(H \))-oxazolone, 4-methyl-2-phenyl-5(4\(H \))-oxazolone and on the corresponding cations from protonation. The susceptibility to protonation of the different heteroatoms shows that in all cases protonation occurs preferentially at the ring nitrogen. In contrast, comparison of protonation and metalation of 2-(aminomethyl)-5(4\(H \))-oxazolones reveals that lithium and silver cations simultaneously bind two heteroatoms, the amino group and either the ring nitrogen or oxygen. A metal cation coordinated with the two nitrogen atoms \(797 \) is lowest energy isomer (Figure 7.66).\(^{1005}\)

X-ray analysis of the saturated 5(4\(H \))-oxazolone from \(N \)-benzyloxycarbonyl-(Aib)\(_4\)OH \(798 \) (Fig. 7.67) has been determined.\(^{1006}\) The oxazolone ring is nearly planar. The conformation of the amino acid residue preceding the residue of the ring system is semiextended although the Aib\(_1\) and Aib\(_2\) residues are folded.

Figure 7.66. Proposed structure of \(797 \) derived from metalation of 2-(aminomethyl)-5(4\(H \))-oxazolones.
7.6.2. Unsaturated 5(4H)-Oxazolones (2-Oxazolin-5-ones)1007a

7.6.2.1. Synthesis

Condensation of \(N\)-acylglycines with carbonyl compounds, the Erlenmeyer synthesis, continues to be exploited to prepare a wide variety of unsaturated-5(4H)-oxazolones. The reaction is performed in the presence of a cyclodehydrating agent and recently bismuth(III) acetate has been evaluated in this capacity.1007b

Alternatively, unsaturated 5(4H)-oxazolones can be obtained from hippuric acid and a carbonyl compound or from the appropriate dehydroamino acid derivative using 3-(alkoxycarbonyl)benzotriazole-1-oxides as the cyclodehydrating agent.1008

The Erlenmeyer reaction has also been used to prepare new 4-arylmethylene-2-[3-chlorobenzo[b]thien-2-yl]-5(4H)-oxazolones \textbf{800} from the appropriate \(N\)-acylglycine \textbf{799} and several aldehydes (Scheme 7.244).1009 The pharmacological activity of these compounds as antibacterial and antiinflammatory agents has been studied.

![Scheme 7.244](image)

Reaction of \(N\)-acylthreonines with Lawesson’s reagent [2,4-bis(p-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulfide] affords a mixture of unsaturated 5(4H)-oxazolones \textbf{801} and 5(4H)-thiazolones \textbf{802} (Scheme 7.245).1010

Deprotection of the \(\alpha,\beta\)-didehydroamino acid \textbf{803} with TFA unexpectedly afforded the TFA salt of the 5(4H)-oxazolone \textbf{804} via an intramolecular cyclization (Scheme 7.246).1011
Acylation of N-vinyl phosphazenes 805 derived from dehydroaspartic acid esters gives N-acylated dehydroaspartic acid esters 806 as well as the corresponding unsaturated-5(4H)-oxazolones 807. Subsequent nucleophilic ring opening of 807 affords N-acylated dehydroaspartic acid derivatives 808 (Scheme 7.247).1012

4-(Ethoxymethylene)-5(4H)-oxazolones are useful intermediates to prepare a variety of other 4-heteromethylene-5(4H)-oxazolones. In this context, 4-(ethoxymethylene)-5(4H)-oxazolones 809 were converted to 4-(aminomethylene)-5(4H)-oxazolones 810 by reaction with amines as shown in Scheme 7.248.1013
For example, 4-(ethoxymethylene)-2-(1-naphthyl)-5(4H)-oxazolone 812, an intermediate for fluorescent 4-(N-substituted-aminomethylene)-2-(1-naphthyl)-5(4H)-oxazolones 813, was prepared from 1-naphthoylglycine and triethyl orthoformate. Reaction of 812 with amino acids gave the corresponding amino acid derivative 813 as a mixture of stereoisomers as shown in Scheme 7.249.

Reaction of \(N \)-acylamino acids with the Vilsmeier–Haack reagent leads to 2-alkyl-4-[(\(N, N \)-dimethylamino)methylene]-5(4H)-oxazolones 814. The reactivity of these compounds with various nucleophiles has been studied. Primary alkylamines undergo amine exchange with 814 to afford 2-alkyl-4-[(alkylamino)methylene]-5(4H)-oxazolones 815 (Scheme 7.250).

7.6.2.2. Ring-Opening Reactions

The reactivity of unsaturated 5(4H)-oxazolones can be divided in two main categories according to the reaction site, ring-opening reactions, and reactions of the exocyclic double bond.
In the context of the nucleophilic ring-opening reactions, the mechanism of the reaction of 4-benzylidene-2-methyl-5(4\(H\))-oxazolone with \(n\)-butylamine has been studied.\(^{1016}\)

Synthetically, amino acid esters react with a 4-(indol-3-ylmethylene)-5(4\(H\))-oxazolone \(406\) to afford dehydropeptides \(816\) as shown in Scheme 7.251.\(^{1017}\)

![Scheme 7.251](image)

The synthesis and antimicrobial activity of new 1-aryl-4-arylmethylene-2-phenyl-5(4\(H\))-imidazolones \(818\), obtained from reaction of 4-arylmethylene-2-phenyl-5(4\(H\))-oxazolones \(817\) and aromatic amines has been reported (Scheme 7.252).\(^{1018}\)

![Scheme 7.252](image)

Similarly, 4-(furan-2-ylmethylene)-2-phenyl-1-substituted-5(4\(H\))-imidazolones \(820\), evaluated as antibacterial and antifungal agents, have been synthesized from the 4-(furan-2-ylmethylene)-2-phenyl-5(4\(H\))-oxazolone \(819\) (Scheme 7.253).\(^{1019}\)

Using 4-arylmethylene-2-phenyl-5(4\(H\))-oxazolones as substrates and 2-amino-5-methyl-1,3,4-thiadiazoles as nucleophiles the synthesis of the corresponding
imidazolones has been performed on solid support under microwave irradiation. Comparing the microwave-assisted reaction with conventional heating it was concluded that the microwave-assisted reaction occurs with a considerable rate enhancement and improved yields.1020

A new method for the synthesis of 4(3\(H\))-quinazolinones \textbf{822} and 1,4-benzo-diazepine-2,5-diones \textbf{823} from reaction of 4-arylmethylene-2-methyl- \textbf{821} (\(R_1 = \text{Me}\)) or 4-arylmethylene-2-phenyl-5(4\(H\))-oxazolones \textbf{821} (\(R_1 = \text{Ph}\)) with \(o\)-aminobenzamide has also been reported (Scheme 7.254).1021

These same authors described the reaction of 4-arylmethylene-5(4\(H\))-oxazolones \textbf{824} with 2-(\(o\)-aminophenyl)benzimidazole to produce a mixture of substituted benzimidazo[1,2-\(c\)]quinazolines \textbf{825} and \textbf{826} (Scheme 7.255).1022
7.6.2.3. Reactions Involving the Exocyclic Double Bond

Recently, the cyclopropanation of (Z)-4-benzylidene-2-phenyl-5(4H)-oxazolone \(\text{621} \) with phenyl diazomethane was reported to give the spirocyclopropane, \(\text{rac-827} \) in very high yield.\(^{1023} \) Subsequent ring opening and hydrolysis of \(\text{rac-827} \) generated \(\text{trans-1-amino-2,3-diphenyl-1-cyclopropanecarboxylic acid, rac-828} \) (\(\text{c}_3\text{diPhe} \)) (Scheme 7.256). This new, constrained phenylalanine analogue induces a \(\gamma \)-turn in the solid state when incorporated into model dipeptides. The enantiomers of the \(N\)-Boc (Boc = tert-butyloxycarbonyl) methyl ester of \(\text{828} \) have been resolved by HPLC.\(^{1024} \)

![Scheme 7.256](image)

The use of 4-heteroarylmethylene- and 4-arylmethylene-5(4H)-oxazolones as dienophiles in the Diels–Alder reaction has been recently reviewed.\(^{1025} \) More recently the reactivity of the exocyclic double bond of 4-(alkoxymethylene)-5(4H)-oxazolones with several dienes has been assessed. Reaction of 4-(methoxymethylene)-2-phenyl-5(4H)-oxazolone and 1,3-butadiene requires the presence of \(\text{Et}_2\text{AlCl} \) as a catalyst and even then the Diels–Alder cycloadduct is obtained in low yield.\(^{1026} \) On the other hand, lithium perchlorate catalyzed Diels–Alder reaction between 4-[(ethoxycarbonyloxy)methylene]-2-phenyl-5(4H)-oxazolone \(\text{829} \) and cyclopentadiene is more efficient and affords a mixture of the corresponding \(\text{exo-830} \) and \(\text{endo-831} \) cycloadducts. These cycloadducts have been converted to 2-amino-3-hydroxynorbornenecarboxylic acid derivatives \(\text{832} \) and \(\text{833} \) or to 2-amino-3-hydroxynorbornecarboxylic acids \(\text{834} \) and \(\text{835} \) after a series of careful transformations.\(^{1027} \) In addition, \(\text{830} \) and \(\text{831} \) have been further elaborated to new conformationally constrained serine analogues, the polyhydroxy 2-aminonorbornecarboxylic acids \(\text{836–839} \) as shown in Scheme 7.257.\(^{1028} \)

Two asymmetric Diels–Alder approaches to analogues like \(\text{830} \) and \(\text{831} \) have been described. In the first case, chiral catalysts were employed for an enantioselective Diels–Alder reaction, but unfortunately, none of the chiral catalysts showed any enantioselectivity upon analysis of the reaction mixtures. Alternatively, a chiral oxazolone \(\text{840} \) incorporating a menthyl carbonate at C-4 was prepared and used as a dienophile with cyclopentadiene. In this case, the \(\text{exo/endo} \) ratio was 60:40 but no significant endo or exo diastereoselectivity was obtained (Scheme 7.258).\(^{1029} \)

The chiral adduct \(\text{753} \), obtained from the unsaturated oxazolone \(\text{632} \) derived from (\(R \))-glyceraldehyde and Danishefsky’s diene, has been conveniently elaborated to the valuable azabicyclic intermediate \(\text{844} \) used for the synthesis of
Scheme 7.257

Scheme 7.258
enantiomerically pure 2-substituted 7-azabicyclo[2.2.1]heptane-1-carboxylic acids 845 and 846, new conformationally constrained proline analogues. The key step in the construction of the 7-azabicyclo[2.2.1]heptane system was the intramolecular cyclization of the mesylate of 843 as shown in Scheme 7.259.

7.6.2.4. Structural Analysis

X-ray analysis of two new unsaturated oxazolones: 4-(ferrocenylmethylene)-2-phenyl-5(4H)-oxazolone and 2-phenyl-4-(4-toluidinomethylene)-5(4H)-oxazolone have recently been reported.

REFERENCES

5(2H)-Oxazolones and 5(4H)-Oxazolones

References

References

5(2\textit{H})-Oxazolones and 5(4\textit{H})-Oxazolones

References

312 5(2H)-Oxazolones and 5(4H)-Oxazolones

References 313

5(2H)-Oxazolones and 5(4H)-Oxazolones

5(2H)-Oxazolones and 5(4H)-Oxazolones

5(2H)-Oxazolones and 5(4H)-Oxazolones

References

References 323

References

1007. (a) Section 7.6.2 of the Addendum pertains specifically to unsaturated 5(4H)-oxazolones previously described in Sections 7.4.1 (Synthesis), 7.4.2 (Ring-Opening Reactions), 7.4.3 (Reactions Involving the Exocyclic Double Bond), and 7.4.4 (Structural Analysis). (b) Monk, K. A.; Sarapa, D.; Mohan, R. S. *Synth. Commun.* **2000**, *30*, 3167–3170.

2-Oxazolines

George S.K. Wong

Schering-Plough Research Institute, Union, New Jersey

Wenxue Wu

Schering-Plough Research Institute, Union, New Jersey

8.1. Introduction ... 332
8.2. Synthesis of Oxazolines .. 333
 8.2.1. Oxazolines from Carboxylic Acids and Esters 333
 8.2.2. Oxazolines from β-Hydroxy Amides 338
 8.2.2.1. Thionyl Chloride ... 338
 8.2.2.2. Vilsmeier Reagent ... 347
 8.2.2.3. Strong Acids ... 348
 8.2.2.4. Acetates, Mesylates, Tosylates, and Triflates 351
 8.2.2.5. Burgess Reagent .. 361
 8.2.2.6. Mitsunobu Reaction 365
 8.2.2.7. DAST and Deoxo-Fluor 368
 8.2.2.8. Triphenylphosphine and Carbon Tetrachloride 373
 8.2.3. Oxazolines from β-Halo Amides 375
 8.2.4. Oxazolines from Nitriles .. 383
 8.2.4.1. Direct Methods .. 384
 8.2.4.2. Indirect Methods .. 389
 8.2.4.3. Oxazolines from Ritter Reaction 395
 8.2.5. Oxazolines from N-Acylaziridines 398
 8.2.6. Oxazolines from Allyl amides (Enamides) 402
 8.2.7. Oxazolines from Isonitriles 406
 8.2.8. Oxazolines from Cycloadditions 407
 8.2.8.1. [2 + 2] Cycloadditions 407
 8.2.8.2. [3 + 2] Cycloadditions 408
 8.2.8.3. [4 + 2] Cycloadditions 410
 8.2.9. Miscellaneous Methods .. 412
8.3. Reactions and Applications ... 417
 8.3.1. Nucleophilic Reactions .. 417
 8.3.1.1. Hydrolysis ... 417
8.1. INTRODUCTION

The first oxazoline was prepared in 1884. Despite an early review in 1949 on the basic chemical properties of oxazolines, much of the research during the subsequent years focused on polymeric oxazolines. These polymeric oxazolines found numerous industrial applications including surface protective coatings, as additives in gasolines and lubricating oils, as corrosion inhibitors, and as additives to textile chemicals. It was not until the early 1970s that the synthetic usefulness of oxazolines, in particular, those of 2-oxazolines (4,5-dihydro-1,3-oxazole), in organic synthesis was explored. In 1976, a review of the chemistry of 2-alkyloxazolines firmly established that they are ideal reagents for the syntheses of chiral and non-chiral carboxylic acids, chiral alcohols, amino acids, aldehydes and ketones. Furthermore, the stability of the oxazoline ring to a wide variety of reagents other than mineral and Lewis acids have also made them ideally suited as a carboxylic protecting group. During this period, it was also discovered that 2-aryloxazolines undergo electrophilic substitution, through directed ortho-lithiation
of the aromatic nucleus. On the other hand, aryloxazolines derived from \(\sigma \)-methoxy or \(\sigma \)-fluoro benzoic acids undergo nucleophilic substitution. The predictability of these reactions allowed aryloxazolines as intermediates for the construction of a variety of substituted benzenes and biphenyls, some of which can be difficult to obtain via classical methods. Extensive exploration of oxazolines in these areas continued, evidenced by the publication of a book chapter,\(^7\) and reviews\(^8\)–\(^{14}\) devoted entirely to the use of oxazolines in asymmetric syntheses. Aside from such interests of oxazolines as synthetic intermediates, oxazolines are also found in a variety of marine natural products.\(^{15,16}\) In particular, the oxazoline or dihydroxazole-containing lissoclinamide family of macrocyclic peptides has attracted much interest in their total syntheses.\(^{17,18}\) Another important new development in oxazoline chemistry in the past 10 years or so was the application of these heterocycles as chiral ligands in a wide range of asymmetric catalytic processes.\(^{19–23}\)

In this chapter, we will focus primarily on the literature from 1993 forward since Meyers has already comprehensively reviewed the period from 1985 to 1993–1994.\(^9\) The discussion is divided principally into two sections, first reviewing the synthetic methods, followed by recent applications in organic syntheses. We will limit our discussion of oxazolines to synthetic applications in small molecules. In addition, given the frequency with which oxazolines are employed in chiral syntheses and natural product syntheses we have made every effort to reproduce the orientation of the oxazoline in the same manner as that reported in the original literature citation. Therefore, we have sacrificed some degree of structural consistency throughout this chapter. Benzoxazoles will not be included in this chapter. Finally, we will not be covering in detail chemical applications facilitated by bis(oxazoline) ligands in various metal-catalyzed asymmetric syntheses. The reader is referred to Chapter 9 for a comprehensive survey and review of this very important subject in asymmetric catalysis.

8.2. SYNTHESIS OF OXAZOLINES

Here, we will mention synthetic methods that are of general application. Because oxazolines are so often used as intermediates in synthesis, it is impossible to include every oxazoline that has been prepared. Instead, we will illustrate with examples the diversity of structures wherein the oxazoline ring structure is first constructed.

8.2.1. Oxazolines from Carboxylic Acids and Esters

The conceptually simple cyclodehydration of a carboxylic acid and a \(\beta \)-amino alcohol to an oxazoline requires harsh conditions of high temperature with azeotropic water removal (e.g., boric acid in refluxing xylene). Nonetheless, good yields of the oxazoline can be obtained if sensitive functionalities are absent.\(^{24–26}\) A much milder approach has been developed by Vorbrüggen\(^{27}\) where the reaction of carboxylic acids with \(\beta \)-amino alcohols is carried out in the
presence of triphenylphosphine. The reaction is typically carried out in carbon tetrachloride (CCl₄), acetonitrile (MeCN), or hexachloroethane. The presence of a tertiary base such as triethylamine (Et₃N) or diisopropylethylamine (DIPEA), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), or pyridine (Py), which is sometimes also used as a cosolvent, is absolutely essential to obtain a good yield of the oxazoline. Otherwise, β-chloro amide formation can be a serious side reaction. This one-pot procedure is applicable to both aliphatic and aromatic carboxylic acids. Phenols need not be protected. Selected examples are listed in Table 8.1 (Fig. 8.1; Scheme 8.1).²⁷–³³

A number of nonsteroidal antiinflammatory drugs (NSAID) wherein the carboxylic moiety is modified as an oxazoline have been prepared by this method.²⁷ These modified NSAIDs (Table 1, entries 4–6) exhibit antiinflammatory properties. However, they are less potent than their original counterparts. Importantly, they did not reduce stomach ulceration at the efficacious dose, and therefore did not present any advantage over the original NSAID.

TABLE 8.1. OXAZOLINES FROM CARBOXYLIC ACIDS

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>74</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>68</td>
<td>27</td>
</tr>
</tbody>
</table>

Figure 8.1
<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>% Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>72</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>51</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>62</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>53</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>87</td>
<td>30</td>
</tr>
</tbody>
</table>
Aliphatic and aromatic carboxylic esters are also directly converted, in one step, to oxazolines using amino alcohols. As expected, harsh conditions are required for this transformation. Typically, the reaction is performed in refluxing xylene in the presence of catalytic quantities of a Lewis acid such as dibromo-34 or dichloro-dimethylstannane. More recently, lanthanide chloride and samarium chloride have also been reported as useful catalysts for this one-pot transformation in refluxing toluene. Representative examples are shown in Table 8.2 (Scheme 8.2).

Isatoic anhydride undergoes a one-step conversion to \(\alpha\)-aminophenyloxazolines 2 with amino alcohols via elimination of carbon dioxide. The reaction is carried out in the presence of kaolinitic clay in refluxing chlorobenzene. These \(\alpha\)-aminophenyloxazolines, in particular, those derived from chiral amino alcohols,

\[
\begin{align*}
\text{OH} & \quad R = H, Z = Bn, 60-70 \quad 31 \\
\text{OH} & \quad R = H, Z = \text{NHT}s, 44 \\
\text{NO} & \quad R_1 = \text{H, Ph, 4-MeO–Ph} \quad 32 \\
\text{NO} & \quad R_2 = \text{H, i-Pr, 4-CF}_3\text{–Ph} \quad 20-45 (4 \text{ examples}) \\
\text{OH} & \quad R = \text{Ph, t-Bu} \quad 33 \\
\text{NO} & \quad R_1 = \text{NO}_2, \text{MeO} \quad \text{R}_2 = \text{H, NO}_2 \\
\text{OH} & \quad 19-67 (6 \text{ examples})
\end{align*}
\]

Table 8.1 (Continued)

Aliphatic and aromatic carboxylic esters are also directly converted, in one step, to oxazolines using amino alcohols. As expected, harsh conditions are required for this transformation. Typically, the reaction is performed in refluxing xylene in the presence of catalytic quantities of a Lewis acid such as dibromo-34 or dichloro-dimethylstannane. More recently, lanthanide chloride and samarium chloride have also been reported as useful catalysts for this one-pot transformation in refluxing toluene. Representative examples are shown in Table 8.2 (Scheme 8.2).

Isatoic anhydride undergoes a one-step conversion to \(\alpha\)-aminophenyloxazolines 2 with amino alcohols via elimination of carbon dioxide. The reaction is carried out in the presence of kaolinitic clay in refluxing chlorobenzene. These \(\alpha\)-aminophenyloxazolines, in particular, those derived from chiral amino alcohols,
<table>
<thead>
<tr>
<th>Ester</th>
<th>Amino Alcohol</th>
<th>Product</th>
<th>Catalyst (% Yield)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂Me</td>
<td>CO₂Me</td>
<td>MeNH₂</td>
<td>Me₂SnBr₂ (52)</td>
<td>34</td>
</tr>
<tr>
<td>CO₂Me</td>
<td></td>
<td>PhOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂Et</td>
<td></td>
<td>R</td>
<td>Me₂SnCl₂</td>
<td>35</td>
</tr>
<tr>
<td>CO₂Et</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhCO₂Me</td>
<td></td>
<td>H₂N</td>
<td>LaCl₃ (82)</td>
<td>36</td>
</tr>
<tr>
<td>PhCO₂Et</td>
<td></td>
<td>H₂N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhCO₂Et</td>
<td></td>
<td>H₂N</td>
<td>SmCl₃ (54)</td>
<td>36</td>
</tr>
<tr>
<td>PhCO₂Et</td>
<td></td>
<td>H₂N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhCO₂Me</td>
<td></td>
<td>H₂N</td>
<td>LaCl₃ (64)</td>
<td>36</td>
</tr>
<tr>
<td>PhCO₂Me</td>
<td></td>
<td>H₂N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhCO₂Et</td>
<td></td>
<td>H₂N</td>
<td>SmCl₃ (82)</td>
<td>36</td>
</tr>
</tbody>
</table>
can be further linked to chloromethylated styrene-divinylbenzene polymer. The resulting chiral polymers 3 may find use in heterogeneous asymmetric catalytic reactions (Scheme 8.3).

8.2.2. Oxazolines from β-Hydroxy Amides

A popular approach to prepare oxazolines involves the intramolecular cyclization of a β-hydroxy amide, through activation of the –OH group as a leaving group. This two-step process is widely applicable for the syntheses of structurally diverse analogues, including 2-, 4-, and 5-monosubstituted oxazolines, as well as multiply substituted oxazolines. The requisite β-hydroxy amides, commonly prepared via acylation of the appropriate amino alcohol with acid chlorides, anhydrides, and via classical peptide coupling methodology, can also be prepared through amidation with an amino alkoxide (from an amino alcohol and sodium hydride or n-BuLi or methyl aluminum). Naphthol has been converted to the corresponding triflate and undergoes CO insertion with valinol to give the corresponding hydroxy amide. The most commonly used reagents to effect this cyclo dehydration will be discussed in the following sections (Scheme 8.4).

8.2.2.1. Thionyl Chloride

Thionyl chloride (SOCl₂) has often been used as a dehydrating agent for primary, secondary, as well as tertiary β-hydroxy amides. With primary hydroxyl amides, the intermediate β-chloro amide can usually be isolated, which will then
require treatment under basic conditions to complete cyclization to the oxazoline in a separate step. Silver triflate has also been used for this purpose. Representative examples are shown in Table 8.3 (Fig. 8.2).

In their synthesis of (+)-calyculin A and (−)-calyculin B, Smith and co-workers observed partial epimerization when the β-hydroxy amide 4 was reacted with SOCl₂ despite the mild reaction conditions, 4 °C in tetrahydrofuran (THF). The mechanism of this epimerization was not discussed (Scheme 8.5).

Oxazoline hydrochlorides can sometimes be isolated directly from the reaction. Holerca and Percec investigated the mechanism for oxazoline ring formation of several primary β-hydroxy amides with SOCl₂ by nuclear magnetic resonance (NMR). Oxazoline formation was extremely fast with amides 7a–c and the reaction was complete within minutes at 23 °C. With amide 7e, the reaction is sufficiently slow so that reaction intermediates can be monitored. Thus, they observed that formation of 10 was preceded by the chlorosulfite 8. The results of this study suggest that pathway A predominates for aryl groups substituted with electron-donating groups because of the enhanced reactivity of the carbonyl group due to resonance stabilization. In these instances, β-chloro amide formation occurs via a slow chloride substitution at the 5-position of the oxazolinium ring. The proposed mechanism clarifies situations when a two-step process is needed for oxazoline ring formation using thionyl chloride (Scheme 8.6).
TABLE 8.3. OXAZOLINES FROM PRIMARY β-HYDROXY AMIDES AND SOCl₂

<table>
<thead>
<tr>
<th>Oxazoline</th>
<th>Conditions</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. SOCl₂, DCE, reflux; 2. NaOH, MeOH, THF, reflux</td>
<td>Ligand preparation</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, DCE, reflux; 2. NaOH, MeOH, THF, reflux</td>
<td>Ligand preparation</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>SOCl₂; 100% Intermediate for the synthesis of actinoidic acid, degradation product of vancomycin</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>SOCl₂, rt</td>
<td>Intermediate for the total synthesis of dengibsins</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, CH₂Cl₂, rt; 2. t-BuOK, CH₂Cl₂</td>
<td>Ligand preparation</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, CH₂Cl₂, 0 °C; 2. MeCN, H₂O, K₂CO₃, reflux</td>
<td>Intermediate for the total synthesis of (−)-aphanorphine and (−)-eptazocine</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, reflux; 2. NaOH, MeOH, 40 °C</td>
<td>Ligand for asymmetric Diels–Alder reaction</td>
<td>44</td>
</tr>
<tr>
<td>Oxazoline</td>
<td>Conditions</td>
<td>Comments</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, toluene, reflux; 2. NaOH, MeOH, reflux</td>
<td>Ligand for asymmetric Diels–Alder reaction</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, rt; 2. 10% NaOH</td>
<td>Intermediate for the total synthesis of (±)-veadeiroic acid</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, CH₂Cl₂, rt; 2. 20% K₂CO₃, MeCN, reflux</td>
<td>Intermediates for the total syntheses of (−)-herbertenediol, (−)-mastigophorene A, and (−)-mastigophorene B</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, CH₂Cl₂, rt; 2. K₂CO₃, MeCN/H₂O, reflux</td>
<td>Ligand for asymmetric allylic oxidation</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, CH₂Cl₂, rt; 2. K₂CO₃, MeCN/H₂O, reflux</td>
<td>Ligand for asymmetric allylic oxidation</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, 96%</td>
<td>Intermediate for the total synthesis of (S)-gossypol</td>
<td>49</td>
</tr>
<tr>
<td>Oxazoline</td>
<td>Conditions</td>
<td>Comments</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, (R = H, 94%) (R = CH₂OMe, 87%)</td>
<td>Intermediate for the total synthesis of (S)-gossypol</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>SOCl₂</td>
<td>Intermediate for the total synthesis of calyculins</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, CH₂Cl₂; 2. Et₃N, CHCl₃, reflux</td>
<td>Ligand preparation</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, CH₂Cl₂, rt; 2. KF-alumina, MeCN, rt</td>
<td>Ligand preparation</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>SOBr₂</td>
<td>81%</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>SOCl₂, CH₂Cl₂</td>
<td>81–85%</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>1. SOCl₂, reflux; 2. NaOH, EtOH, reflux</td>
<td>Intermediate for the synthesis of hepatic gluconeogenesis inhibitors</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>SOCl₂, rt</td>
<td>99%</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>SOCl₂, rt</td>
<td>95%</td>
<td>55</td>
</tr>
<tr>
<td>Oxazoline Condition</td>
<td>Comments</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td> 1. SOCl₂; 2. NaOH</td>
<td>Intermediate for the synthesis of RTEM-1 β-lactamase inhibitors</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> 1. SOCl₂, CH₂Cl₂, rt; 2. K₂CO₃, MeCN, H₂O, reflux</td>
<td>Ligand for asymmetric 1,3-dipolar cycloaddition of nitrones</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>R = Ph, 45% R = i-Pr, 38% R = Bn, 65%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> 1. SOCl₂, CH₂Cl₂, rt; 2. K₂CO₃, MeCN, H₂O, reflux</td>
<td>Ligand for asymmetric 1,3-dipolar cycloaddition of nitrones</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>R = Ph, 55% R = i-Pr, 55% R = Bn, 44%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> SOCl₂, CH₂Cl₂</td>
<td>Intermediate for the total synthesis of lacinilene C-7 methyl ether</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>73% (from acid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> SOCl₂</td>
<td>Intermediate for the total synthesis of actinoidic acid derivatives</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>85% (from amide)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> SOCl₂</td>
<td>Intermediate for the total synthesis of (+)-α-curcumene and (+)-xanthorrhizol</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>54%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td> 1. SOCl₂, CH₂Cl₂; rt; 2. NaHCO₃</td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>60% (from acid)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For secondary β-hydroxy amides, the ring closure occurs via an S_N2 mechanism with complete inversion at carbon bearing the hydroxyl group. Thus, both cis- and trans-4,5-disubstituted oxazolines can usually be obtained reliably. Representative examples are shown in Table 8.4.64,72–80

However, racemization has been reported. For example, during the total synthesis of mycestericin, Node and co-workers81,82 reported that treatment of enantiomerically pure threo-benzamide 11 with SOCl$_2$ unexpectedly gave a \sim1:1 trans- and cis-mixture of oxazolines 13a and 13b. Consistent with this configurational assignment, further reaction with an electrophile would result in a racemic
TABLE 8.4. OXAZOLINES FROM SECONDARY AND TERTIARY β-HYDROXY AMIDES AND SOCl$_2$

<table>
<thead>
<tr>
<th>Oxazoline</th>
<th>Yields</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Ph} \text{N} \text{O} \text{MeMn(CO)$_3$}$</td>
<td>91%</td>
<td>Catalyst for enantioselective protonation</td>
<td>64</td>
</tr>
<tr>
<td>$\text{MeO} \text{H} \text{N} \text{O} \text{ON} \text{Ph} \text{Ph}$</td>
<td>Not reported</td>
<td>Catalyst for enantioselective protonation</td>
<td>72</td>
</tr>
<tr>
<td>$\text{Ph} \text{N} \text{O} \text{ON} \text{Ph} \text{Ph}$</td>
<td>92%</td>
<td>Catalyst for enantioselective protonation</td>
<td>73–75</td>
</tr>
<tr>
<td>$\text{Ph} \text{N} \text{O} \text{ON} \text{Ph} \text{Ph}$</td>
<td>Not reported</td>
<td>Catalyst for enantioselective protonation</td>
<td>73</td>
</tr>
<tr>
<td>$\text{Ph} \text{N} \text{O} \text{CO$_2$Me}$</td>
<td>$R = \text{i-Bu}, 71%$
$R = \text{CO$_2$Me}, 70%$</td>
<td>Intermediate for the total synthesis of lactacystin</td>
<td>76, 77</td>
</tr>
<tr>
<td>$\text{Ph} \text{N} \text{O} \text{Me}$</td>
<td>$R = \text{Me}, 83%$
$R = \text{phenacyl}, 44%$</td>
<td>Intermediate for the total synthesis of lactacystin</td>
<td>77, 78</td>
</tr>
<tr>
<td>$\text{Ph} \text{N} \text{O} \text{PhS}$</td>
<td>65%</td>
<td>Taxol side-chain synthesis</td>
<td>78</td>
</tr>
<tr>
<td>$\text{Ph} \text{N} \text{O} \text{CO$_2$Me}$</td>
<td></td>
<td>Ligand for asymmetric hydrogenation</td>
<td>80</td>
</tr>
<tr>
<td>Fe</td>
<td>36%</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>
product. Indeed, reaction of the crude oxazoline mixtures with formaldehyde in the presence of DBU followed by acetic anhydride resulted in 14 with only 14% enantiomeric excess (ee). Additionally, since enantiomerically pure 14b was obtained from enantiomerically pure oxazoline 13b (cyclization of imidate 15 to oxazoline 13b occurred with retention of stereochemistry), the authors concluded that the configuration at the β-hydroxy carbon atom in benzamide 11 was not completely inverted during the oxazoline forming reaction. The loss in stereo-selectivity was attributed to neighboring-group participation from the benzyl ether 12 in during the cyclodehydration process (Scheme 8.7).

The reaction of the β-hydroxy amides with SOCl₂ can be solvent sensitive. For example, during the semisynthesis of paclitaxel from baccatin III, the reaction of hydroxybenzamide 16 with SOCl₂ in benzene gave a mixture of isomeric 2-oxo-1,2,3-oxathiazolidines 17a and 17b together with a small amount of the trans-oxazoline 18a. If a polar solvent is used, 18a is formed as the exclusive product.

\[\text{PhCO-\(N\)H} \quad \text{MeO}_2\text{C} \quad \text{OH} \quad \text{OBn} \quad \overset{\text{SOCl}_2}{\rightarrow} \quad \text{PhCO-\(N\)H} \quad \text{MeO}_2\text{C} \quad \text{BnO} \quad \overset{\text{Cl}}{\text{O}} \quad \overset{\text{Ph}}{\text{HN}} \quad \overset{\text{MeO}_2\text{C}}{\text{BnO}} \]

\[\text{11} \quad \overset{\text{SOCl}_2}{\rightarrow} \quad \text{12a} \quad \text{12b} \]

\[\text{11} \overset{1. \text{DBU/}\left(\text{CH}_2\text{O}\right)}{\rightarrow} \quad \text{12a} \quad \text{12b} \overset{2. \text{Ac}_2\text{O}/\text{Py}}{\rightarrow} \quad \text{13a} \quad \text{13b} \]

\[\text{13a} \quad \overset{1. \text{DBU/}\left(\text{CH}_2\text{O}\right)}{\rightarrow} \quad \text{13b} \quad \text{14a} \quad \text{14b} \]

\[\text{16} \overset{1. \text{DBU/}\left(\text{CH}_2\text{O}\right)}{\rightarrow} \quad \text{13b} \quad \text{14a} \quad \text{14b} \]

Scheme 8.7
The expected cis-oxazoline 19 can be prepared using SO$_2$Cl$_2$ instead of SOCl$_2$ (Scheme 8.8).

Gibson and co-workers8 reacted tertiary alcohol diamides with SOCl$_2$ to prepare a series of bis(oxazoline) ligands 20a–f that are used as catalysts for asymmetric cyclopropanations. This method was preferred for preparation of 20e–f. Use of a strong acid such as methanesulfonic acid promoted extensive elimination of water to give the corresponding enamides (Scheme 8.9).

![Scheme 8.8](image)

Wuts and co-workers recently reported that the Vilsmeier reagent is superior to thionyl chloride for the cyclodehydration of primary and secondary β-hydroxy amides to prepare oxazolines, in particular, for oxazoline 18b, which is used in Taxol synthesis (Scheme 8.10)89 Some other examples are shown in Table 8.5 (Fig. 8.3). As expected, inversion of configuration at the alcohol bearing carbon atom is observed. Of the examples examined, serine afforded low yields due to the formation of dehydroalanine. The reaction is conveniently carried out in pyridine at room temperature. β-Chloro amides are also formed, which can be converted to the oxazoline with DBU, generally using the same mixture without isolation. The
inexpensive costs of reagents coupled with the ease of removal of byproducts have made the Vilsmeier reagent an attractive reagent for oxazoline formation.

Phosphorous oxychloride (POCl$_3$) can also be used without further activation. For the synthesis of the antidepressant (R)-(−)-rolipram, cyclization of the β-hydroxy amide with POCl$_3$ gave the oxazoline intermediate. Diastereoselective conjugate addition of cyanide gave the cyano derivative, which was further transformed to (R)-(−)-rolipram (Scheme 8.11).

Unexpected oxazoline formation was observed during a study to prepare nonsedating anxiolytic 1-styrylisoquinolines from 2-(trifluoromethyl)aryl-ethylamines under Pictet–Gams conditions (POCl$_3$ in refluxing toluene). This deviation from the normal reaction pathway was hypothesized to result from the electron-withdrawing effect of trifluoromethyl group that inhibited the formation of a benzylic cation required for isoquinoline formation (Scheme 8.12).

8.2.2.3. Strong Acids

Secondary and tertiary β-hydroxy amides can be cyclized to oxazolines in the presence of strong acids such as methanesulfonic acid or p-toluenesulfonic acid. For tertiary β-hydroxy amides, elimination to the enamide can often be a competing

<table>
<thead>
<tr>
<th>R$_1$</th>
<th>R$_2$</th>
<th>R$_3$</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-(i-PrS)Ph</td>
<td>Ph</td>
<td>H</td>
<td>80</td>
</tr>
<tr>
<td>2-(PhS)Ph</td>
<td>Ph (S)</td>
<td>H</td>
<td>56</td>
</tr>
<tr>
<td>2-Br−Ph</td>
<td>i-Pr (S)</td>
<td>H</td>
<td>85</td>
</tr>
<tr>
<td>2-Br−Ph</td>
<td>Ph (S)</td>
<td>H</td>
<td>63</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph (S)</td>
<td>Me (S)</td>
<td>69</td>
</tr>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>CN</td>
<td>55</td>
</tr>
<tr>
<td>Ph</td>
<td>CO$_2$Me</td>
<td>H</td>
<td>29</td>
</tr>
<tr>
<td>2-(BocNH)−Ph</td>
<td>i-Pr (S)</td>
<td>H</td>
<td>71</td>
</tr>
</tbody>
</table>

Data from Ref. 89.
side reaction. Some recent examples of acid-catalyzed dehydration are shown in Scheme 8.13.

The preparation of several glucofuran[2,1-d]oxazolines 35 and 36 from reaction of 2-amino-2-deoxy-D-glucose 34 with HF has been described. Compounds 35a and 35b are formed when the reaction is carried out in formic acid, whereas the orthoesters 36a–c are formed when the reaction is carried out using anhydrides. Further reaction of 35 and 36 with methanol gives methyl glycosides. Thus, 35 and 36 may find use as potential glycosyl donors for the synthesis of 2-amino-2-deoxy sugars (Scheme 8.14).

\[\text{Scheme 8.11} \]

\[\text{Scheme 8.12} \]

R = H, F, CF₃, NO₂
R₁ = OMe, R₂ = H or R₁,R₂ = OCH₂O
not observed
Deprotection of urethane-protected tertiary β-hydroxy amides 37 with trifluoroacetic acid followed by spontaneous cyclization of the liberated hydroxy amide affords oxazolines 38. The rate of deprotection is further accelerated by the addition of CaCl₂. Examples are shown in Table 8.6 (Fig. 8.4; Scheme 8.15).

Scheme 8.13

Scheme 8.14

(i) HF, 20 °C, HCO₂H
(ii) HF, −30 °C, Ac₂O, t-BuCOCl, or (n-C₁₁H₂₃CO)₂O
(iii) Et₃N

(iii) Et₃N

(i) HF, 20 °C, HCO₂H
(ii) HF, −30 °C, Ac₂O, t-BuCOCl, or (n-C₁₁H₂₃CO)₂O
(iii) Et₃N

Scheme 8.14
8.2.2.4. Acetates, Mesylates, Tosylates, and Triflates

Conversion of the hydroxyl group of a β-hydroxy amide to a mesylate, triflate, or an acetate followed by intramolecular displacement of the leaving group is a commonly employed strategy for oxazoline formation. Some examples from the recent literature are listed in Table 8.7. Oxazolines prepared via cyclization to displace an acetate sometimes requires a Lewis acid such as boron trifluoride (BF$_3$·OEt$_2$) or trimethylsilyl triflate (TMSOTf) to improve the leaving group ability. The cyclization is expected to proceed via an S$_N$2 mechanism with overall inversion.

Occasionally, epimerization occurs first prior to cyclization, in which case the stereochemical outcome is a net retention. This epimerization is illustrated in the

TABLE 8.6. OXAZOLINES FROM URETHANE-PROTECTED TERTIARY β-HYDROXY AMIDES

<table>
<thead>
<tr>
<th>R</th>
<th>$t_{1/2}$ in TFA</th>
<th>$t_{1/2}$ in TFA/CaCl$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Bu$,^\text{a}$</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>i-Pr$,^\text{a}$</td>
<td>165</td>
<td>70</td>
</tr>
<tr>
<td>Me(CH2)${16}$</td>
<td>225</td>
<td>100</td>
</tr>
<tr>
<td>CH$_2$=C(Me)$,^\text{a}$</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>PhNH$,^\text{a}$</td>
<td>205</td>
<td>95</td>
</tr>
<tr>
<td>Me(CH$_2$)$_2$NH$,^\text{a}$</td>
<td>295</td>
<td>120</td>
</tr>
<tr>
<td>CH$_2$=C(Me)-C$_6$H$_4$-C(Me)$_2$-NH$,^\text{a}$</td>
<td>$>$450</td>
<td>180</td>
</tr>
<tr>
<td>EtO$,^\text{a}$</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Me$_2$CHCH$_2$O$,^\text{a}$</td>
<td>65</td>
<td>15</td>
</tr>
</tbody>
</table>

$^\text{a}$ Data from Ref. 95.
TABLE 8.7. OXAZOLINES VIA ACETATES, MESYLATES, AND TRIFLATES

<table>
<thead>
<tr>
<th>Product</th>
<th>Conditions (% Yield)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBDPSO</td>
<td>Mesylate (99)</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Mesylate (95)</td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>MsCl, Et₃N, Py, CH₂Cl₂, –5 to 20 °C (93)</td>
<td>Intermediate for >erythro< sphingosine and 4,8-sphingadienine derivatives</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>MsCl, Et₃N, CH₂Cl₂</td>
<td></td>
<td></td>
<td>110, 111</td>
</tr>
<tr>
<td>R₁ = Me, R₂ = H (74)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = Et, R₂ = H (51)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = Ph, R₂ = H (96)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = H, R₂ = Me (68)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = Ph, R₂ = Me (100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. MsCl, Et₃N; 2. K₂CO₃, acetone, reflux (96)</td>
<td>Intermediate for preparation of thromboxane A₂ receptor antagonist</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>Conditions (% Yield)</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>MsCl, Py, toluene, 110 °C (85)</td>
<td>Intermediate for phytosphingosine-type glucosaminocerebrosides</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>1. MsCl, Et3N, CH2Cl2, 0 °C; 2. K2CO3, acetone, reflux (90)</td>
<td>Intermediate for preparation of thromboxane A2 receptor antagonist</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>MsCl, Et3N (84)</td>
<td>Ligand preparation</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>MsCl, DMAP, Et3N, CH2Cl2 (97)</td>
<td>Ligand for asymmetric allylic alkylation</td>
<td>116</td>
</tr>
<tr>
<td>Product</td>
<td>Conditions (% Yield)</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Me Me</td>
<td>MsCl, DMAP, Et3N (93)</td>
<td>Intermediate for a ligand for asymmetric allylic alkylation and Heck reaction</td>
<td>117</td>
</tr>
<tr>
<td>Ph</td>
<td>MsCl, DABCO, THF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = adamantyl, 3,5-di-t-Bu–Ph, t-Bu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>MsCl, Et3N, DMF, or THF</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>118</td>
</tr>
<tr>
<td>NO</td>
<td>R = t-Bu (87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = cyclohexyl (87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = Ph (87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = 2,6-di-Cl-Ph (87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = adamantyl (82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MsCl, Et3N, CH2Cl2, rt (62)</td>
<td>Ligand preparation</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1. MsCl, Et3N, CH2Cl2; 2. MeOH, NaOH (KOH) reflux or KOAc, EtOH reflux</td>
<td>Ligand preparation</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>R1 = Et, R2 = Bn, i-Pr, t-Bu, PhMe2C, Ph3MeC, Ph3C (73–86)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = i-Bu, R2 = t-Bu, Ph2MeC (77–81)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>Conditions (% Yield)</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>TsCl, Et$_3$N, CH$_2$Cl$_2$ R = i-Pr (S), t-Bu (S), Ph (S), i-Pr (R), (53–60)</td>
<td>Ligand preparation</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>TsCl, Et$_3$N, CH$_2$Cl$_2$ R = i-Pr (60) R = t-Bu (53)</td>
<td>Diastereoselective synthesis of chiral oxazolinyferrocene compounds</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Triflate (96)</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Triflate (59)</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Triflate (82)</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>Product</td>
<td>Conditions (% Yield)</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Triflate, R = Bn (99) Triflate, R = Ph (67)</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Mesylate R = i-Pr (61) R = Ph (56) R = i-Bu (90)</td>
<td>Mesylate</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>U = uracil-1-yl</td>
<td>Mesylate (50)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>U = uracil-1-yl</td>
<td>Mesylate</td>
<td>99</td>
</tr>
<tr>
<td>Product</td>
<td>Conditions (% Yield)</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>1. MsCl, Et₃N, CH₂Cl₂, rt; 2. 5% KOH</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>R₁ = H, Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R₂ = H, i-Pr, t-Bu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 examples (58–78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R’ = Ac, Ts</td>
<td>Acetate (90)</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>R’ = Ac (82)</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>R’ = Ts (89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetate</td>
<td>BF₃ • OEt₂ (96)</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R’ = Ac (56)</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>R’ = Me (60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R’ = Ac, Me</td>
<td>Acetate</td>
<td>107, 108</td>
</tr>
<tr>
<td></td>
<td>Acetate</td>
<td>TMSOTF (80)</td>
<td></td>
</tr>
</tbody>
</table>
following example shown in Scheme 8.16. Depending on the reaction conditions, either the cis- or trans-oxazoline can be formed. Since the cis-oxazoline 41 does not epimerize to the trans isomer 40, the epimerization occurs first prior to ring formation.

A common strategy to invert the stereochemistry at the hydroxyl bearing carbon of an amino alcohol involves oxazoline formation with inversion followed by hydrolysis. This strategy has been applied to Taxol resulting in a practical semisynthesis of 2'-epi-Taxol 44 from Taxol 42 (Scheme 8.17).
An unusual example of oxazoline formation is illustrated in the following example in which the hydroxyl moiety is masked as a tetrahydrofuran ring.126 Depending on reaction conditions, regioselective ring closure to one of the two oxazolines can be realized. Thus, addition of methanesulfonyl chloride to a mixture of substrate and Et\textsubscript{3}N resulted in the expected oxazoline \textit{46}. On the other hand, addition of <1 equiv of triethylamine to a mixture of substrate and methanesulfonyl chloride, followed by acid catalysis produced oxazoline \textit{47}. Intermediate \textit{47}, obtained in 72\% overall yield from \textit{45}, was subsequently converted to the human immunodeficiency virus (HIV)-protease inhibitor Nelfinavir\textregistered \textit{48} (Scheme 8.18).

Similarly, tosylates can be used to prepare oxazolines in high yields.127 An interesting application of this reaction is the use of polymer-bound tosyl chloride to facilitate high-throughput oxazoline synthesis.128 In this case, \(\beta\)-hydroxy amides are captured by polymer-bound tosyl chloride at 0 °C followed by a wash step to remove excess reagents and starting materials. Exposure of the resin to a weak base such as pyridine in THF releases the oxazolines from the resin with minimal formation of elimination products. High-purity products are obtained even when the cyclization reaction is less than quantitative since unreacted starting material is polymer bound (Scheme 8.19).

![Scheme 8.18](image-url)
Activation of the hydroxyl group as an acetate leaving group to promote oxazoline formation has been applied extensively in carbohydrates to afford \(\beta\)-glycosylation with high selectivity. A Lewis acid such as ferric chloride (FeCl\(_3\)),\(^{129}\) tin chloride (SnCl\(_4\)),\(^{130}\) or TMSOTf\(^{131}\) is usually added to facilitate cyclization. Several recent examples are shown in Scheme 8.20. Compound 54 has been further elaborated to 1,2-dideoxynojirimycin 54a, a potent \(\beta\)-N-acetylglycosamine inhibitor.

Colombo and co-workers\(^{132}\) also developed an oxazoline glycosylation method wherein an acetate is replaced by a vinyl ether. Activation of 55 with iodine in the presence of DBU gave the oxazoline 56. Glycosylation of 56 with a second sugar moiety using TMSOTf afforded the disaccharide 56a in 79% yield (Scheme 8.21).
Burgess reagent133 has also been used to effect cyclodehydration of \(\beta\)-hydroxy amides to oxazolines. Representative examples are shown in Table 8.8.31,43,134–144 The advantage of this reagent is that the cyclodehydration is performed under essentially neutral and mild conditions, typically in THF at room temperature or reflux.

A series of axially chiral bis(oxazolines) 58a–n were prepared by Rippert for stereoselective cyclopropanation studies.145 The use of Burgess reagent proved to be superior than other reagents such as PPh\textsubscript{3}/CCl\textsubscript{4}/MeCN or MsCl/Et\textsubscript{3}N/CH\textsubscript{2}Cl\textsubscript{2} (Scheme 8.22).

TABLE 8.8. OXAZOLINE FORMATION USING BURGESS REAGENT

<table>
<thead>
<tr>
<th>Product</th>
<th>Conditions (% Yields)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THF, 70 °C</td>
<td></td>
<td>31, 134</td>
</tr>
<tr>
<td>[\text{AcO}]</td>
<td>R = Bn, Z = H (74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = H, Z = NHBoc (67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THF, 70 °C</td>
<td></td>
<td>31, 135</td>
</tr>
<tr>
<td></td>
<td>R = X = H (64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = H, X = NHTs (54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R = Me, X = H (65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THF, 55 °C (84)</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>[\text{BocHN}]</td>
<td>THF, reflux (83)</td>
<td>Intermediate for the total synthesis of calyculin C</td>
<td>136</td>
</tr>
</tbody>
</table>

\[\text{Synthesis of Oxazolines 361}\]
<table>
<thead>
<tr>
<th>Product</th>
<th>Conditions (% Yields)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF, 20 ºC (50)</td>
<td>Intermediate for the total synthesis of curacin A</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>THF, reflux (50–67)</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>THF, reflux (63)</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>THF, reflux (73)</td>
<td>Asymmetric alkylation studies</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>THF, reflux</td>
<td>Asymmetric alkylation studies</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>THF, reflux</td>
<td>Intermediate for the total synthesis of hennoxazole A</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>THF, reflux</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>THF, reflux</td>
<td></td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>THF, reflux (66)</td>
<td>Intermediate for the total synthesis of mycobactin S</td>
<td>142</td>
<td></td>
</tr>
</tbody>
</table>
Because of the mild and essentially neutral reaction conditions, Burgess reagent was applied for the construction of the oxazoline intermediates 60 required by Pattendon and co-workers146,147 for their syntheses of thiangazole 61 and lissoclinamide 4 63 (Scheme 8.23).148

Similarly, Wipf and co-workers149 also utilized Burgess reagent in the synthesis of lissoclinamide 7 68. To construct 65 with the required \textit{allo}-threonine residue, Wipf and co-workers first prepared tripeptide 64 from natural threonine. Inversion

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Product & Conditions (\%) Yields & Comments & References \\
\hline
\includegraphics[width=0.5\textwidth]{product1} & \textbf{Intermediate for total synthesis of (−)-madumycin II} & 143 \\
\includegraphics[width=0.5\textwidth]{product2} & THF, reflux (56–69) (from acid) & \textbf{Ligand for asymmetric diethylzinc addition to benzadehyde} & 144 \\
\hline
\end{tabular}
\caption{(Continued)}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{scheme822}
\caption{Synthesis of Oxazolines}
\end{figure}

\textbf{Scheme 8.22}
of the hydroxyl group was accomplished through cyclization to the oxazoline followed by hydrolysis to give the tripeptide 65 containing the unnatural threonine in 80% yield.150 The final step of the synthesis was accomplished by the global cyclization of the \(\beta \)-hydroxy amides and thioamides, and provided the natural product in 90% yield, without epimerization of the thiazoline fragments (Scheme 8.24).

A polymer-bound Burgess reagent has also been developed.151 Aside from the mild, neutral cyclization conditions, this reagent also offers the advantage of a clean reaction with little epimerization and an easy work-up. Examples are listed in Table 8.9.

In their synthesis of the macrocyclic hexapeptide bistratamide D, Meyers and co-workers152 prepared the \textit{trans}-oxazoline 70 from the corresponding \textit{cis}-oxazoline 69 through several steps, the last of which was cyclization to the oxazoline using Burgess reagent. The net outcome is inversion of the stereocenter at the 5-position of the oxazoline (Scheme 8.25).
The Mitsunobu reaction153 has also been applied successfully for the preparation of oxazolines from \(\beta\)-hydroxy amides. This method provides an alternative to the Burgess reagent. Some recent examples are listed in Table 8.10.154–161

Scheme 8.24

Scheme 8.25

8.2.2.6. \textit{Mitsunobu Reaction}

The Mitsunobu reaction153 has also been applied successfully for the preparation of oxazolines from \(\beta\)-hydroxy amides. This method provides an alternative to the Burgess reagent. Some recent examples are listed in Table 8.10.154–161
Oxazoline formation under Mitsunobu conditions is very facile. As shown in the last example in Table 8.10, as much as 30% of the oxazoline is formed in addition to the desired vinylaziridine that is obtained in 64% yield. Only amide groups participate in this cyclization since the oxazoline is not formed when the nitrogen is protected as a benzyloxycarbonyl (Cbz) or tert-butyloxycarbonyl (Boc) derivative. Because of mild reaction conditions, this method has also been applied for a semisynthesis of paclitaxel 42 from the 10-deacetylbaccatin III derivative 71 (Scheme 8.26).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Product</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cbz-Phe-Ser-OMe</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Cbz-Val-Thr-OMe</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Cbz-Pro-Thr-OMe</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Cbz-Aib-Thr-OMe</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Cbz-Val-aThr-OMe</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Cbz-Phe-ψ(CSNH)Ser-OMe</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Data from Ref. 151.
Wipf and Miller163 reported that cyclization of threonine peptides to oxazolines under Mitsunobu conditions resulted in aziridines instead of the expected oxazolines, whereas \textit{allo}-threonines peptides give the expected oxazolines (Table 8.11).

Oxazoline formation under Mitsunobu conditions requires that the amide substituent be in an antiperiplanar orientation to the activated hydroxyl substituent. With \textit{allo}-threonines 77, these groups are predisposed in such an orientation in the most stable conformation (transition state 78b). As a result, \textit{trans}-oxazolines 79 are easily formed. With threonines, the formation of \textit{cis}-oxazoline 76 is disfavored because of destabilizing gauche interactions between the \(\alpha \)-carboxyl

\begin{table}[h]
\centering
\begin{tabular}{c c c c}
\hline
Product & Conditions (% Yield) & Comments & References \\
\hline
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (0.5,0.5) {MeHN};
\node at (1,1) {O};
\node at (0.5,1) {O};
\node at (0,0) {N};
\node at (1,0) {N};
\end{tikzpicture} & PPh\textsubscript{3}, DIADa (97) & Intermediate for the synthesis of thiangazole analogues & 154 \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (0.5,0.5) {BocHN};
\node at (1,1) {O};
\node at (0.5,1) {CO\textsubscript{2}Me};
\node at (0,0) {R\textsubscript{1}};
\node at (1,0) {R\textsubscript{2}};
\end{tikzpicture} & PPh\textsubscript{3}, DEADb & Intermediates for the total synthesis of berinanamycin A, a macrocyclic peptide antibiotic & 155 \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (0.5,0.5) {PPh\textsubscript{3}};
\node at (1,1) {O};
\node at (0.5,1) {Ph};
\node at (0,0) {Me};
\end{tikzpicture} & PPh\textsubscript{3}, DIAD, THF, rt (74) & Intermediate for the total synthesis of microginin (ACE inhibitor) & 156 \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (0.5,0.5) {PPh\textsubscript{3}};
\node at (1,1) {O};
\node at (0.5,1) {CO\textsubscript{2}t-Bu};
\node at (0,0) {Ph};
\end{tikzpicture} & PPh\textsubscript{3}, DEAD (80) & Asymmetric synthesis of homochiral \textit{syn} and \textit{anti}-3-phenylisoserine & 159 \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (0.5,0.5) {CF\textsubscript{3}};
\node at (1,1) {O};
\node at (0.5,1) {CO\textsubscript{2}Bn};
\node at (0,0) {Ph};
\end{tikzpicture} & PPh\textsubscript{3}, DEAD, THF, rt (90) & Intermediate for the total synthesis of anticapsin, a naturally occurring amino acid antibiotic & 160 \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (0.5,0.5) {PPh\textsubscript{3}};
\node at (1,1) {O};
\node at (0.5,1) {O};
\node at (0,0) {O};
\end{tikzpicture} & PPh\textsubscript{3}, DEAD (30) & Asymmetric synthesis of homochiral \textit{syn} and \textit{anti}-3-phenylisoserine & 161 \\
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (0.5,0.5) {Ph};
\node at (1,1) {O};
\node at (0.5,1) {O};
\node at (0,0) {O};
\end{tikzpicture} & & & \\
\hline
\end{tabular}
\caption{OXAZOLINES VIA THE MITSUNOBU REACTION OF \(\beta \)-HYDROXY AMIDES}
\end{table}

a DIAD = diisopropyl azodicarboxylate.
b DEAD = diethyl azodicarboxylate.
and β-methyl groups (transition state 75b) (Scheme 8.27). At the same time, rotation to a more stable conformation and deprotonation of 75b by the azodicarboxylate anion 75c present in the reaction mixture gave 75a that is now reactive toward E1 cyclization and accounts for the formation of aziridines. Indeed, when the reaction is carried out in the presence of triethylamine hydrochloride, aziridine formation is completely suppressed since 75c is now neutralized.

8.2.2.7. DAST and Deoxo-Fluor

Diethylaminosulfur trichloride (DAST) was first used to cyclodehydrate β-hydroxy amides in 1990 by Jones and co-workers. In 1995, Lellouche and co-workers showed that β-hydroxy amides react efficiently with DAST even at
−78 °C in CH₂Cl₂ to afford good yields of the corresponding 2-oxazolines. Since then, it was also demonstrated that DAST is compatible with a wide range of functional groups, and good to excellent yields of the oxazoline can be obtained readily. Recent examples from the literature are shown in Table 8.12.¹⁶⁴−¹⁷⁰ Bis-(2-methoxyethyl)aminosulfur trioxide (Deoxo-Fluor) has also been used in place of DAST.¹⁶⁶ Deoxo-Fluor may have the advantage of increased thermal stability.¹⁷¹ A comparison of the two reagents for the cyclization of several peptidyl β-hydroxy amides has been reported (Table 8.13).

In general, fluorination is not a problem. However, in some instances, DAST induced dehydration does result in a low yield of the oxazoline due to competitive fluorination.¹⁷² For example, treatment of 80 with DAST resulted in 82, an SN₂′
Scheme 8.27

TABLE 8.12. OXAZOLINES FROM β-HYDROXY AMIDES USING DAST

<table>
<thead>
<tr>
<th>Oxazoline</th>
<th>Conditions (% Yields)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₂Cl₂, rt</td>
<td>R = Ph (68)</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>CH₂Cl₂, rt</td>
<td>R = Me (58)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₂Cl₂, −78 °C</td>
<td>R = Ph, t-Bu (62–70)</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>CH₂Cl₂, −78 °C</td>
<td>R = Ph, Me, t-Bu (57–95)</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>CH₂Cl₂, −78 °C</td>
<td>R = Ph, Me, t-Bu (76–93)</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>CH₂Cl₂, −78 °C (53)</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>CH₂Cl₂, −78 °C (86)</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Threonine

Allo-threonine
TABLE 8.12 (Continued)

<table>
<thead>
<tr>
<th>Oxazoline</th>
<th>Conditions (% Yields)</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{MeO}_2\text{C} - \text{N} - \text{CO}_2\text{Me})</td>
<td>(\text{CH}_2\text{Cl}_2, -78^\circ\text{C} (90))</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>(\text{PhSO}_2)</td>
<td>(\text{CH}_2\text{Cl}_2, -78^\circ\text{C} (60))</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>(\text{TBDPSO})</td>
<td>(\text{CH}_2\text{Cl}_2, -78^\circ\text{C} (73))</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>(\text{MeO}_2\text{C} - \text{N} - \text{CO}_2\text{Me})</td>
<td>(\text{CH}_2\text{Cl}_2, -78^\circ\text{C} (77))</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>(\text{N} - \text{O} - \text{N} - \text{CO}_2\text{Me})</td>
<td>(\text{CH}_2\text{Cl}_2, -78^\circ\text{C} (61))</td>
<td>Catalyst for asymmetric conjugate radical addition</td>
<td>167</td>
</tr>
<tr>
<td>(\text{O} - \text{N} - \text{N} - \text{O} - \text{Ph} - \text{Ph})</td>
<td>(\text{CH}_2\text{Cl}_2, -78^\circ\text{C} (52))</td>
<td>Catalyst for asymmetric cyclopropanation and aziridination</td>
<td>168</td>
</tr>
<tr>
<td>(\text{N} - \text{CO}_2\text{Me})</td>
<td>(\text{CH}_2\text{Cl}_2, -78^\circ\text{C} (78))</td>
<td>Intermediate for the synthesis of ((-)hennoxazole A</td>
<td>169</td>
</tr>
<tr>
<td>(\text{TBSO})</td>
<td>(\text{CH}_2\text{Cl}_2 (99))</td>
<td>Intermediate for preparation of catalyst used for asymmetric transfer of diethylzinc to benzaldehyde</td>
<td>170</td>
</tr>
</tbody>
</table>
TABLE 8.13. COMPARISON OF DAST AND DEOXO-FLUOR FOR CYCLIZATION OF PEPTIDYL β-HY DROXY AMIDES

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Product</th>
<th>Deoxo-Fluor (%)</th>
<th>DAST (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})</td>
<td>72</td>
<td>86</td>
</tr>
<tr>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})</td>
<td>83</td>
<td>92</td>
</tr>
<tr>
<td>AllocHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>AllocHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>N(\text{Cbz})(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>N(\text{Cbz})(\text{N})O(\text{CO}_2\text{Me})</td>
<td>73</td>
<td>92</td>
</tr>
<tr>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})</td>
<td>72</td>
<td>27</td>
</tr>
<tr>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})</td>
<td>61</td>
<td>43</td>
</tr>
<tr>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})OH</td>
<td>CbzHN(\text{Ph})H(\text{N})O(\text{CO}_2\text{Me})</td>
<td>91</td>
<td>86</td>
</tr>
</tbody>
</table>

\(a\) Data from Ref. 166.

\(b\) Allyloxycarbonyl = Alloc (or AOC).
substitution product together with 81 in preference to formation of the oxazoline 83 (Scheme 8.28).

8.2.2.8. Triphenylphosphine and Carbon Tetrachloride

β-Hydroxy amides undergo cyclodehydration to oxazolines under very mild conditions with triphenylphosphine and carbon tetrachloride. Carbon tetrabromide can also be used. The formation of the corresponding β-chloro amide is generally not a significant problem. The major disadvantage is that removal of the byproduct triphenylphosphine oxide may be difficult at times. Representative examples are shown in Table 8.14 (Fig. 8.5).¹¹⁴,¹⁴⁰,¹⁷³–¹⁸¹

TABLE 8.14. OXAZOLINES FROM HYDROXY AMIDES USING TRIPHENYLPHOSPHINE AND CARBON TETRACHLORIDE

<table>
<thead>
<tr>
<th>Oxazoline</th>
<th>Conditions (% Yield)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeO₂C−</td>
<td>PPh₃, CCl₄, DIPEA, MeCN, rt</td>
<td>Intermediate for thromboxane A₂ receptor antagonist</td>
<td>114</td>
</tr>
<tr>
<td>Oxazoline</td>
<td>Conditions (% Yield)</td>
<td>Comments</td>
<td>References</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>OTIPS</td>
<td>(BrCl₂C)₂, PPh₃, MeCN, 2,6-di-tert-butyl-4-methylpyridine</td>
<td>Intermediate for the total synthesis of hennoxazole A</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPh₃, CCl₄, Et₃N, MeCN</td>
<td>R = i-Pr (52)</td>
<td>Intermediates for ligands for asymmetric allylic alkylation</td>
<td>173</td>
</tr>
<tr>
<td>R = Ph (70)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPh₃, CCl₄, Et₃N, MeCN</td>
<td>R = i-Pr (89)</td>
<td>Intermediates for phosphinoferrocenyl-oxazoline–ligands for asymmetric catalysis</td>
<td>174, 175</td>
</tr>
<tr>
<td>R = Me (83)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = H (77)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPh₃, CCl₄, Et₃N, MeCN (97)</td>
<td></td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>1. PPh₃, CBr₄, THF, rt; 2. NaOH, EtOH, THF, reflux</td>
<td>R = {3,5-bis-[O-(4-t-Bu)-C₆H₄]}-C₆H₃ (96)</td>
<td>Catalysts for asymmetric Diels–Alder cycloaddition</td>
<td>177</td>
</tr>
<tr>
<td>PPh₃, CCl₄, Et₃N, MeCN</td>
<td>R₁ = H, R₂ = Ph (80)</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>R₁ = Me, R₂ = H (50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = i-Pr, R₂ = H (81)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = t-Bu, R₂ = H (67)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.3. Oxazolines from \(\beta\)-Halo Amides

The preparation of oxazolines from \(\beta\)-hydroxy amides and SOCl\(_2\) via the corresponding \(\beta\)-chloro amides under basic conditions is well known and has been discussed earlier. Potassium fluoride on alumina\(^{182,183}\) has been reported as a mild alternative to the aqueous or alcoholic bases that are commonly used. The reaction is typically carried out in acetonitrile or tetramethylene sulfone and moderate to good yields of oxazolines and oxazines can be obtained as shown in Scheme 8.29.

In this same study, the authors also reported isolation of oxazoline 90 in moderate yield when propenylbenzamide 88 was reacted with \(N\)-bromosuccinimide (NBS) in CCl\(_4\). A radical mechanism via intermediates 89a and 89b has been proposed. The generality and scope of this method has not been established (Scheme 8.30).

<table>
<thead>
<tr>
<th>Oxazoline</th>
<th>Conditions (% Yield)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
</table>
| \(
\begin{align*}
\text{O} & \quad \text{N} \\
\text{Ru} & \quad \text{N} \\
\text{O} & \quad \text{N}
\end{align*}
\) | PPh\(_3\), CCl\(_4\), Et\(_3\)N, MeCN | Intermediate to catalyst for asymmetric reaction of aldehydes with organozinc reagents | 179 |
| \(
\begin{align*}
\text{O} & \quad \text{N} \\
\text{R} & \quad \text{N} \\
\text{O} & \quad \text{N}
\end{align*}
\) | PPh\(_3\), CCl\(_4\), Et\(_3\)N, MeCN (95) | Ligand for asymmetric allylic alkylation | 180 |
| \(
\begin{align*}
\text{O} & \quad \text{N} \\
\text{R} & \quad \text{N} \\
\text{O} & \quad \text{N}
\end{align*}
\) | PPh\(_3\), CCl\(_4\), pyridine, MeCN | Ligand for asymmetric allylic alkylation | 181 |
| \(
\begin{align*}
\text{O} & \quad \text{N} \\
\text{R} & \quad \text{N} \\
\text{O} & \quad \text{N}
\end{align*}
\) | PPh\(_3\), CCl\(_4\), pyridine, MeCN \(R_1 = H, R_2 = \text{Ph}\) (48) | allylic alkylation | 181 |

\(R_1 = \text{Bn, } R_2 = H\) (47)
During an investigation of the synthesis of oxazole-4-carboxylates, Shapiro reported that chlorination of amino[(phenylthio)methyl]malonate derivatives 91 with N-chlorosuccinimide (NCS), followed by treatment with Hunig’s base, afforded the oxazolines 93. The oxazolines 93 were then converted to the respective oxazole-4-carboxylates 94–97 through decarbomethoxylation and elimination of thiophenoxide in the presence of methyl iodide. Methyl iodide traps the ejected thiophenoxide that would otherwise demethylate the oxazole-4-carboxylate (Scheme 8.31). 184

Powerful Michael acceptors such as 2-chloro-2-cyclopropylidene acetates 98 react with carboxamides 99 to give 4-(cyclopropyl)oxazoline carboxylates 101. 185,186 The reaction proceeds in a step-wise fashion involving first Michael addition of 99 to 98 to give an equilibrium mixture of 100a and 100b followed by intramolecular ring closure to the oxazoline 101. Diastereoselectivities as high as 17:1 can be realized when substituted cyclopropyldienes (98 $R_1 \neq H$) are employed. Examples are listed in Table 8.15 (Fig. 8.6; Scheme 8.32).

![Scheme 8.29](image)

![Scheme 8.30](image)
A similar reaction of vicinal aromatic or heterocyclic diamines \(\text{104} \) with 2-benzoylamino-3-chloropropenoic acid \(\text{102} \) resulted in spiro-2-oxazolines fused to a pyrazinone nucleus \(\text{108} \). It is believed that the enamide \(\text{102} \) first isomerizes to the \(N \)-acyl imine \(\text{103} \) followed by Michael addition of the diamine \(\text{104} \). The resulting Michael adduct \(\text{105} \) cyclizes to \(\text{106} \) or \(\text{107} \) either of which leads to the same oxazoline \(\text{108} \). Single-crystal X-ray confirmed the structure of \(\text{108} \). Unsymmetrical diamines gave two isomeric products with the predominant product.

\[
\begin{align*}
\text{MeO}_2\text{C} & \quad \text{CO}_2\text{Me} \\
\text{HN} & \quad \text{SPh} \\
R & \quad \xrightarrow{\text{NCS}} 55-100\% \\
\end{align*}
\]

\[
\begin{align*}
\text{MeO}_2\text{C} & \quad \text{CO}_2\text{Me} \\
\text{HN} & \quad \text{SPh} \\
\xrightarrow{\text{R = Me, } \text{i-Pr, Ph, PhCH}_2\text{CH}_2, \text{ PhCH}_2\text{OCH}_2, \text{ BocNH(CH}_2}_3} \\
\end{align*}
\]

\[
\begin{align*}
\text{t-BuO}_2\text{C} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\xrightarrow{57\%} & \quad \text{95} \\
\end{align*}
\]

\[
\begin{align*}
\text{t-BuO}_2\text{C} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\xrightarrow{59\%} & \quad \text{96} \\
\end{align*}
\]

\[
\begin{align*}
\text{t-BuO}_2\text{C} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\xrightarrow{47\%} & \quad \text{97} \\
\end{align*}
\]

\[\text{Scheme 8.31}\]

A similar reaction of vicinal aromatic or heterocyclic diamines \(\text{104} \) with 2-benzoylamino-3-chloropropenoic acid \(\text{102} \) resulted in spiro-2-oxazolines fused to a pyrazinone nucleus \(\text{108} \). It is believed that the enamide \(\text{102} \) first isomerizes to the \(N \)-acyl imine \(\text{103} \) followed by Michael addition of the diamine \(\text{104} \). The resulting Michael adduct \(\text{105} \) cyclizes to \(\text{106} \) or \(\text{107} \) either of which leads to the same oxazoline \(\text{108} \). Single-crystal X-ray confirmed the structure of \(\text{108} \). Unsymmetrical diamines gave two isomeric products with the predominant product.

\[
\begin{align*}
\text{Cl} & \quad \text{CO}_2\text{Me} \\
\text{Cl} & \quad \text{CO}_2\text{Me} \\
\text{NaH} & \quad \text{MeCN} \\
\text{0 to 20}^\circ\text{C} \\
\xrightarrow{6-72\%} & \quad \text{98} \\
\end{align*}
\]

\[
\begin{align*}
\text{R}_1 & \quad \text{Cl} \\
\text{R}_2 & \quad \text{NH}_2 \\
\xrightarrow{\text{NaH, MeCN}} \text{0 to 20}^\circ\text{C} \\
\xrightarrow{6-72\%} & \quad \text{99} \\
\end{align*}
\]

\[
\begin{align*}
\text{R}_1 & \quad \text{Cl} \\
\text{R}_2 & \quad \text{R}_3 \\
\xrightarrow{6-72\%} & \quad \text{101} \\
\end{align*}
\]

\[\text{Scheme 8.32}\]
(108g–h) arising from initial Michael reaction of the most basic amino group (Scheme 8.33).

Similarly, Jacquot and co-workers188 observed oxazoline formation from sodium ethyl glycolate (excess) and a 4,4-dichloro-azadiene derivative 109. However, the generality of this reaction has not been established. The product can be rationalized according to the series of reactions shown in Scheme 8.34.
A highly stereoselective synthesis of β-amino-α-hydroxy acids from 3-benzoyl-amino carboxylates 115 has been developed by Cardillo and co-workers.189,190 This one-pot procedure involves enolate formation of 115 using lithium hexamethyldisilazide followed by quenching the enolate with I$_2$. The iodine is
introduced from the sterically less hindered side to afford a trans-iodo-intermediate 116 in a 98:2 ratio. Under the reaction conditions, the intermediate iodo-compound 116 was cyclized to 117. An alternative approach based on a chiral imidazolidinone 119 has also been developed although with less impressive diastereoselectivity (60:40–85:15, depending on reaction conditions). Hydrolysis of 117 or 120 provides anti-β-amino-α-hydroxy acids (Scheme 8.35).

\[
\begin{align*}
\text{Ph} & \text{ClO} \text{EtO}_2\text{C} \rightarrow \text{Ph} \text{ClO} \text{EtO}_2\text{C} \\
\text{Ph} & \text{ClO} \text{EtO}_2\text{C} \rightarrow \text{Ph} \text{ClO} \text{EtO}_2\text{C} \\
\text{Ph} & \text{ClO} \text{EtO}_2\text{C} \rightarrow \text{Ph} \text{ClO} \text{EtO}_2\text{C} \\
\text{Ph} & \text{ClO} \text{EtO}_2\text{C} \rightarrow \text{Ph} \text{ClO} \text{EtO}_2\text{C}
\end{align*}
\]

Scheme 8.34

Scheme 8.35

a: LiHMDS, I₂; b: 1 M HCl in MeOH
Kang and co-workers prepared the β-halo amide arrangement required for oxazoline formation from allylic alcohols via a two-step process. For example, treatment of the allylic alcohol 122 with trichloroacetonitrile and base followed by activation of the double bond with iodine monochloride, provides 123.192–194 Hydrolysis of 123 gave 124 from which cyclization provided the oxazoline 18a used for paclitaxel synthesis (Scheme 8.36).

During a study of the synthesis of an α-amino-β-hydroxycyclohexenecarboxylic acid 130, Gelmie and co-workers195 noted that photoisomerization of the readily available (Z)-oxazolone 125a gave the (E)-oxazolone 125b in only ~50% yield. After chromatographic separation, 125b was then converted to the spirooxazolone 126b. Hydrolysis of 126b provided the desired aminoacid 130 via oxazoline 129a. However, the isomeric spirooxazolone 126a could not be utilized because of incorrect stereochemistry for oxazoline formation. To circumvent the tedious separation of the two oxazolones as well as to improve the overall yield of the synthesis, the authors converted the mixture of isomeric Diels–Alder adducts 126a and 126b to the corresponding N,N-dimethylcarboxamides 127a and 127b. Now, anchimeric assistance from the N,N-dimethylcarboxamido group in the “wrong” isomer provided intermediate 128 with the proper stereochemistry for ring closure to produce 129b that was hydrolyzed to 130 (Scheme 8.37).

Obrecht and co-workers found that rac-4-(iodomethyl)-4-methyl-2-phenyl-5(4H)-oxazolone 132 yields a separable mixture of diastereomeric oxazolines 133a and 133b upon reaction with (S)-Phe-cyclohexylamide.196 After separation, each one of the diastereomeric oxazolines undergo further conversion to give optically pure (R)- and (S)-bromoazlactones 134a and 134b after reaction with 33% hydrogen bromide in acetic acid. Subsequent methanolysis of 134a and 134b allows the preparation of a wide range of (R)- and (S)-α-methylserine analogues (Scheme 8.38).
An electrochemical method for the synthesis of a series of 4-(alkylamino)-2-phenyloxazolines 139a–f from N-(2,2-dichlorovinyl)amides 135 has been reported. The starting N-(2,2-dichlorovinyl)amide 135, readily available from chloral and amides, undergoes facile reaction with amines to give 136. Cathodic reduction of 136 generates chlorocarbanionic intermediates 137 and 138 that
cyclize to provide the oxazoline. Thus far, the method has only been demonstrated for 2-phenyl substituted oxazolines (Scheme 8.39).

8.2.4. Oxazolines from Nitriles

Nitriles contribute to oxazoline synthesis through several different modes of reaction. They react with amino alcohols directly to give oxazolines. In particular, trichloroacetonitrile reacts with a variety of alcohols, and the resulting imidates undergo ring closure to oxazolines with proper activation or with a leaving group β to the imidate. Nitriles also participate in Ritter reactions to give oxazolines.
8.2.4.1. Direct Methods

A common and effective direct approach to unsubstituted or multiply substituted oxazolines is the Lewis acid catalyzed reaction of nitriles with amino alcohols in an alcoholic or aromatic solvent (chlorobenzene) at reflux. The most common Lewis acids employed include ZnCl₂, ZnBr₂, NiBr₂, CuCl₂, and kaolinitic clay. Microwave irradiation has also been reported to facilitate the transformation. Alternatively, the condensation can be carried out in the presence of catalytic amounts of potassium carbonate. The method works well for both aliphatic and aromatic nitriles, with retention of stereochemistry. Some representative examples from the recent literature are listed in Table 8.16 (Scheme 8.40).

2-Heteroaryloxazolines can also form stable metal complexes that quite often can be isolated.

In the absence of a catalyst, much higher temperatures are required for the reaction. For example, neat succinonitrile reacts with ethanolamine to initially give the iminoazacyclopentanediol 140 and the triol 141, respectively. Further heating at high temperature to distill out ethanolamine effects cyclization of 140 and 141 to the bis(oxazoline) 142. Excellent yields of oxazolines can be obtained this manner (Scheme 8.41).
TABLE 8.16. OXAZOLINES FROM NITRILES AND AMINO ALCOHOLS

<table>
<thead>
<tr>
<th>Product</th>
<th>Conditions (% Yield)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZnCl₂</td>
<td>Diastereoselective oxidation of sulfide</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>ZnCl₂ (36)</td>
<td>Diastereoselective oxidation of sulfide</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>ZnCl₂</td>
<td>Diastereoselective oxidation of sulfide</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>ZnCl₂, PhCl, reflux</td>
<td>Diastereoselective oxidation of sulfide</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Glycerol, ethylene glycol, cat. K₂CO₃, 115 °C (91)</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>ZnCl₂, PhCl, reflux (89)</td>
<td>Diastereoselective oxidation of sulfide</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>Glycerol, ethylene glycol, cat. K₂CO₃, 115 °C (94)</td>
<td></td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>ZnCl₂, PhCl, reflux</td>
<td>Ligand for asymmetric allylic alkylation</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>NiBr₂, PhCl, reflux (80)</td>
<td>Metal complex</td>
<td>207</td>
</tr>
<tr>
<td>Product Conditions (% Yield)</td>
<td>Comments</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>ZnCl₂, PhCl, reflux R₁ = H, Cl, OMe R₂ = H, i-Pr (30–61) (6 examples)</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>ZnCl₂, PhCl, reflux R₁ = 4-Me-Ph, t-Bu R₂ = H, i-Pr, t-Bu (27–64) (9 examples)</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>CuCl₂, 100 °C, 10 mbar, neat R₁ = H (82) R₂ = OH (55)</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>ZnCl₂, PhCl, reflux R₁ = H, R₂ = i-Pr (61) R₁ = Ph, R₂ = H (22) R₁ = H, R₂ = t-Bu (76)</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>ZnCl₂, PhCl, reflux R₁ = H, R₂ = i-Pr (57) R₁ = Ph, R₂ = H (42)</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>209, 212</td>
<td></td>
</tr>
<tr>
<td>ZnCl₂, PhCl, reflux R₁ = Me; i-Pr; t-Bu; Bn; CH₂OTBDMS R₂ = H, Ph (30–60) (5 examples)</td>
<td>Ligands for asymmetric 1,4-addition of Grignard reagents to enones</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>ZnCl₂, PhCl, reflux R₁ = H, R₂ = i-Pr (57) R₁ = Ph, R₂ = H (42)</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>209, 212</td>
<td></td>
</tr>
<tr>
<td>ZnBr₂, PhCN, reflux R = t-Bu, Bn, Me (90–95) (3 examples)</td>
<td>Stereoselective alkylation of sulfoxides and sulfones</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>CuCl₂, 100 °C, 10 mbar, neat (44)</td>
<td>Ligands for asymmetric allylic alkylation</td>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>
cis- and trans-[PtCl₂(NCR)₂] Nitrile complexes 143 have been reported to react with enantiomerically pure 2-chloro-1-propanol with complete inversion to give oxazoline platinum complexes 145 (Scheme 8.42).²¹⁵

Aliphatic and aromatic nitriles are often converted to the corresponding imidates that then react with amino alcohols to provide oxazolines. This two-step process offers milder conditions. Generally, a mixture of the imidate (free base or hydrochloride) is allowed to react with the amino alcohol in a solvent (alcohols, CH₂Cl₂, CHCl₃) with or without a tertiary base. As expected, the cyclization proceeds with retention of stereochemistry when chiral amino alcohols are used. Representative examples are shown in Table 8.17.³³,⁶²,⁶³,¹₃⁹,²¹⁶–²²⁵ The ready availability of benzimidates and trimethyl orthobenzoates make them ideal surrogates for benzonitrile.²²⁶–²²⁹
<table>
<thead>
<tr>
<th>Oxazine</th>
<th>Conditions (% Yield)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imidate · HCl, IPA, reflux R = Ph, CO₂i-Pr, CO₂i-Bu, CO₂t-Bu (73)</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Imidate · HCl, CH₂Cl₂, 0 °C (67)</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Imidate · HCl, CH₂Cl₂, rt (70)</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Imidate · HCl, Et₃N, CH₂Cl₂ (63)</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Imidate · HCl, Et₃N, CH₂Cl₂ (63)</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Imidate · HCl, CH₂Cl₂, Et₃N R₁ = Bn, CH₂CH₂CH₂Ph R₂ = H, Me (85–90) (4 examples) Imidate free base, CH₂Cl₂, reflux (85) Intermediate for oxazolines suitable to graft onto silica as chiral stationary phases</td>
<td></td>
<td>216 217</td>
</tr>
<tr>
<td></td>
<td>Imidate free base, CH₂Cl₂, rt (80) Intermediate for synthesis of conformationally restricted oxazole containing di- and tripeptide mimetics</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Imidate free base, CH₂Cl₂, pyridine, rt (99)</td>
<td></td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Imidate free base, chlorobenzene, cat. HCl R₁ = H, Et, Ph R₂ = H, i-Pr, i-Bu, t-Bu, Bn (67–83) (6 examples) Ligands for Rh(I)-catalyzed asymmetric hydrosilylation</td>
<td></td>
<td>220</td>
</tr>
</tbody>
</table>
8.2.4.2. Indirect Methods

Allyl alcohols readily react with trichloroacetonitrile to give the corresponding trichloroacetimidates \(^{145}\). Activation of the double bond with electrophilic reagents results in ring closure to yield oxazolines \(^{146}\). The most commonly employed electrophiles include iodine, iodine monochloride, phenylselenyl chloride, and mercuric trifluoroacetate. Other nitriles including cyanogen bromide and \(N,N\)-dimethylcyanamide can also be used. Since oxazolines readily hydrolyze to amides, the net effect of this reaction sequence is to produce \(\beta\)-amino alcohols \(^{147}\) from an allyl alcohol. This strategy has been employed in numerous total syntheses of natural products. Examples are listed in Table 8.18 (Fig. 8.7; Scheme 8.43). \(^{230–236}\)

![Scheme 8.43](image-url)
TABLE 8.18. CONVERSION OF ALLYLIC ALCOHOLS TO β-AMINO ALCOHOLS VIA OXAZOLINES

![Chemical Structures](image)

Figure 8.7

<table>
<thead>
<tr>
<th>Oxazoline</th>
<th>Conditions (% Yields)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
</table>
During an investigation237 of the total synthesis of (+)-mannostatin, reaction of the trichloroacetimidate 148 with methanesulfenyl chloride produced the \(N \)-sulfenylimidate 149 as the only product, presumably the result of an inductively deactivated olefin. Activation of 149 for cyclization required the super electrophilic agent methanesulfenyl triflate. Consistent with steric and ring strain considerations, the electrophile was introduced from the less-hindered face of the olefin yielding only the cis-fused oxazoline 150 together with 151 (Scheme 8.44).

Epoxytrichloroacetimidates 153 also undergo oxazoline ring formation in the presence of a catalytic amount of Lewis acids.238 Diethylaluminum chloride was found to be superior to boron trifluoride, which tends to further hydrolyze the oxazoline 154 to the trichloroacetamide. Generally, formation of the six-membered ring oxazine 155 is not favored, but it can be a serious side reaction if the epoxide contains substituents that stabilize the incipient cation generated prior to ring closure. Examples from this study are summarized in Table 8.19 (Fig. 8.8; Scheme 8.45).
An epoxytrichloroacetimidate was used as a key intermediate in the total synthesis of (+)-myriocin. The intermediate diene 157 was constructed in several steps from 156. Stereospecific epoxidation of 157, followed by imidate formation gave 158. Treatment of 158 with Et₂AlCl provided 159 for which the proper stereochemistry of the amino group is now set for the natural product (Scheme 8.46).

Direct displacement of a suitable leaving group \(\sigma \) to an imidate is also known. For example, Imperiali and co-workers obtained the \((\text{syn,anti})\)-2-amino-1,3-diol.
functional group array present in aminocyclitols via a stereospecific and regiospecific ring closure of the trichloroacetimidate derived from a cyclic sulfate 160. A large excess of trichloroacetonitrile is required to suppress the formation of the epoxide 165 that is the exclusive product using a less reactive reactive nitrile, for example, N,N-dimethylcyanamide (Scheme 8.47).

The synthesis of a 2'-amino-2'-deoxyuridine 168 and a 2’amino-2’deoxycytidine 169 from inexpensive uridine has been described. A key transformation in the synthesis is the introduction of an amino functionality via a trichloroacetimidate.241 This approach also avoids the use of azide that is not desirable for large-scale use (Scheme 8.48).
Danishefsky and co-workers described a regioselective formation of an oxazoline 171 from a bis(trichloroacetimidate) 170 in their synthesis of staurosporine. The observed regioselectivity is apparently a result of a vinylogous Schmidt glycosylation (Scheme 8.49).

Cyanogen bromide reacts with amino alcohols to give 2-aminooxazolines that condense in the presence of benzaldehyde and p-toluenesulfonic acid with loss of ammonia to give aza-bis(oxazolines) 173. Aza-bis(oxazolines) such as 173 are emerging as a new and important class of chiral ligands for asymmetric processes with the added advantage that they can be immobilized on solid supports (Scheme 8.50).
Enantiomerically pure epoxides and diols, readily available through the asymmetric epoxidation and asymmetric dihydroxylation reactions, are ideal precursors to prepare cis-amino alcohols via the Ritter reaction. A Merck group has shown that indene oxide 175a can be converted effectively to cis-1-amino-2-indanol, a key fragment of the HIV-protease inhibitor Indinavir via the cis-oxazoline 176a. The reaction is completely regiospecific and the stereochemical outcome is determined solely by the chirality at C-2. With larger rings, both cis- and trans-amino alcohols are formed (Scheme 8.51).

Scheme 8.51

<table>
<thead>
<tr>
<th>Acid</th>
<th>cis- / trans-</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 0</td>
<td>TIOH 100:0</td>
</tr>
<tr>
<td>n = 1</td>
<td>TIOH 37:63</td>
</tr>
<tr>
<td>n = 2</td>
<td>TIOH 41:59</td>
</tr>
</tbody>
</table>
Ritter reaction of cis-indane-1,2-diol with other nitriles leads to C_2-symmetric bis(oxazolines) 178–180 that are ligands in a number of transition metal catalyzed processes (Scheme 8.52).248

Alkyl substituted 1,3-dioxolanes react with acetonitrile in the presence of concentrated sulfuric acid to give oxazolines. The reported yields were quite low and did not appear to be synthetically useful.249

Epoxides also participate in the Ritter reaction with nitriles. An investigation of the ring opening of several alkyl-substituted glycidic esters and amides 181 showed that this transformation occurs with inversion and is completely regiospecific.250 Esters appeared to be somewhat more reactive than amides. However, phenyl-substituted glycidic esters and amides 184 are almost totally nonstereoselective. In addition, the oxazolines 186 are isolated in low yield due to the propensity of intermediate 185 to generate an aldehyde byproduct 187 (Scheme 8.53).

Epoxides also undergo the Ritter reaction in good yields with retention of configuration via a episulfonium intermediate 190a (double-inversion process).251 For monosubstituted epoxides, the yields of oxazolines are lower due to nondiscriminatory attack of the nitrile on both the primary and the secondary carbon atom of the episulfonium intermediate. Complete retention of configuration is still observed despite the lower yield (Scheme 8.54).

Olefins also undergo the Ritter reaction with nitriles in the presence of diphenyl diselenide, ammonium persulfate, and trifluoromethanesulfonic acid to produce oxazolines.252–254 When cyanamide is used, 2-aminooxazolines are obtained. The active electrophilic agent is phenylselenyl sulfate formed by oxidation of diphenylselenide with ammonium persulfate. The reaction is trans-stereospecific.
This reaction has been applied for the synthesis of the Taxol side chain from the trans-alkene (R₁ = Ph, R₂ = CH₂OAc) (Table 8.20, entry 11, Fig. 8.9; Scheme 8.55).

α-Furfuryl amides 196a–c have been prepared via a Lewis acid catalyzed allylic substitution of furfuryl carbinol acetates 195 with nitriles via the Ritter reaction.255 Alkyl nitriles yield the (1'S)-configured amides 196a–c as the predominant products. However, reaction of 195 with benzonitrile resulted in an oxazoline 197 that was hydrolyzed to the (1'R)-configured amide 198. This method of preparation of α-furfuryl amides starts with 195, which is readily available from 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN)256 and avoids the multi-step, low-yield synthesis via amidoalkylation of furan (Scheme 8.56).
8.2.5. Oxazolines from N-Acylaziridines

N-Acylaziridines 199 undergo nucleophile-induced (typically by an iodide) rearrangement to oxazolines.257,258 Excellent regiospecific ring-enlargement to a 2,4-disubstituted-oxazoline 201a–d is observed with an alkyl substituted aziridine; on the other hand, mixtures of 2,4- and 2,5-disubstituted oxazolines 200a and 200b

TABLE 8.20. OXAZOLINES FROM ALKENES

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>Me</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Bn</td>
<td>H</td>
<td>Me</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>octyl</td>
<td>H</td>
<td>Me</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>n-Pr</td>
<td>n-Pr</td>
<td>Me</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>cyclopentene</td>
<td>H</td>
<td>NH₂</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>cyclohexene</td>
<td>H</td>
<td>NH₂</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>H</td>
<td>NH₂</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>octyl</td>
<td>H</td>
<td>NH₂</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>n-Pr</td>
<td>n-Pr</td>
<td>NH₂</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>Ph</td>
<td>CH₂OMe</td>
<td>Ph</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>Ph</td>
<td>CH₂OAc</td>
<td>Ph</td>
<td>63</td>
</tr>
</tbody>
</table>

Data from Refs. 252 and 253.
are obtained with aziridines containing an electron-withdrawing group. A single example showed that ring enlargement occurred regiospecifically and with total inversion when a phenyl substituted aziridine 204 is subjected to rearrangement with iodide (Scheme 8.57).

Scheme 8.56

Scheme 8.57
The rearrangement can also be promoted by acid.257,259,260 Under acid catalysis, N-acylaziridines substituted with an electron-withdrawing group produce a 2,4-disubstituted oxazoline as the major product.257 Boron trifluoride etherate (BF$_3$OEt$_2$) has also been used successfully for an N-benzoyl, but not an N-acetyl-substituted aziridine (Scheme 8.58).259

Hori and co-workers studied the BF$_3$OEt$_2$ catalyzed isomerization of a chiral N-acylaziridine 213 to the oxazoline 214.261 It was established that the ring expansion proceeds with retention of configuration. The authors have proposed a S_Ni mechanism for this transformation through the transition state 213a. Ab initio molecular orbital calculations agree well with this hypothesis (Scheme 8.59).
Lectka and co-workers262 studied the ring opening of a series of \textit{N}-acylaziridines 215a–d to oxazolines 216a–d promoted by Lewis acids such as Zn(OTf)\textsubscript{2}, Cu(OTf)\textsubscript{2}, and Sn(OTf)\textsubscript{2}. Good yields of 216a–d can be obtained, even in the presence of nucleophiles such as trimethylsilyl azide. It was further observed that the rate of reaction is increased if the phenyl ring contains electron-donating substituents. These observations are consistent with the hypothesis of N-coordination263 with the rearrangement proceeding in a heterolytic stepwise fashion. In contrast, treatment of the same \textit{N}-acylaziridines 215a–d with oxophilic Lewis acids such as Yb(2,2'-biphenol)OTf in the presence of nucleophiles resulted in ring-opened products 217a–d with incorporation of the nucleophile. In this case, rate accelerations are observed if the phenyl ring is substituted with electron-withdrawing substituents (Scheme 8.60).

\begin{center}
\begin{tikzpicture}
 \node[draw,rectangle,inner sep=10pt] (a) at (0,0) {215a–d};
 \node[draw,rectangle,inner sep=10pt] (b) at (2,0) {216a–d};
 \node[draw,rectangle,inner sep=10pt] (c) at (2,-2) {217a–d};
 \node[draw,rectangle,inner sep=10pt] (d) at (4,-2) {};

 \node[anchor=north] at (a.south) {X = OMe, H, F, CF\textsubscript{3} cat = Zn(OTf)\textsubscript{2}, Cu(OTf)\textsubscript{2}, Sn(OTf)\textsubscript{2}};
 \node[anchor=north] at (b.south) {X = OMe, H, F, CF\textsubscript{3} cat = Yb(biphenol)OTf};
 \node[anchor=north] at (c.south) {};

 \draw[->] (a) -- (b) node[midway,above] {30-89%};
 \draw[->] (a) -- (c) node[midway,above] {64-84%};
\end{tikzpicture}
\end{center}

\textbf{Scheme 8.60}

The exclusive formation of enantiomerically pure, naturally occurring (\textit{R})-oxytriphine 220 is indicative of an intermediate solvated tight carbocation pair 219 in the rearrangement (Scheme 8.61).262

Cardillo and co-workers259,264–269 extended this rearrangement to \textit{N}-acylaziridine-2-carboximides. In contrast to acylated aziridine carboxylates, both the
benzoylated and acetylated aziridinylimides rearrange spontaneously in CHCl₃, although acetylated derivatives are observed to be slower. The reaction is clearly acid catalyzed since addition of a stronger acid such as Amberlyst H-15 or BF₃·OEt₂ is required when the reaction is carried out in solvents such as toluene or CH₂Cl₂. The rearrangement proceeds via an S_Ni mechanism with preservation of the stereochemistry at the aziridine carbon. Finally, note that N-Boc protected aziridines and aziridinylimides do not rearrange to oxazolines. Instead, they ring expand to oxazolidinones in the presence of Lewis acids such as Cu(OTf)₂, Zn(OTf)₂, or BF₃·OEt₂. Magnesium bromide etherate is not an active catalyst (Scheme 8.62).

8.2.6. Oxazolines from Allyl amides (Enamides)

Allyl amides (enamides), for example, 225, 228, and 230 cyclize to oxazolines, for example, 226, 229, and 231 when the double bond is activated by an electrophile. The double bond can also be conjugated to a ketone, or present as an allylic epoxide. Reagents commonly used to promote the cyclization include acids, iodine, selenium reagents, and trimethylsilyl triflate (Scheme 8.63).

An interesting transformation of a conformationally restrained allyl amide 232 to an α-hydroxy-cyclopentenyl hydroxylamine 236 has been reported. The mechanism is thought to involve a series of reversible reactions leading ultimately to 234, which fragments irreversibly to 235. Hydrolysis of the ester accounts for the observed product 236 (Scheme 8.64).
Scheme 8.63

Scheme 8.64
During an investigation278 of the utility of epoxide 240 as an intermediate in the synthesis of the HIV protease inhibitor Indinavir 241, it was found that the amino alcohol 237 must first be protected prior to iodination. Without protection, the iodination of the unsaturated amide 237 gave the unstable oxazoline 239 in 83\% yield (Scheme 8.65).

Benzamido allylic acetates 242 and 243 undergo palladium-catalyzed cyclization to oxazolines. Excellent yields and very high diastereoselectivity is observed for the conversion of several acyclic primary and secondary benzamido allylic acetates to \textit{trans}-5-vinyl substituted oxazolines 244.279,280 The diastereoselectivity of the reaction is determined by the the steric interactions between the R group and the hydrogen of the π-allylpalladium complex in the transition state. \textit{trans}-Oxazolines are obtained since transition state A is favored over transition state B (Scheme 8.66).

An interesting application of this methodology is the preparation of a \textit{cis}-1,2-aminocyclopentenol derivative 247 (Scheme 8.67).281

Oxazoline formation from 5-vinloxazolidinones promoted by palladium (0) is also known.282 Oxidative insertion of palladium with loss of CO\textsubscript{2} results in a pair of equilibrating π-allyl palladium complexes. The stereochemistry of the vinyl group is therefore not important. Ring closure from the thermodynamically more stable transition state accounts for the trans-isomer as the major product. Depending on the exact substitution, diastereoselectivities ranging from 2.5:1 to 16:1 can be obtained (Scheme 8.68).
Scheme 8.66

Scheme 8.67

Scheme 8.68
This reaction was utilized to establish the vicinal amino alcohol stereochemistry required for the construction of key intermediates 251 and 252 for the synthesis of the natural product balanol 253 (Scheme 8.69). 283,284

8.2.7. Oxazolines from Isonitriles

Oxazolines 256a and 256b are produced when α-isocyanooesters 254 react with aromatic aldehydes in the presence of catalytic or stoichiometric quantities of
tetrabutylammonium fluoride.285 5-Methoxy-4-substituted-2-(\textit{tert}-butyldimethylsilyl)oxazoles 255, latent \(\alpha\)-isocyanoesters react similarly, except that at least a stoichiometric amount of fluoride is required for the desilylation. The cis/trans-ratio is dependent on the bulkiness of the substituent at the \(\alpha\)-carbon of the isocyanoester. Selected examples are summarized in Table 8.21 (Fig. 8.10; Scheme 8.70).

8.2.8. Oxazolines from Cycloadditions

8.2.8.1. \([2 + 2]\) Cycloadditions

2,4,5-Trimethyloxazole 257 undergoes photochemically induced \([2 + 2]\) cycloaddition with aromatic and aliphatic aldehydes to provide bicyclic oxazolines 258 with excellent regiochemical and stereochemical control.286 Diastereoselectivities from 75–99\% can be achieved, which is the first reported example of a Paterno-Büchi287,288 reaction involving an oxazole. The oxetane cycloadducts can be hydrolyzed to \(\alpha\)-amino-\(\beta\)-hydroxy ketones. Other oxazoles have not been evaluated to determine if they undergo the photochemical cycloaddition (Scheme 8.71).

Table 8.21. Oxazolines from \(\alpha\)-Isocyanoestersa

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>% Yield</th>
<th>cis/trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td></td>
<td>80</td>
<td>75 : 25</td>
</tr>
<tr>
<td>Me</td>
<td>EthCHO</td>
<td>79</td>
<td>88 : 12</td>
</tr>
<tr>
<td>t-Bu</td>
<td>PhCHO</td>
<td>77</td>
<td>100 : 0</td>
</tr>
<tr>
<td>Me</td>
<td>MeCHO</td>
<td>81</td>
<td>62 : 38</td>
</tr>
<tr>
<td>H</td>
<td>PhCHO</td>
<td>51</td>
<td>4 : 96</td>
</tr>
</tbody>
</table>

\(a\) Data from Ref. 285.
Azomethine ylides undergo a formal [3 + 2] cycloaddition with carbonyl compounds to provide oxazolines. Thioimidates, in particular, are effective as ylide precursors. For example, Kohra and co-workers reported that the thioimidate 260, upon activation with cesium fluoride, reacts with aromatic aldehydes and diarylketones to provide oxazolines 261 in modest to good yields. Aliphatic aldehydes and simple ketones are unreactive (Scheme 8.72).

For \(N\)-(trimethylsilylmethyl)-S-methylisothioureas 262, cycloaddition with carbonyl compounds results in 2-aminooxazolines 263. Aliphatic and aromatic aldehydes and ketones can be employed successfully. However, reaction with ketones appears to be poor. Ylide generation with CsF is the method of choice although TBAF and KF have also been used but with lower yields. A polar solvent such as MeCN, DMF, or hexamethylphosphoric triamide (HMPA) is required for a successful reaction (Scheme 8.73).

\(N\)-(Methylthiomethylmethylene)glycinate derivatives, for example, 264, also undergo cycloaddition with benzaldehyde in the presence of DBU to provide cis- and trans-2-oxazolines 265a and 265b, respectively (Scheme 8.74).
Bazureau and co-workers293–295 reported that imididate 266 reacts with carbonyl compounds to provide good yields of oxazolines 269\textsubscript{a–l} as the only product. Only one of the two possible regioisomers is formed. Exclusive formation of the 5-regioisomer is consistent with FMO calculations based on the assumption that the reaction proceeds via an azomethine ylide intermediate 267. The azomethine ylide is formed via a thermal 1,2-prototropy and can be trapped by aromatic aldehydes or diethyl ketooxalate. Aryl alkyl ketones and dialkyl ketones are unreactive. Aliphatic aldehydes have not been evaluated extensively in this study. Interestingly, when the reaction is carried out in an ionic liquid such as 1-ethyl-3-methylimidazolium tetrafluoroborate, significant rate enhancements and improved yields of the cycloadduct are obtained (Scheme 8.75).296
N-Cyano- and N-(p-toluenesulfonyl)-N’-(trimethylsilylmethyl)-S-methylisothioureas 269a and 269b have also been utilized as synthetic equivalents of azomethine ylides.290 Reaction of 269a and 269b with aromatic aldehydes and aryl ketones, in the presence of CsF, gives 2-iminooxazolines 270a–e in modest-to-good yield. These 2-iminooxazolines apparently are stable to isolation and do not isomerize to 2-aminooxazolines (Scheme 8.76).

\[
\begin{align*}
\text{TMS} & \quad \text{N}^+ \quad \text{SMe} \\
\text{H} & \quad \text{N} \quad \text{R}_1 \\
\text{O} & \quad \text{H} \\
\text{N} & \quad \text{R}_2 \\
\text{H} & \quad \text{N} \quad \text{R}_1 \\
\text{R}_2 & \quad \text{O} \\
\end{align*}
\]

Scheme 8.76

5-Alkoxyoxazoles undergo Lewis acid catalyzed reaction with a variety of aldehydes to give a mixture containing trans-2-oxazoline-4-carboxylates predominately. The reader is directed to a thorough review of this chemistry recently published by Suga.297

8.2.8.3. \([4 \, + \, 2]\) Cycloadditions

4-Nitro-2-phenyloxazole 271a undergoes Diels–Alder \([4 \, + \, 2]\) cycloaddition with both electron-rich and electron-poor dienophiles to give an oxazoline 273 that may not be isolable due to the facile aromatization to a fused oxazole 274.298,299 Examples are shown in Table 8.22 (Scheme 8.77).

\[
\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{N} & \quad \text{R} \\
\text{O} & \quad \text{N} \quad \text{Ph} \\
\end{align*}
\]

Scheme 8.77

Nitrooxazoles 271a–c also react with electron-rich ynamines to yield isoxazolines.300 The proposed reaction mechanism involves the Michael addition of the ynamine to give 275, followed by rearrangement to a nitrile oxide 277. Intramolecular 1,3-dipolar cycloaddition of 277 accounts for the exclusive cis stereochemistry observed in the products 278a–c (Scheme 8.78).

Unlike ynamines, ethyl vinyl ether requires the more electron-deficient 4-nitro-2-phenyl-5-oxazolecarboxylic acid methyl ester 271b for reaction to occur. The initial \([4 \, + \, 2]\) cycloadduct 279 undergoes further reaction with ethyl vinyl ether to give the tricyclic oxazoline 280 in 76% yield (Scheme 8.79).
TABLE 8.22. OXAZOLINES FROM [4 + 2] CYCLOADDITIONS

<table>
<thead>
<tr>
<th>Diene</th>
<th>Products</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>110 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 °C</td>
</tr>
<tr>
<td></td>
<td>53% (products not separable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 °C</td>
</tr>
</tbody>
</table>

Data from Ref. 299.
The Staudinger-aza-Wittig301 cyclization methodology for imine formation can also be applied to the synthesis of oxazolines under essentially neutral conditions.302 Thus, an azido ester such as \textbf{281} reacts with triphenylphosphine to give the oxazoline \textbf{283} in excellent yield. There was no evidence for cyclization at the benzoate presumably because cyclization to a five-membered ring is faster than
cyclization to a seven-membered ring. The generality and scope of this reaction apparently has not been fully explored to date (Scheme 8.80).

Oxazolines 285a–m are also produced when 1,2-azido alcohols 284 are subjected to a variety of Lewis acids. In particular, boron trifluoride etherate was the most effective. The reaction works well with electron-rich and electron-deficient aromatic aldehydes and aliphatic aldehydes. However, ketones are unreactive and α,β-unsaturated aldehydes gave only a modest yield of the oxazoline. The mechanism is believed to proceed via initial hemiketal formation and subsequent dehydration to generate an oxonium ion 286a that is captured by intramolecular attack of the azide to give the cyclic aminal 286b. Elimination of H⁺ and N₂ from 286b then gives the oxazolines 285a–m in modest to excellent yield (Scheme 8.81).

S-Ethenylsulfimines 287 react with amides to yield 2-substituted-oxazolines 289. The reaction proceeds via initial Michael addition of an amide anion to 287 to give 288 that collapses to the oxazoline. The reaction is typically carried out at room temperature or 50 °C in THF, 1,2-dimethoxyethane (DME), or even MeCN using NaH as the base. Aryl, heteroaryl, and aliphatic amides can be used and the yields of 289 are modest to excellent (Scheme 8.82).
Scheme 8.82

Scheme 8.83
In their synthesis of lankacidin antibiotics, Williams and co-workers utilized an insertion reaction of an azidoformate-derived acylnitrene on the electron-rich dihydrofuran to introduce the sterically hindered C-3 amino appendage in the macrocyclic framework. The oxazoline formation is totally stereospecific with the

\[
\begin{align*}
\text{NHOH} + (\text{MeO})_2\text{C} & \rightarrow \text{O} \\
\text{R}_1 & \rightarrow \text{R}_1 \\
\text{O} & \rightarrow \text{R}_2 \\
\text{R}_2 & \rightarrow \text{OH} \\
\text{R}_1 & \rightarrow \text{H} \\
\text{R}_2 & \rightarrow \text{OH} \\
\text{R}_1 & \rightarrow \text{H} \\
\text{R}_2 & \rightarrow \text{OH}
\end{align*}
\]

\[
\begin{align*}
\text{R}_1 = \text{Me}, \text{Et}, \text{Bn}, \text{Ph}, (\text{CH}_2)_2\text{CO}_2\text{Me} \\
\text{R}_2 = \text{Ph}, \text{Me}, \text{BnOCO}
\end{align*}
\]

Scheme 8.84

In their synthesis of lankacidin antibiotics, Williams and co-workers utilized an insertion reaction of an azidoformate-derived acylnitrene on the electron-rich dihydrofuran to introduce the sterically hindered C-3 amino appendage in the macrocyclic framework. The oxazoline formation is totally stereospecific with the

\[
\begin{align*}
\text{Ph} & \rightarrow \text{N} \\
\text{O} & \rightarrow \text{N} \\
\text{Bn} & \rightarrow \text{MeS} \\
\text{Ph} & \rightarrow \text{H} \\
\text{H} & \rightarrow \text{NaBH}_4 \\
\text{NaBH}_4 & \rightarrow 64\% \\
\text{steps} & \rightarrow \text{OH}
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{N} & \rightarrow \text{N} \\
\text{H} & \rightarrow \text{n-C}_7\text{H}_{15}
\end{align*}
\]

Scheme 8.85

pseudodistomin A
acylnitrene approaching the olefin from the less-hindered β-face. In contrast, using the lactonized substrate 294, the reaction occurred unexpectedly from the α-face to give 295. During this study, the authors also examined benzyl azidoformate as the source of the acyl nitrene. Even with the simple dihydrofuran 296, a high diastereoselectivity was observed (Scheme 8.83, p. 414).

Langlois and co-workers developed a stereoselective hetero-Claisen rearrangement of camphor-based oxazoline N-oxides 300, available from hydroxylaminoisoborneol 298 and orthoesters 299. The rearrangement, initiated by acylation of

Scheme 8.86
the oxazoline N-oxide, provided 2-((α-acyloxy)oxazolines 302 that spontaneously hydrolyzed to 304. The stereoselectivity observed is consistent with an intermediate (Z)-keteneaminal 301 in which the [3,3]-sigmatropic rearrangement occurs from the α-face (Scheme 8.84, p. 415).

4-Acyl-2-phenyloxazole derivatives undergo a reductive photocyclization in the presence of sodium borohydride to generate a bicyclic oxazoline with a cis-fused pyridinone ring 307. The stereochemistry of the product is consistent with hydride attack from the less hindered surface of the cyclic intermediate 306. The oxazoline containing pyridinone is a key intermediate used for the synthesis of pseudodistomins 308 (Scheme 8.85, p. 415).307

Spirocyclic oxazolines 311 are produced in 37–67% yield from acylisothiocyanates 309 and an excess of diphenyl diazomethane 310.308 The proposed mechanism for product formation is indicated in Scheme 8.86. The reaction has also been demonstrated for 2-diazofluorene. There are no reports for aliphatic diazo compounds.

8.3. REACTIONS AND APPLICATIONS

Oxazolines can participate in a diverse range of reactions. Other than the oxygen atom, each position of the oxazoline ring is capable of some type of electrophilic or nucleophilic reaction (Scheme 8.87). The 2-position is susceptible to nucleophilic attack ultimately resulting in ring-opened products (pathway a). The ring-opened product can then undergo further reaction or rearrangement depending on the nucleophile. The nitrogen atom can undergo electrophilic reactions including oxidation, alkylation, and salt formation (pathway b). The 4-position is acidic and can be deprotonated and undergo typical carbanion chemistry (pathway c). The 5-position is susceptible to nucleophilic attack also leading to ring-opened products (pathway d). Reactions may also occur at a remote site of a molecule that can be influenced by the oxazoline ring. Examples of such reactions include those wherein an oxazoline acts as an activating group, directing group, or as a chiral auxiliary. Oxazolines are also used extensively as chiral catalysts in stereoselective synthesis. This section will focus on a discussion of mononuclear oxazolines. A comprehensive discussion of the syntheses and reactions of chiral bis(oxazolines) is found in Chapter 9.

8.3.1. Nucleophilic Reactions

8.3.1.1. Hydrolysis

Hydrolysis is undoubtedly the most common nucleophilic reaction at the 2-position. It is generally used to unmask the hydroxy amide or amino alcohol after synthetic manipulations on the oxazoline ring are completed. Hydrolysis under
strongly acidic conditions gives the amino alcohol. However, the reaction can be stopped at an intermediate stage if it is carried out under mild conditions. For example, the initially formed amino ester can be isolated or trapped in certain cases although it is more commonly rearranged to the hydroxy amide, typically under mildly basic conditions (Schemes 8.88 and 8.89). The configuration of the oxazoline at the 4 and 5-positions is normally retained under the hydrolysis conditions as shown in Scheme 8.89. Selected examples are shown in Table 8.23.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxazoline</th>
<th>Hydrolysis Conditions</th>
<th>Product/Yield</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 1 | ![Oxazoline structure](image1) | (1) $1\,\text{N}\,\text{HCl}$, MeOH/THF, reflux
(2) aq. NaHCO$_3$ | ![Product structure](image2) | 310 |
| 2 | ![Oxazoline structure](image3) | 80% HOAc, rt | ![Product structure](image4) | 241 |
| 3 | ![Oxazoline structure](image5) | $1\,\text{N}\,\text{HCl}$ | ![Product structure](image6) | 281 |
| 4 | ![Oxazoline structure](image7) | TFA/water, rt | ![Product structure](image8) | 231 |
| 5 | ![Oxazoline structure](image9) | (1) $6\,\text{N}\,\text{HCl}$, reflux
(2) Dowex 50 × 8–200 | ![Product structure](image10) | 157, 158 |
| 6 | ![Oxazoline structure](image11) | 2.5 $\text{N}\,\text{HCl}$, reflux | ![Product structure](image12) | 311 |

DMT = dimethoxytrityl
<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxazoline</th>
<th>Hydrolysis Conditions</th>
<th>Product/Yield</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 7 | ![Oxazoline 7](image) | (1) 0.5 N HCl/MeOH
(2) aq. NaHCO₃ | ![Product 7](image) | 159 |
| 8 | ![Oxazoline 8](image) | (1) 1 N HCl/THF
(2) aq. NaHCO₃ | ![Product 8](image) | 230 |
| 9 | ![Oxazoline 9](image) | (1) 5% HCl, reflux
(2) NaOH | ![Product 9](image) | 271 |
<p>| 10 | | BF₃·OEt₂, water/CH₂Cl₂, piperidine | | 268 |
| 11 | | BF₃·OEt₂, water or wet CHCl₃, rt, 1 week | | 250 |
| 12 | | 1 N HCl, 100 °C | | 185 |
| 13 | | TFA, THF/water, 80 °C | | 273 |</p>
<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxazoline</th>
<th>Hydrolysis Conditions</th>
<th>Product/Yield</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 14 | \[
\begin{array}{c}
\text{O} \\
\text{N Me} \\
\text{O} \\
\text{Me} \\
\text{Me} \\
\text{R} = \text{Et, } t\text{-Bu, Ph}
\end{array}
\] | Water/EtOAc, rt | \[
\begin{array}{c}
\text{OH} \\
\text{NHAc}
\end{array}
\] | 286 |
| 15 | \[
\begin{array}{c}
\text{MeO}_2\text{C} \\
\text{N} \\
\text{Ph}
\end{array}
\] | 0.1 \(N \) HCl/THF, rt | \[
\begin{array}{c}
\text{NHCOPh}
\end{array}
\] | 191 |
| 16 | \[
\begin{array}{c}
\text{MeO}_2\text{C} \\
\text{N} \\
\text{Ph}
\end{array}
\] | 6 \(N \) HCl, reflux | \[
\begin{array}{c}
\text{NH}_3^+ \text{Cl}^-
\end{array}
\] | 191 |
| 17 | \[
\begin{array}{c}
\text{Cbz} \\
\text{N} \\
\text{H} \\
\text{Ar}
\end{array}
\] | (1) 2 \(N \) HCl/THF, rt (2) Et\(_3\)N/MeOH, rt | \[
\begin{array}{c}
\text{O} \\
\text{Ar}
\end{array}
\] | 284 |
| 18 | \[
\begin{array}{c}
\text{X} \\
\text{N} \\
\text{O} \\
\text{Ph}
\end{array}
\] | (1) 20\% HCl/EtOH (2) Propylene oxide | \[
\begin{array}{c}
\text{NH}_2
\end{array}
\] | 195 |
| 19 | \[
\begin{array}{c}
\text{Me} \\
\text{N} \\
\text{Me}
\end{array}
\] | TsOH/MeOH/ water, rt | \[
\begin{array}{c}
\text{NHAc}
\end{array}
\] | 264 |
| 20 | \[
\begin{array}{c}
\text{HO} \\
\text{N} \\
\text{CCl}_3
\end{array}
\] | 1 \(N \) HCl/THF | \[
\begin{array}{c}
\text{CCL}_3
\end{array}
\] | 239 |
| 21 | \[
\begin{array}{c}
\text{O}_2\text{NO} \\
\text{N} \\
\text{Ph}
\end{array}
\] | 57\% HNO\(_3\), 20 °C | \[
\begin{array}{c}
\text{NH}_3^-
\end{array}
\] | 312 |
Table 8.24. Unmasking the Side-Chain of Taxol Analogues by Acid Hydrolysis

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxazoline</th>
<th>Hydrolysis Conditions</th>
<th>Product</th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
</table>
| 1 | \[
\begin{array}{c}
\text{O} \\
\text{N Ph} \\
\text{O} \\
\text{O Ph Bac} \\
\end{array}
\] | (1) 1 M HCl/MeOH/THF, rt | 313 | 93 | 310, 313 |
| | | (2) aq. NaHCO₃ | | | |
| 2 | \[
\begin{array}{c}
\text{O} \\
\text{N Ph} \\
\text{O} \\
\text{O Ph Bac} \\
\end{array}
\] | (1) 0.1 M HCl, MeOH, 60–80 °C | 313ᵇ | 80 | 78, 162, 314|
| | | (2) aq. NaHCO₃ | | | |
| 3 | \[
\begin{array}{c}
\text{O} \\
\text{N Ph} \\
\text{O} \\
\text{O Ph Bac} \\
\end{array}
\] | (1) 1 M HCl/MeOH, rt | 313ᵇ | 95 | 310 |
| | | (2) aq. NaHCO₃ | | | |
| 4 | \[
\begin{array}{c}
\text{O} \\
\text{N Ph} \\
\text{O} \\
\text{O Ph Bac} \\
\end{array}
\] | (1) 0.1 M HCl/EtOH, 95 °C | 313ᵇ | 75 | 314 |
| | | (2) aq. NaHCO₃ | | | |
| 5 | \[
\begin{array}{c}
\text{O} \\
\text{N Ph} \\
\text{O} \\
\text{O Ph Bac} \\
\end{array}
\] | 0.1 M HCl/dioxane, 50 °C, | 312ᶠ | 84 | 125 |

Scheme 8.90

Bac = 1, 2, 4, 7, 10, 13 + 312, 313
Partial hydrolysis of an oxazoline to produce the hydroxy amide was used extensively in the synthesis of Taxol analogues (Table 8.24; Scheme 8.90). It is noteworthy that a solution of the amino ester salt isomerized to after prolonged standing at room temperature (entry 5).

Vogel and co-workers reported an interesting oxazoline hydrolysis during which the ester group in migrated to give. Although the authors did not discuss the mechanism for the migration, the product likely results from anchimeric assistance of the 2-amido ester to give an intramolecular nucleophilic substitution at the 5-position rather than typical attack at the 2-position (Scheme 8.91).

Alvarez-Ibarra and co-workers reported oxidative hydrolysis of 2-thio substituted oxazolines (Scheme 8.92). Presumably, the reaction proceeds through a

TABLE 8.24 (Continued)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxazoline</th>
<th>Hydrolysis Conditions</th>
<th>Product</th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>(1) 1 N HCl/MeOH/THF, 5 °C</td>
<td>313<sup>d</sup></td>
<td>61</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) q. NaHCO₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>(1) 1 N HCl /MeOH/THF, 5 °C</td>
<td>313<sup>d</sup></td>
<td>39</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) q. NaHCO₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>(1) 1 N HCl/MeOH/THF, 5 °C</td>
<td>313<sup>d</sup></td>
<td>50</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) q. NaHCO₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.1 N HCl, 95 °C</td>
<td>313<sup>d</sup></td>
<td>75</td>
<td>85</td>
</tr>
</tbody>
</table>

^a Groups P₁-P₁₀ denote protecting groups at 1–10 positions, respectively.
^b Bac₁: P₁ = H, P₂ = Bz, P₄ = P₁₀ = Ac, P₇ = 2,2,2-trichloro-t-butoxycarbonyl.
^c Bac₂: P₁ = H, P₂ = Bz, P₄ = P₁₀ = Ac, P₇ = triethylsilyl.
^d The silyl protective groups on the baccatin core structure were removed under reaction conditions.
^e Bac₃: P₁ = H, P₂ = Bz, P₄ = P₁₀ = Ac, P₇ = 2,2,2-trichloroethoxycarbonyl.
^f Bac₄: P₁ = H, P₂ = Bz, P₄ = P₁₀ = Ac, P₇ = H.
^g A solution of 312 in methylene chloride isomerized to 313 at room temperature after 20 h.
^h Bac₅: P₁ = dimethylsilyl, P₂ = Bz, P₄ = methoxycarbonyl, P₇ = triethylsilyl, P₁₀ = Ac.
sulfoxide or sulfone intermediate that is more reactive for hydrolysis. This appears to be a general method to hydrolyze 2-thiooxazolines.

In general, 2-amino-substituted oxazolines are more resistant to acid hydrolysis. For example, the 2-aminooxazoline moiety in the protected azasugar 316 was preserved during acid cleavage of a ketal in the final step of a trehazolin synthesis (Scheme 8.93).102

Oxazolines are generally resistant to basic hydrolysis. For example, the ester in the spirocyclic oxazoline ester 317 was quantitatively hydrolyzed under basic conditions to afford the corresponding acid 318 (Scheme 8.94).185

However, oxazolines can be completely hydrolyzed using strongly basic conditions. For example, Giuliano and Smith hydrolyzed the 2-aminooxazoline 319 with
aqueous barium hydroxide at reflux and isolated the amino alcohol \(\text{320} \) in excellent yield (Scheme 8.95).\(^{235} \) Meyers and Shimano reported an efficient basic hydrolysis of oxazoline \(\text{321} \) to the amino acid \(\text{322} \) (Scheme 8.96).\(^{317} \) In this case, \(N \)-butylamine was used to scavenge divinyl ketone produced from the piperidinone moiety.

\[
\begin{align*}
\text{Me}_2N & \quad \text{319} \\
\text{Me}_{\text{H}} & \quad \text{320}
\end{align*}
\]

\[
\begin{align*}
\text{Me}_{\text{H}} & \quad \text{321} \\
\text{Me}_{\text{H}} & \quad \text{322}
\end{align*}
\]
Bazureau and co-workers reported an unusual hydrolysis of the tetrasubstituted oxazoline 323. In this case, 323 was unstable and hydrolyzed quickly to the tetrahydroisoquinoline amino ester 324 under mildly basic conditions (Scheme 8.97). Although the authors did not discuss the reaction mechanism, it is possible that the facile hydrolysis is facilitated by the formation of the bicyclic intermediate 325 produced via intramolecular trapping of 326.

The same group also reported an analogous reaction wherein the oxazoline 327 hydrolyzed under neutral conditions to give the dihydroisoquinoline 328 (Scheme 8.98). In contrast, with a meta-substituted aldehyde, the oxazoline was stable under the same reaction conditions, which suggests that an intramolecular mechanism is operative and is consistent with the above analysis.
In a special case, basic hydrolysis of 2-(trichloromethyl)oxazolines 329 gave the oxazolidinone 330 or the amino alcohol 331 depending on the reaction conditions as shown in Table 8.25 (Scheme 8.99). Formation of 330 is presumably the result of facile displacement of the trichloromethyl leaving group.

8.3.1.2. Substitution at the 2-Position by Other Nucleophiles

Other nucleophiles are known to attack the 2-position of oxazolines. Wipf and co-workers developed a general method to convert oxazolines to thiazolines by thiolysis followed by cyclodehydration (Scheme 8.100). Initial attack of hydrosulfide at the 2-position of the oxazoline occurs under either acidic or

TABLE 8.25. HYDROLYSIS OF OXAZOLINE 329 UNDER BASIC CONDITIONS

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base (B)</th>
<th>Hydrolysis Conditions</th>
<th>% Yield (Product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2.7 N NaOH/dioxane, reflux, 10 h</td>
<td>58 (330), 8 (331)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6 N NaOH/EtOH, reflux, 16 h</td>
<td>79 (331)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>aq. Cs₂CO₃/EtOH, reflux, 18 h</td>
<td>94 (331)</td>
</tr>
</tbody>
</table>

aData from Ref. 241.
moderately basic conditions. The authors found that presence of a base (triethylamine) was crucial to prevent the isomeric ring opening of the initial intermediate. Racemization at the labile amino acid \(\alpha \)-carbon atom is usually minimal except in the case of \textit{cis}-4,5-disubstituted-oxazolines under prolonged reaction conditions. This strategy was successfully applied for the total syntheses of curacin A\(^{137,319,320}\) and kalkitoxin (Fig. 8.11).\(^{321}\)

The reaction generally tolerates steric hindrance at the 2-exocyclic position as well as at the 4- and 5-positions. However, the reaction rate was found to be sensitive to steric effects. Thus, thiolysis of a threonine-derived oxazoline \(^{332}\) was considerably slower than that for the corresponding serine-derived oxazoline \(^{333}\) (Scheme 8.101).\(^{318}\) The rate difference could be exploited to selectively convert a serine-derived oxazoline to a thioamide in the presence of a threonine-derived oxazoline.
However, this strategy failed when applied to the synthesis of the cyclopeptide lissoclinamide 7. Here, the serine-derived oxazoline moiety could not be selectively thiolyzed in the presence of the threonine-derived oxazoline in the cyclopeptide 334. The authors attributed this lack of chemoselectivity to the increased stability and thus reduced reactivity, of the serine-derived oxazoline in the macrocyclic scaffold. All three oxazoline moieties reacted under the prolonged reaction conditions to give the trithio cyclopeptide 335 (Scheme 8.102). The structure of 335 was confirmed by conversion to the tristhiazoline cyclopeptide 336.
Nucleophilic attack at the 5-position of an oxazoline normally proceeds under acidic conditions. For example, in their total synthesis of thiangazole, Wipf and co-workers used thiolacetic acid to convert the trisoxazoline 337 to the S-protected cysteine derivative 338 that was further elaborated to thiangazole through aminolysis, cyclodehydration, and oxidation (Scheme 8.103). This approach complements the thioamide method to prepare thiazolines.

Such nucleophilic ring-opening reactions may be carried out under mild conditions. For example, Wuts and co-workers cleanly converted the 2,4-diaryloxazoline 339 to the chloro amide 340 using pyridine hydrochloride (Py·HCl) at room temperature (Scheme 8.104). Jugé and co-workers also reported mild ring opening of the oxazoline carboxylate salt 341 using HBr or HI generated in situ from the corresponding trimethylsilyl halide (Scheme 8.105). The resulting 2-halomethyl amino acids 342 were converted to the corresponding phosphonium salts 343.

Nucleophilic attack becomes a more facile process when the 5-position is activated by an electron-donating group. This strategy has been used extensively in glycoside synthesis, whereby an anomeric oxazoline is used as a glycopyranosyl
This reaction is promoted by acid and usually results in configurational inversion at the 5-position. A major advantage of this procedure is that the ring-opened product directly incorporates the desired N-acetyl function.

This method works very well for reactive glycosyl acceptors such as primary alcohols. It can be carried out without affecting other acid sensitive functionalities including acetonides and even orthoesters. Nishimura and co-workers successfully employed this method to prepare the trisaccharide monomer (Scheme 8.107). After deprotection, the product was copolymerized with acrylamide to give a biologically interesting glycoprotein model.
Less reactive alcohols (e.g., secondary alcohols) usually give lower yields. However, Colombo and co-workers obtained a good yield of the disaccharide 345 using this method (Scheme 8.108). Other useful nucleophiles for this type of substitution include azide and thiolacetic acid. Glaxo researchers utilized such a strategy in their synthesis of the neuraminic acid analogue 346 (Scheme 8.109). Itzstein and co-workers used a similar strategy to synthesize a thio analogue of neuraminic acid 347 and reported that thiolacetic acid was also a suitable nucleophile.

Base-catalyzed nucleophilic attack at the 5-position is rare although it can be an efficient process under appropriate conditions. For example, in the synthesis of acquired immune deficiency syndrome (AIDS) drug Nelfinavir, a base-catalyzed thiolysis reaction was used in the final step (Scheme 8.110). The solvent,
methyl isobutyl ketone (MIBK), as well as the choice of base was found to be critical to minimize side products.

8.3.2. N-Alkylations

The oxazoline nitrogen is a nucleophile and reacts with a variety of electrophiles. Alkylation leads to iminium salts.324,325 Meyers’ group developed the strategy of initial N-alkylation to activate the oxazoline for mild hydrolysis and reduction.9 Holenca and Persec have firmly established that the hydrolysis proceeds through a nucleophilic attack at the 2-position of the oxazolinium salt.71 Reactions of an oxazolinium salt have been used extensively in organic synthesis involving oxazolines. For example, Jones and Ciske hydrolyzed an \textit{N}-methyloxazolinium iodide in their dengibsin synthesis (Scheme 8.111).324 Alvarez-Ibarra and co-workers reduced an intermediate \textit{N}-methyloxazolinium triflate to prepare oxazolidine 348 (Scheme 8.112).326,327
Ciufolini and co-workers designed a clever strategy to prepare azaspiroyclic building blocks.31,134,135 The key step in their strategy is the intramolecular trapping of the carbocation 350, generated from oxidation of the phenol 349, by the oxazoline nitrogen atom (Scheme 8.113).31,134 Hydrolysis of the resulting oxazolinium ion 351 gives the spirocycle 352, which undergoes spontaneous Michael addition to produce the tricyclic compound 353 as a single isomer. Alternatively, the initial spirocycle 352 can be trapped as an acetate, 354. A similar cyclization occurs when the indole oxazoline 355 is oxidized (Scheme 8.114). In this case, a 1:1 mixture of diastereomers 358 and 359 was obtained.31,135
Yokozawa reported that the 2-substituent strongly affects the reactivity of a 2-substituted-oxazoline 360 with dimethyl 2,2-dicyano-3-ethoxy-1,1-dicarboxylate as shown in Scheme 8.115. Thus, oxazoline itself, 360 (R = H), gave the annulated bicyclic product 361 that resulted from collapse of the zwitterionic intermediate 362, whereas simple 2-alkyloxazolines, 360 (R = Me, Et), gave an alternating (1:1) copolymer. 2-Phenyl oxazoline, 360 (R = Ph), was unreactive under the reaction conditions. The zwitterionic intermediate 362 (R = Me) was trapped by acetic acid to give the open-chain adduct 363 that resulted from nucleophilic ring opening at the 5-position of the oxazolinium zwitterion.

Scheme 8.115

8.3.3. Proton Abstractions

Proton abstraction at the 2-position is rare and requires strongly basic conditions. For example, Meyers and Novacheck used tert-butyllithium to deprotonate 364 in their preparation of the 2-bromooxazoline 365 (Scheme 8.116). Interestingly,
deprotonation at the 4-position was not competitive in this case, probably due to the steric hindrance from the tert-butyl group. Cross-coupling reactions of 365 with stannanes are described in Section 8.3.13. It is noteworthy that triflation of the corresponding oxazolidinone gave only the N-Tf-oxazolidinone.

Meyers and Shimano discovered the unusual deprotonation behavior of ethoxy-vinyl lithium–HMPA complex (EVL–HMPA) for the deprotonation of the trans-oxazoline 366 and the cis-oxazoline 367. The EVL–HMPA complex is prepared by deprotonation of ethyl vinyl ether with tert-butyllithium in THF followed by addition of HMPA. Reaction of the trans-oxazoline 366 with both the EVL–HMPA complex and conventional alkyllithium reagents (RLi) resulted in deprotonation at the benzylic 5-position. In contrast, deprotonation of 367 occurred at the 4-position with an alkyllithium reagent RLi, whereas benzylic deprotonation predominated with the EVL–HMPA complex (Scheme 8.117).330 The authors proposed that EVL–HMPA complexes with the 5-phenyl substituent prior to deprotonation.

Deprotonation at an activated 4-position has been employed extensively in asymmetric synthesis, which is the key step in the Seebach protocol for the preparation of α-alkyl amino acids.331 The existing alkyl group at the 5-position acts as a directing group for the alkylation and is oriented trans to the new alkyl group (Scheme 8.118). This reaction provides an efficient methodology for normally difficult stereoselective construction of a quaternary chiral center.

Several groups employed this strategy for the synthesis of lactacystin analogues, an important class of nonprotein neurotrophic factors. For example, in their total
synthesis of (+)-lactacystin, Omura, Smith, and co-workers used this method to construct the key quaternary chiral center (Scheme 8.119).227,229 Here, deprotonation of the oxazoline-4-carboxylic acid ester 370 with LiHMDS followed by reaction with formaldehyde gave the alcohol 371 in good yield with excellent diastereoselectivity (>98\% de). Using a milder base (DBU), Node, Kajimoto, Wong, and co-workers also demonstrated the utility of this method in their synthesis of mycestericin D.81,82

An additional chiral center results using a prochiral electrophile, for example, an aldol reaction with an aldehyde. The stereochemistry at the new chiral center can be controlled following traditional aldol condensation methods. For example, Corey and Choi used a zinc oxazoline enolate in their synthesis of (6R)-lactacystin (Scheme 8.120).332 The authors proposed that, depending on the enolate geometry, either a chair [for the (Z) enolate] or a boat [for the (E) enolate] six-membered transition state may be responsible for the preferred stereochemistry at the new chiral center bearing the hydroxy group. Adams and co-workers used a similar strategy in their total synthesis of clasto-lactacystin β-lactone.79

A stabilized 4-oxazoline enolate can also undergo highly stereoselective Michael addition. Overman and co-workers studied this reaction in their synthesis of sarains A–C. Thus, deprotonation of the oxazoline 372 with LDA at −78 to −65 °C followed by reaction with the trans-ester 373 gave a single diastereomer of
oxazoline 374 by NMR. The other diastereomeric oxazoline 375 was obtained in high selectivity albeit lower yield from reaction using the cis-ester 376 (Scheme 8.121). A chelated transition state model was proposed to rationalize the high diastereoselectivity (Fig. 8.12). The olefin approaches the enolate from the opposite face of the neighboring 5-methyl group. The organizational role of the lithium ion in the transition state is supported by the observation that substantially lower selectivity was obtained when HMPA was present.
The facile proton abstraction of activated oxazolines offers a convenient method to convert cis oxazolines to the thermodynamically more stable trans isomer. Suga, Ibata, and co-workers took advantage of this property to correctly determine the stereochemistry for the oxazoline obtained from the $[3 + 2]$ cycloaddition of 5-methoxy-2-(p-methoxyphenyl)oxazole with benzaldehyde (Scheme 8.122). The cis-oxazoline 377 (88% ee) was converted to the trans-oxazoline 378 (70% ee) using triethylamine. A two-step sequence then converted 378 to β-phenylserine 379 thus confirming the cis stereochemistry of 377.

Proton abstraction and epimerization of activated oxazolines is comparable to a similar epimerization known for oxazolidinones. For example, Omura and Smith reported an elegant synthesis of all four stereoisomers of 3-hydroxyleucine from (E)-4-methyl-2-penten-1-ol (Scheme 8.123). One of the key steps was the efficient epimerization of the cis-oxazolidinone ester 380 to the trans-oxazolidinone acid 381 during saponification.

Finally, Bazureau and co-workers reported an interesting decarbomethoxylation reaction of the 4,4-oxazolinedicarboxylic acid diester 382. The ester group cis to the neighboring 5-phenyl substituent in 382 was selectively removed to produce the trans-monoester 383. However, considering the reaction conditions, the product

![Figure 8.12. Chelated transition state model.](image-url)
is likely the result of equilibration of an initial cis/trans mixture 384 to the thermodynamically more stable trans product 383 (Scheme 8.124).

8.3.4. Oxidations

Oxazolines are oxidized to the corresponding oxazoles by a variety of oxidants. The reader should consult Chapter 1, Part A of this series for detailed discussions and examples.

8.3.5. Reductions

Oxazolines are reduced to oxazolidines that are usually reduced further to amino alcohols. For example, hydrogenation of the oxazoline 385 was an important step in
the semisynthesis of azithromycin (Scheme 8.125). In contrast, traditional catalytic hydrogenolysis of oxazoline 386 was unsuccessful, whereas catalytic-transfer hydrogenation proved to be quite efficient (Scheme 8.126). Presumably, 386 initially gives the benzylamino alcohol 387 that undergoes hydrogenolysis to the amino alcohol 388. Cyclization of 388 in situ then gives the desired lactam 389.

The reduction can be stopped at the benzylamino alcohol stage using an appropriate reducing agent. For example, in their general strategy to prepare pseudodistomins, Naito and co-workers reduced the bicyclic oxazoline 390 to the

![Scheme 8.125](image1)

azithromycin (R = Me)

![Scheme 8.126](image2)
benzylamino alcohol 391 using borane (Scheme 8.127). Oxazolines are stable to lithium aluminum hydride (LAH) at low temperature but they can be reduced to alkylamino alcohols using LAH under more forcing conditions (60 °C, THF).

8.3.6. Oxazolines as Protecting Groups

Oxazolines have been extensively used as masking groups for either amino alcohols or carboxylic acids. This application has been thoroughly reviewed in Greene’s popular monograph and is evident throughout this chapter. Therefore, it is not repeated further here.

8.3.7. Oxazolines as Activating Groups

The oxazoline ring acts as an electron-withdrawing group for a substituent at the 2-position. Thus, the 2-protons of a 2-alkyloxazoline exhibit some acidity and can be abstracted by a base. A 2-alkenyloxazoline can be viewed as a masked acrylic acid derivative and is capable of undergoing Michael addition and Diels–Alder reactions. These reactions can often be carried out stereoselectively using a chiral oxazoline. Other types of chiral auxiliaries, most notably oxazolidinones, are also very effective for these types of applications. However, they are outside the scope of this chapter. The discussion in this section will focus on the new developments with oxazolines.

8.3.7.1. 2-Proton Abstraction

The carbanion generated by 2-proton abstraction of a 2-alkyloxazoline is capable of typical enolate chemistry. Thus, the carbanion was found to react with nitriles to give an enamine, with formate esters to give an aldehyde that can be trapped, with chiral sulfinate esters to give chiral sulfoxides, and with alkylating agents. A carbamate-protected aminomethyl chiral oxazoline was deprotonated and alkylated with diastereoselectivities up to 92% de.
The proton abstraction typically requires strong bases although weaker bases can be employed if the α-carbon is substituted with an additional activating group, such as an aryl group. Deprotonation of chiral arylmethyloxazolines followed by alkylation gave modest levels of diastereoselection (up to 60% de). Deprotonation of appropriately substituted 2-(allyloxymethyl)oxazolines resulted in stereoselective [2,3]-Wittig rearrangement. Ion pair acidities of 2-biphenylmethyl oxazolines have been calculated. Experimental data indicated that the anion–metal ion pairs studied did not aggregate in THF.

Florio’s group published an interesting series of reports detailing the application of 2-(chloromethyl)oxazolines in organic synthesis. Deprotonation of 2-(chloromethyl)-4,4-dimethyloxazoline yields a carbanion that undergoes a wide variety of synthetically useful reactions (Scheme 8.128). Thus, quenching with a carbonyl compound at −100 °C gave chlorohydrins that can be...
converted to the 2-oxazoline substituted epoxides 395 upon treatment with a base.345 Further, the oxazoline-epoxide 395 can be converted to an epoxy aldehyde 396.345 If the oxazoline-epoxide 395 is deprotonated, the resulting carbanion 397 can be trapped with an electrophile to give a tetrasubstituted epoxide 398. Alternatively, in the absence of an electrophile, upon warming to room temperature, 397 rearranges to the ketone 399.351

Trapping 393 with a Schiff base derived from aniline gave an N-phenylaziridine 400.346 Deprotonation of 400 followed by quenching with an electrophile produced the tetrasubstituted-N-phenylaziridine 401, analogous to the conversion of 395 to 398.346

Most interestingly, reaction of 393 with nitrones gave a 2-(cis-alkenyl)-substituted oxazoline 402. A chelation-based transition state model was proposed to rationalize this unusual cis selectivity.347 The 2-(trans-alkenyl)-substituted oxazoline can be obtained using the analogous des-chloro lithiated 2-alkyloxazoline.347

A chloromethylithium species substituted with a chiral oxazoline moiety gives an epoxide with modest levels of diastereoselection (up to 33% de) using a symmetrical ketone.348 However, higher levels of diastereoselection were obtained using boron azaenolates.349,350 Thus, treatment of the chiral 2-(chloromethyl) oxazoline 403 with a dialkylboron triflate gave the (Z)-boron azaenolate 404 (Scheme 8.129). Reaction of 404 with ketones followed by base treatment gave the desired epoxide 405 in good yields. For aromatic ketones and 9-BBNOTf the (R) configuration was obtained in the newly created chiral center. However, the stereochemistry was reversed if Bu2BOTf was used. For aliphatic ketones, Bu2BOTf was found to give better selectivities than 9-BBNOTf although the relative configuration of the new chiral center was unchanged. The absolute configuration in the case of aliphatic ketones was not reported. A titanium azaenolate of 403 was also found to give 405 in good yields (50–75%) and selectivities (76–96% de) from aliphatic ketones. However, it gave poor selectivities with aromatic ketones (0–50% de).350

Meyers and co-workers recently reported a ketenimine rearrangement that has been applied to the synthesis of ketones containing a chiral \(\alpha \)-quaternary carbon. As
shown in Scheme 8.130, deprotonation of a 2-alkyloxazoline 406 by an alkyl or aryllithium reagent followed by trapping with an electrophile gave the desired ketone 407 in good yields (50–75%) and enantioselectivities (35–87% ee). The selectivity was independent of the configuration at the \(\alpha\)-carbon in 406 since both isomers gave the same diastereomeric mixture of ketenimines 408 that were trapped with TMSCl to give the \(O\)-TMS ketenimine derivative 409. The authors reported that equilibration of the enamine species 410 and 411 as well as the facial discrimination determined the stereochemical outcome. The choice of THF as the solvent was critical to achieve high selectivities. The absolute configuration of the products was not reported.

8.3.7.2. Michael Additions of 2-Alkenyloxazolines

The use of oxazolines as chiral auxiliaries for asymmetric Michael additions has yielded mixed results. For example, Langlois’ group reported modest diastereoselectivities (up to 60% de) for cyanide addition to a number of chiral
\(\alpha,\beta\)-unsaturated oxazolines using diethylaluminium cyanide.\(^{90,353,354}\) On the other hand, Meyers’ group capitalized on their earlier successes using a tert-leucine-based oxazoline auxiliary and applied this methodology to their asymmetric syntheses of \((+)\-\alpha\)-curcumene and \((+)\-xanthorrhizol. Thus, reaction of an aryl-lithium with the chiral oxazoline 412 gave the desired adducts 413 with excellent selectivities (Scheme 8.131).\(^{60}\) Ultimately, 413 \((R = H \text{ or OMe})\) were converted to \((+)\-\alpha\)-curcumene and \((+)\-xanthorrhizol, respectively, in 4–5 steps. However, the yields of 413 were markedly dependent on the method of generation of the lithium reagent. Thus, for 413 \((R = H)\), the best yield was obtained when the lithium reagent was prepared by direct metalation of \(p\)-bromotoluene with excess lithium in ether followed by filtration to remove insoluble material. Alternatively, for 413 \((R = \text{OMe})\), the low solubility of the lithium reagent necessitated the preparation by transmetalation of the corresponding bromide using tert-butyllithium.

More recently, Quirion and co-workers reported good diastereoselectivities (up to 80% de) for addition of diethyl phosphite to the chiral oxazolines 414 (Scheme 8.132).\(^{355}\) The absolute stereochemistry of the products was not confirmed. The phosphonate 415 can be converted to biologically important \(\beta\)-amidophosphonates by known methods.

\[
\begin{align*}
\text{Me} &- \text{N} & t-\text{Bu} \\
\text{ArLi} &-78^\circ\text{C} & \text{Me} & - \text{N} & t-\text{Bu}
\end{align*}
\]

\[
\begin{align*}
72\% (R = H) & & \text{Me} & - \text{N} & t-\text{Bu} \\
61\% (R = \text{OMe}) & & \text{Me} & - \text{N} & t-\text{Bu}
\end{align*}
\]

\[
\begin{align*}
412 & & 413 & & 94\% \text{ de}
\end{align*}
\]

\[
\begin{align*}
\text{Me} & & \text{Me} & & \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{R} & & \text{Me} & & \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{(S)-}\alpha\text{-curcumene (R’ = H)} & & \text{(S)-xanthorrhizol (R’ = OH)}
\end{align*}
\]

\[
\begin{align*}
\text{R} & & \text{Me} & & \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{R} & & \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{(S)-}\alpha\text{-curcumene (R’ = H)} & & \text{(S)-xanthorrhizol (R’ = OH)}
\end{align*}
\]

\[
\begin{align*}
\text{Me} &- \text{N} & R_1 & R_2 \\
2\text{ equiv. HPO(OEt)}_2 & & \text{EtO} & \text{Me} & \text{O} & \text{EtO} & \text{Me} \\
2\text{ equiv. LDA, }-78^\circ\text{C} & & \text{R}_1 & \text{R}_2 \\
\end{align*}
\]

\[
\begin{align*}
414 & & 415 & & 80\% \text{ de}
\end{align*}
\]

\[
\begin{align*}
\text{R}_1 = \text{Ph}, \text{R}_2 = \text{H}: \text{Yield} = 55\%
\text{R}_1 = \text{Me}, \text{R}_2 = \text{Ph}: \text{Yield} = 60\%
\end{align*}
\]

\[
\begin{align*}
\text{Scheme 8.131}
\end{align*}
\]

\[
\begin{align*}
\text{Scheme 8.132}
\end{align*}
\]
8.3.7.3. Diels–Alder Reactions of 2-Alkenyloxazolines

New developments in this area from Langlois’ group are primarily and generally on the development of the asymmetric version of these reactions. Most of the reactions employed camphor-derived 2-alkenyloxazolines as dienophiles (Scheme 8.133). In many cases, these reactions were carried out in the presence of trifluoroacetic anhydride to activate the alkene by complexation at the oxazoline nitrogen as well as to limit the number of reactive conformations. The reader should consult the recent and extensive reviews of this chemistry by Langlois. 12,13

\[\text{Scheme 8.133} \]

\[\text{8.3.8. Dipolar Cycloadditions of Oxazoline } N\text{-Oxides} \]

An oxazoline \(N\)-oxide is a versatile dipole and can react with a variety of dipolarophiles (Scheme 8.134). Langlois’ group has been very active in this area and has made extensive use of the \(N\)-oxides of camphor-derived oxazolines for these reactions. The initial adduct can be converted to the anti aldol product after hydrolysis and hydrogenolysis. This subject has been thoroughly reviewed by Langlois, 12–14 most recently in 2000. 14

\[\text{Scheme 8.134} \]
8.3.9. Oxazolines as Directing Groups for Aromatic Reactions

Oxazoline-directed aromatic substitution and addition reactions provide synthetic chemists with powerful tools for the construction of complex aromatic compounds. Since the last authoritative review by Meyers,9 these technologies have matured and found widespread applications in organic synthesis. While there has been somewhat limited methodological research in this area in the intervening years, one particularly exciting new development is the diastereoselective ortho-metalations directed by chiral oxazolines. Sections 8.3.9.1–8.3.9.3 will discuss these new developments as well as new synthetic applications of these reactions.

8.3.9.1. Metalation and Electrophilic Substitutions

Since the discovery in 1975 by Gschwend356 and Meyers356a the oxazoline-directed aromatic ortho-metalation protocol has been used extensively in organic synthesis. A variety of electrophiles have been reacted with the active aryl metal species to prepare a diverse array of aromatic structures. In a traditional application of this methodology, Misra and co-workers used ortho-lithiation and subsequent reactions in their synthesis of a thromboxane A₂ receptor antagonist 420 (Scheme 8.135).114 Lithiation of excess 4,4-dimethyl-2-phenyloxazoline 416 (3 equiv) was performed in THF at –45 °C. After reaction with the lactol 417, the resulting oxazoline 418 was hydrolyzed under mild conditions to give the corresponding acid (not shown) that was cyclodehydrated under the reaction conditions to the lactone 419. Further elaboration of 419 then gave the desired target 420.

Williams and co-workers reacted an aryllithium intermediate, generated from metalation of the oxazoline 421, with menthyl toluenesulfinate 422 to prepare an authentic aryl-substituted chiral sulfoxide (Scheme 8.136).203,204 The sulfoxide configuration was inverted during the displacement reaction. Similarly, Uemura and co-workers prepared chiral oxazolinyl aryl sulfides in good yields using disulfides as the electrophile.357 Using diarylphosphinyl halides as the electrophile, Pfaltz and co-workers prepared chiral phosphinoxazolines in good yields via the same metalation methodology.358,359

Benzylic deprotonation occurs under normal lithiation conditions when both ortho-positions are occupied. Interestingly, Thomas and co-workers were able to deprotonate a benzylic proton in the presence of an ortho proton (Scheme 8.137).66 Thus, metalation of 2-(2-methylphenyl)oxazoline 424 produced a benzylic lithium species that reacted with a Cbz-protected leucinal 425 to give a modest yield of the iminolactone diastereomers 426 and 427 together with the expected alcohols 428 and 429. The mixture of 426–429 was efficiently hydrolyzed to give the lactones 430 and 431.

The authors then applied this strategy in their total synthesis of the anti-ulcer compound AI-77-B (Scheme 8.138). It is noteworthy that the ortho-methoxy group
of 432 did not interfere with the lithiation and the subsequent electrophilic reaction. For example, methylation of the benzyl lithium species prepared from 432 gave the expected ethyl homologue 433 in excellent yield. In comparison with the oxazoline-directing group, the authors found that an ethyl ester yielded unreliable results, especially on scale-up.
2-Oxazolines

Scheme 8.137

Scheme 8.138
Pfizer workers took advantage of both the oxazoline-directed metalation and Negishi’s cross-coupling methodology to devise a new approach to prepare biaryls (Scheme 8.139). The initially formed lithium species from 434 was converted to the organozinc reagent 435. Subsequent cross-coupling of 435 with aryl halides or triflates gave the biaryls 436. The reaction is more efficient for electron-deficient aryl iodides and triflates. Aryl bromides tend to react slower and gave lower yields. Other ortho-directing groups, such as amides, can be used in place of oxazoline, but they are not as easily converted to other functional groups. The hypolipidemic agent, xenalipin, was efficiently prepared by hydrolysis of 436 ($R_1 = H, R_2 = CF_3$) after quaternization with methyl iodide.

Evans and co-workers employed a similar approach to prepare aryl ketones. Direct acylation of an aryllithium species by acyl halides is usually complicated by the competitive secondary reactions of the newly formed ketones. Although these ketones can be prepared using other acyl equivalents, such as esters or amides, the reaction conditions have to be carefully controlled. To circumvent these difficulties, Evans and co-workers devised an alternative approach wherein the aryllithium from metalation of an oxazoline was converted to the corresponding arylzinc species by transmetalation. The more tolerant organozinc reagent 437 was then reacted with acid chlorides under the Negishi cross-coupling conditions to afford the corresponding ketones 438 (Scheme 8.140). Internal chelation of 437 with the oxazoline nitrogen atom reduces the reactivity and necessitates the use of excess...
to obtain synthetically useful yields of 438. There was no reaction in the absence of the palladium catalyst.

Bidentate ferrocene ligands containing a chiral oxazoline substituent possess both planar chiral and center chiral elements and have attracted much interest as asymmetric catalysts. However, until recently, preparation of such compounds had been limited to resolution. In 1995, four groups simultaneously communicated their results on the asymmetric synthesis of these structures using an oxazoline-directed diastereoselective lithiation (Scheme 8.141). When a chiral oxazolinylferrocene was metalated with butyllithium and the resulting aryllithium species trapped with an electrophile, diastereomer was favored over . The structure of the major diastereomer was confirmed, either by conversion to a compound of known stereochemistry or by X-ray crystallography of the product itself or of the corresponding palladium complex.

Subsequent studies revealed the scope and generality of this reaction that has been employed extensively for the synthesis of chiral ferrocenyloxazoline ligands. Selected examples are listed in Table 8.26 (Scheme 8.142).

Sammakia and Latham optimized the reaction conditions in the conditions: t-BuLi, ZnCl₂, RCOCl, R = Ph, cyclopentyl, methallyl

Scheme 8.140

Scheme 8.141
TABLE 8.26. LITHIATION OF OXAZOLINYLFERROCENE 439 AND TRAPPING WITH ELECTROPHILES

![Scheme 8.142](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R, R'</th>
<th>E⁺</th>
<th>Lithiation Conditions</th>
<th>dr</th>
<th>% Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me, n-Bu</td>
<td>TMSCl</td>
<td>TMEDA/Et₂O, 0 °C</td>
<td>>50 : 1</td>
<td>72</td>
<td>174</td>
</tr>
<tr>
<td>2</td>
<td>Me, s-Bu</td>
<td>Ph₂PCl</td>
<td>Et₂O, −78 °C</td>
<td>8 : 1</td>
<td>25</td>
<td>364</td>
</tr>
<tr>
<td>3</td>
<td>CH₂OMe, s-Bu</td>
<td>TMSCl</td>
<td>THF, −78 °C, ramp to 0 °C</td>
<td>4 : 1</td>
<td>NR</td>
<td>365</td>
</tr>
<tr>
<td>4</td>
<td>CH₂SMe, s-Bu</td>
<td>TMSCl</td>
<td>THF, −78 °C, ramp to 0 °C</td>
<td>3 : 1</td>
<td>NR</td>
<td>365</td>
</tr>
<tr>
<td>5</td>
<td>CH₂OTBS, s-Bu</td>
<td>TMSCl</td>
<td>THF, −78 °C, ramp to 0 °C</td>
<td>2 : 1</td>
<td>NR</td>
<td>365</td>
</tr>
<tr>
<td>6</td>
<td>CH₂OCH₂OMe, s-Bu</td>
<td>TMSCl</td>
<td>THF, −78 °C, ramp to 0 °C</td>
<td>4 : 1</td>
<td>NR</td>
<td>365</td>
</tr>
<tr>
<td>7</td>
<td>Bn, s-Bu</td>
<td>Ph₂PCl</td>
<td>Et₂O, −78 °C</td>
<td>14 : 1</td>
<td>56</td>
<td>364</td>
</tr>
<tr>
<td>8</td>
<td>Bn, s-Bu</td>
<td>TMSCl</td>
<td>THF, −78 °C, ramp to 0 °C</td>
<td>6 : 1</td>
<td>NR</td>
<td>365</td>
</tr>
<tr>
<td>9</td>
<td>Ph, s-Bu</td>
<td>Ph₂PCl</td>
<td>Et₂O, −78 °C</td>
<td>>199 : 1</td>
<td>55</td>
<td>364</td>
</tr>
<tr>
<td>10</td>
<td>Ph, s-Bu</td>
<td>Ph₂CO</td>
<td>THF, −78 °C</td>
<td>NR</td>
<td>34</td>
<td>370</td>
</tr>
<tr>
<td>11</td>
<td>Ph, s-Bu</td>
<td>C₂ClBr₂</td>
<td>TMEDA/ether, −78 °C</td>
<td>single isomer</td>
<td>94</td>
<td>369</td>
</tr>
<tr>
<td>12</td>
<td>i-Pr, n-Bu</td>
<td>TMSCl</td>
<td>TMEDA/hexane, −78 °C, ramp to 0 °C</td>
<td>>500 : 1</td>
<td>94</td>
<td>368</td>
</tr>
<tr>
<td>13</td>
<td>i-Pr, s-Bu</td>
<td>Ph₂PCl</td>
<td>Et₂O, −78 °C</td>
<td>39 : 1</td>
<td>77</td>
<td>364</td>
</tr>
<tr>
<td>14</td>
<td>i-Pr, s-Bu</td>
<td>Ph₂PCl</td>
<td>Et₂O, −78 °C</td>
<td>39 : 1</td>
<td>54</td>
<td>364</td>
</tr>
<tr>
<td>Entry</td>
<td>R, R'</td>
<td>E⁺</td>
<td>Lithiation Conditions</td>
<td>dr</td>
<td>% Yield</td>
<td>References</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>----------------------</td>
<td>----</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>16</td>
<td>i-Pr, s-Bu</td>
<td>MeI</td>
<td>Et₂O, −78 °C</td>
<td>39 : 1</td>
<td>58</td>
<td>364</td>
</tr>
<tr>
<td>17</td>
<td>s-Bu, s-Bu</td>
<td>Ph₃PCl</td>
<td>Et₂O, −78 °C</td>
<td>24 : 1</td>
<td>58</td>
<td>364</td>
</tr>
<tr>
<td>18</td>
<td>t-Bu, s-Bu</td>
<td>TMSCI</td>
<td>TMEDA/hexane, −78 °C, ramp to 0 °C</td>
<td>>500 : 1</td>
<td>NR</td>
<td>368</td>
</tr>
<tr>
<td>19</td>
<td>t-Bu, s-Bu</td>
<td>Ph₃PCl</td>
<td>Et₂O, −78 °C, ramp to 0 °C</td>
<td>13 : 1</td>
<td>65</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>t-Bu, n-Bu</td>
<td>Bu₃SnCl</td>
<td>TMEDA/hexane, −78 °C, ramp to 0 °C</td>
<td>>99 : 1</td>
<td>99</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>t-Bu, s-Bu</td>
<td>PhSSPh</td>
<td>THF, −78 °C, ramp to 0 °C</td>
<td>32 : 1</td>
<td>81</td>
<td>41, 371</td>
</tr>
<tr>
<td>22</td>
<td>t-Bu, n-Bu</td>
<td>CO₂</td>
<td>Et₂O, rt</td>
<td>NR</td>
<td>83</td>
<td>41</td>
</tr>
<tr>
<td>23</td>
<td>t-Bu, s-Bu</td>
<td>DMF</td>
<td>THF, −78 °C, ramp to 0 °C</td>
<td>NR</td>
<td>73</td>
<td>41</td>
</tr>
<tr>
<td>24</td>
<td>t-Bu, s-Bu</td>
<td>Ph₃CO</td>
<td>THF, −78 °C</td>
<td>27 : 1</td>
<td>87</td>
<td>372, 373</td>
</tr>
<tr>
<td>25</td>
<td>t-Bu, s-Bu</td>
<td>Se</td>
<td>THF, −78 °C</td>
<td>NR</td>
<td>69 (after oxidation to diselenide)</td>
<td>374</td>
</tr>
</tbody>
</table>

*a Not reported: NR.
and found that the highest diastereoselectivity (>500:1, entry 13) was obtained using sec-butyllithium as the base, hexane as the solvent, and TMEDA as the additive.368 Ahn and co-workers also observed sensitivities of the reaction toward solvent, base and temperature.41 Low yields could often be attributed to incomplete lithiation, over-lithiation (using tert-butyllithium as the base), or decomposition of the ferrocenyllithium reagent itself.

The minor diastereomer \textbf{443} can be prepared by further reaction of the silylferrocene \textbf{444}. Thus, lithiation of \textbf{444} followed by trapping of the intermediate silylferrocenyllithium (not shown) with an electrophile gives \textbf{445}. Desilylation of \textbf{445} then gives \textbf{443} (Scheme 8.143).41,174,175

Both Richards175 and Sammakia127 proposed working models to account for the diastereoselectivity. In an elegantly designed study, Sammakia and Latham convincingly demonstrated that the nitrogen atom is responsible for the directive effect of the oxazoline (Scheme 8.144).127,368 Thus, when the conformationally constrained oxazolinyferrocene \textbf{446} was metalated using sec-butyllithium in THF followed by trapping with methyl iodide or TMSCl, only one diastereomer, \textbf{447} was detected by chiral HPLC and NMR. The structure of \textbf{447} (E = Me) was determined by X-ray crystallography and was found to contain the methyl group syn to the oxazoline nitrogen. These results suggest that the nitrogen atom of the oxazoline must be responsible for the directive effect.

\begin{center}
\textbf{Scheme 8.143}
\end{center}

\begin{center}
\textbf{Scheme 8.144}
\end{center}
Based on the above findings, Sammakia and Latham proposed a model to explain the origin of the diastereoselective lithiation (Scheme 8.145). They suggested that the stereoselectivity should be determined by the interaction between the oxazoline substituent and the metalating reagent. The ferrocenyloxazoline exists in an equilibrium of two rotamers 439A and 439B. Rotamer 439A is disfavored due to the steric interaction between the oxazoline substituent and the bottom cyclopentadienyl ring. The butyllithium reagent, presumably bulky due to its association with ligands, preferentially approaches the reaction site from the relatively open top face. Even though rotamer 439A is less populated, it is more reactive toward lithiation because the top face is less sterically congested. The Curtin–Hammett principle dictates the predominance of the product from rotamer 439A.

This model would predict higher selectivities for bulkier lithium reagents. Experimental data (Table 8.27; Scheme 8.146) supports this prediction. An unexpectedly lower selectivity was obtained when tert-butyllithium was used to metalate tert-butyl-substituted oxazolinylferrocene. In this particular case, the authors suggested that the reaction may proceed via oxygen directed or a nondirected pathway.

Similarly, oxygen-directed metalation was thought to be responsible for the low diastereoselectivity observed in the lithiation of the trans-4,5-diphenyloxazolinylferrocene 449 (Scheme 8.147). Alternatively, factors other than the unlikely oxygen-directed lithiation may be operative in this case. Since the populations of the rotamers 449A and 449B should be nearly equal because of the pseudo C2 symmetry present in 449, the product ratio is determined solely by the reactivities of the two rotamers. For a nitrogen-directed lithiation, the top face of 449A should still be relatively unhindered compared with that of 449B. However, the top face of 449A is more sterically congested than the top face of a mono-substituted

Scheme 8.145

![Diagram of 439A and 439B rotamers](image-url)
oxazolinylerrocene, (e.g., 439) due to the presence of the 5-phenyl group. This explains the lower selectivity observed in 449 in comparison with 439.

Dilithiation of a C2-symmetric bis(oxazoline)-substituted ferrocenes as well as biaryls provides a versatile method for preparation of C2-symmetric tetradentate ligands. This reaction was originally described in 1995 by Park, Ahn, and co-workers.366 The same group 376 and others have further expanded this reaction to

TABLE 8.27. LITHIATION OF OXAZOLINYLFERROCENE 439 AND TRAPPING WITH TMSCl

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R’</th>
<th>Selectivity (444/448)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i-Pr</td>
<td>n-Bu</td>
<td>3:1</td>
</tr>
<tr>
<td>2</td>
<td>i-Pr</td>
<td>s-Bu</td>
<td>8:1</td>
</tr>
<tr>
<td>3</td>
<td>i-Pr</td>
<td>t-Bu</td>
<td>16:1</td>
</tr>
<tr>
<td>4</td>
<td>t-Bu</td>
<td>n-Bu</td>
<td>6:1</td>
</tr>
<tr>
<td>5</td>
<td>t-Bu</td>
<td>s-Bu</td>
<td>36:1</td>
</tr>
<tr>
<td>6</td>
<td>t-Bu</td>
<td>t-Bu</td>
<td>6:1</td>
</tr>
</tbody>
</table>

aData from Ref. 127.

oxazolinylerrocene, (e.g., 439) due to the presence of the 5-phenyl group. This explains the lower selectivity observed in 449 in comparison with 439.

Dilithiation of a C2-symmetric bis(oxazoline)-substituted ferrocenes as well as biaryls provides a versatile method for preparation of C2-symmetric tetradentate ligands. This reaction was originally described in 1995 by Park, Ahn, and co-workers.366 The same group376 and others have further expanded this reaction to
prepare a variety of tetradentate ligands. Examples of C_{2}-symmetric tetradentate ligands are described in Chapter 9.

Bolm and co-workers expanded the diastereoselective lithiation to include the η^{5}-cyclopentadienylrhenium(I) tricarbonyl oxazoline complex 451 (Scheme 8.148). The selectivity was determined to be 9:1 favoring diastereomer 452. The structure of 452 was determined by crystallography. Interestingly, lithiation of 451 with sec-butyllithium resulted in the formation of nucleophilic addition products.

Scheme 8.148

Metalation of arenes substituted with both an oxazoline and a methoxy group with a simple alkyllithium reagent usually effects lithiation at positions ortho to the oxazoline, that is, the oxazoline is a much stronger directing group than the methoxy group. However, Meyers and Shimano discovered that the regiochemistry can be dramatically altered using ethoxyvinylolithium complexed with HMPA (EVL–HMPA). Oxazoline-substituted methoxyarenes were lithiated at the position ortho to the methoxy group when treated with excess EVL–HMPA. Indeed, even the more powerful directing group, diisopropyl carboxamide (CONi-Pr_2) was not competitive with a methoxy group when EVL–HMPA was used as the base. The results from a variety of arenes demonstrated that this methodology is quite general (Table 8.28; Scheme 8.149).

The authors concluded that an oxazoline group was necessary to activate an arene for this type of metalation since reactions with anisole and 1,3-dimethoxybenzene were slower even at higher temperature (-56°C). The reaction may be kinetically controlled since the expected regiochemistry was observed when the reaction was carried out at 0 $^\circ$C. The reaction of the oxazoline-substituted naphthalene (Table 8.28, entry 5) represents the first example of lithiation in such a system. Simple alkyllithium reagents only undergo addition to the naphthalene ring (see Section 8.3.9.3). The authors suggest that steric effects created by a large cluster of EVL and HMPA may be responsible for this unexpected regioselectivity.

Although lithiation remains the most frequently used metalation reaction, there have been a number of new reports of direct palladation of aryloxazolines. For example, Smoliakova and co-workers prepared the dimeric palladium complex 457 by direct reaction of Pd(OAc)$_2$ with 2-phenyloxazoline in the presence of NaOAc/HOAc (Scheme 8.150). The dimeric complex 457 was converted to the monomeric triphenylphosphine complex 458 for which the X-ray crystal structure was determined. A similar reaction sequence was observed for naphthalenes.
TABLE 8.28. LITHIATION OF ARENES BY EVL–HMPA

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxazoline 454</th>
<th>Major Product (455)</th>
<th>Minor Product (456)</th>
<th>455/456</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>>99 : 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E⁺: % Yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MeO </td>
<td></td>
<td></td>
<td>>93 : 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MeO </td>
<td></td>
<td></td>
<td>>99 : 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>>99 : 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
</tr>
</tbody>
</table>

a Data from Ref. 379.

b Not reported = NR.
and co-authors comprehensively reviewed the coordination chemistry of oxazolines in 1999 in which they discussed this type of cyclopalladation reaction in more detail.\(^{20}\)

More recently, Richards and Stevens reported a diastereoselective cyclopalladation of the oxazoline-substituted \((\eta^5\text{-C}_5\text{H}_5)(\eta^4\text{-C}_4\text{Ph}_4)\text{Co}\) 459.\(^{382}\) Although this compound resisted lithiation under various conditions, it reacted readily with palladium acetate to form a single diastereomeric cyclopalladation product 460. The configuration of 460 is the opposite to that obtained in the ferrocene lithiation (see above) and was confirmed by nOe analysis. The authors attributed the diastereoselectivity to the instability of rotamer 459A due to the severe steric interaction between the isopropyl group and the \((\eta^4\text{-C}_4\text{Ph}_4)\) phenyl substituents. The reaction proceeds only through rotamer 459B to give the observed product (Scheme 8.151).
8.3.9.2. Nucleophilic Substitutions

It is well known that ortho-methoxy and ortho-fluoroaryloxazolines undergo facile nucleophilic substitution reactions using a variety of nucleophiles.\(^8,9\) Although a methoxy group is more commonly used as the leaving group for economic reasons, fluoride is sometimes used as the leaving group to avoid side reactions of the methoxy group, such as demethylation.\(^{383}\) Two groups used the 2-(ortho-fluorophenyl)oxazolines 461\(^{384}\) and 462\(^{385}\) to prepare the tricyclic phosphinooxazoline ligands 463 and 464 (Scheme 8.152). These ligands were then employed in palladium-catalyzed enantioselective allylic substitution reactions.

![Scheme 8.152](image)

Although 2-(ortho-chlorophenyl)-4,4-dimethyloxazoline 465 does not react with a Grignard reagent under normal conditions, Cahiez recently reported that the substitution occurred in the presence of a catalytic amount of manganese chloride (10% mol) to give the substitution product 466 in acceptable yield (Scheme 8.153).\(^{386}\) The reaction mechanism has not yet been defined.

One of the most useful aspects of the oxazoline-directed aromatic substitution is the synthesis of biaryls. This method nicely complements other well-known biaryl

![Scheme 8.153](image)
syntheses, such as the Suzuki coupling. For example, Zhu and co-workers applied oxazoline-directed aromatic substitution methodology in their synthesis of a protected actinoidic acid, a vancomycin substructure. Meyers’ group has perfected the experimental procedure to prepare unsymmetrical biaryls and reported a general synthesis of pyrrolophenanthridine alkaloids, such as oxoassoanine, pratosine, hippadine, kalbretorine, and ungeremine, using this method.

However, a more exciting application of this reaction is the oxazoline-directed synthesis of axially chiral biaryls. The oxazoline system not only activates the ortho-methoxy group for nucleophilic displacement but also determines the stereochemical outcome of the reaction. This provides a convenient method for the introduction of axial-chirality. Meyers’ group continues their earlier lead on this subject with reports of the stereoselective synthesis of tetrasubstituted biphenyls. Selected examples are shown in Table 8.29 (Scheme 8.154). The best diastereoselectivities were obtained when R1 in the bromide is a noncomplexing group (entries 5–8). Indeed, the opposite stereoisomer is obtained when R1 can complex with magnesium (entries 1, 3–4). Surprisingly, the selectivity is not very sensitive to the 4-substituent of the oxazoline (entries 6–7).

TABLE 8.29. OXAZOLINE-DIRECTED STEREOSELECTIVE SYNTHESIS OF BIPHENYLS

<table>
<thead>
<tr>
<th>Entry</th>
<th>468 (R1)</th>
<th>467 (R2)</th>
<th>469 % Yield</th>
<th>% de (Configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i-Pr</td>
<td>90</td>
<td>60 (aR)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>i-Pr</td>
<td>78</td>
<td>20 (aS)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CH₂OBn</td>
<td>i-Pr</td>
<td>80</td>
<td>16 (aR)</td>
</tr>
<tr>
<td>4</td>
<td>CH₂OMe</td>
<td>i-Pr</td>
<td>75</td>
<td>20 (aR)</td>
</tr>
<tr>
<td>5</td>
<td>Me</td>
<td>i-Pr</td>
<td>79</td>
<td>80 (aS)</td>
</tr>
<tr>
<td>6</td>
<td>CH₂OTBS</td>
<td>i-Pr</td>
<td>73</td>
<td>86 (aS)</td>
</tr>
<tr>
<td>7</td>
<td>CH₂OTBS</td>
<td>t-Bu</td>
<td>67</td>
<td>84 (aS)</td>
</tr>
<tr>
<td>8</td>
<td>CH₂OTIPS</td>
<td>i-Pr</td>
<td>70</td>
<td>86 (aS)</td>
</tr>
</tbody>
</table>

aData from Ref. 391.
A chelation-based mechanism was proposed to rationalize the observed diastereoselectivity (Scheme 8.155). Initially, the Grignard reagent approaches the oxazolinylarene from the opposite face of the 4-R₂-oxazoline substituent to give the pre-reaction complex 470. Subsequent aryl migration results in the intermediate adduct 471 in which the methoxy group of the Grignard reagent, the methoxy leaving group and the oxazoline nitrogen are all chelated with magnesium. These control elements determine the stereochemical outcome of this reaction. Obviously, the stereoselectivity suffers when the R₁ group can compete with the methoxy group to complex with magnesium and forms the isomeric complex 472.

This interpretation of the reaction mechanism prompted Rizzacasa and Leighton to reinvestigate and improve an earlier synthesis of (−)-O-methylicistrocladine reported by Sargent and Rizzacasa. Undesired chelation near the reaction center of the Grignard reagent generated from bromide 473 was blocked by TBS protection (R = TBS, Scheme 8.156). This strategy was quite successful since the diastereoselectivity of the product biaryl 474 was improved to 92:8. An analogous reaction in the previous synthesis produced a 474 analogue (dr = 69:31) when the CH₂OR moiety was a chelating cyclic acetal. Further elaboration of 474 should then lead to (−)-O-methylicstrocladine. The same group also reported similar synthetic approaches to (+)-dioncophylline C and (+)-O-methylicstrocladine (Fig. 8.13).
Although the axial stereochemistry is controlled by the chiral oxazoline, Baker and Sargent reported that a chiral sulfoxide can also introduce axial chirality while acting as a leaving group (Scheme 8.157). However, this reaction does not proceed via the typical S_NAr mechanism, but rather through an initial attack of the Grignard reagent at the sulfur center. Modest atropisomeric selectivity for the binaphthyl 476 was obtained by reaction of sulfoxide 475 with 1-naphthylmagnesium bromide. The authors also reported better atropisomeric selectivities using an ester or an amide as the activation group.

The Ullmann coupling of aromatic halides does not require activation but the presence of a chiral oxazoline group on the haloarene allows the selective introduction of axial chirality into the biaryl product. This constitutes an important
method to prepare chiral biaryl-based bisoxazolines (see also Chapter 9). A significant portion of Meyers’ 1998 review on chiral oxazolines was devoted to this subject so only a recent example will be discussed here. In their asymmetric synthesis of mastigophorene, Meyers and Degnan studied the steric effect of the oxazoline substituent in 477 on the diastereoselectivity of the biaryl 478a (Scheme 8.158). The selectivity was thermodynamically controlled since the two diastereomers interconvert at the reaction temperature. The stability of the
copper-product chelation complex determines the stereochemical outcome. Interestingly, the smallest oxazoline substituent \(\text{R} = \text{Me} \) gave the best diastereoselectivity (Table 8.30, entry 5). The authors rationalized these unexpected results in terms of minimization of interaction between the \(\text{R} \) group and the arene. The biaryl \(\text{478a} \) was subsequently converted to \((-\text{C0})/-\text{mastigophorene A} in six steps.

It is most appropriate to conclude this subsection with an elegant demonstration of oxazoline-directed aromatic reactions by Meyers’ group. Meyers and Willemsen took full advantage of the reactions described in this section in their asymmetric total synthesis of \((S)\)-gossypol.\(^49\) The initial synthesis (Scheme 8.159) included a Grignard displacement of an ortho-methoxy group of 4,4-dimethyl-2-(2,3,4-trimethoxyphenyl)oxazoline \(\text{479} \) to produce \(\text{480} \). After N-methylation, reduction and hydrolysis converted \(\text{480} \) to the key 2,3,4-trisubstituted benzaldehyde \(\text{481} \). After construction of the naphthalene ring, a tert-butyloxazoline was incorporated to direct the subsequent lithiation and Ullmann coupling. Lithiation occurred at the 3-position of \(\text{482} \) rather than the 1-position presumably due to the steric hindrance of the neighboring isopropyl group. Stereoselective Ullmann coupling of the bromide \(\text{483} \) gave the desired binaphthyl \(\text{484} \) in an 11:1 diastereomeric ratio. Removal of the bisoxazolines required hydrolysis to an intermediate bis-(amino ester) that was then sequentially acetylated, reduced, and hydrogenated to give the binapthyl \(\text{485} \). Further elaboration of \(\text{485} \) then gave \((S)\)-gossypol in two steps.

The authors redesigned their synthesis and incorporated the formyl group at an earlier step to overcome the unsatisfactory yield for this reaction at a late stage in their first synthesis. Now, taking advantage of an earlier discovery from their group (see Section 8.3.9.1), they were able to selectively lithiate \(\text{479} \) ortho to the methoxy group with EVL–HMPA (Scheme 8.160). The resulting intermediate lithio species (not shown) was converted to the oxazoline \(\text{486} \) in three steps. Similar to their initial synthesis, \(\text{486} \) was now converted to the 2,3,4,5-tetrasubstituted benzaldehyde \(\text{487} \) from which the naphthalene ring of \(\text{488} \) was constructed followed by incorporation of the tert-butyloxazoline ring. Bromination of \(\text{488} \) gave the bromide \(\text{489} \) that was subjected to the Ullmann coupling. The authors noted that this Ullmann coupling required a high concentration of the reactants to achieve a high diastereoselectivity in the binapthyl product \(\text{490} \). Reductive oxazoline cleavage in \(\text{490} \) gave \(\text{491} \) that was then elaborated to \((S)\)-gossypol in good yield.

<table>
<thead>
<tr>
<th>Entry</th>
<th>(\text{477}) (R)</th>
<th>(\text{dr (478a/478b)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(t\text{-Bu})</td>
<td>3 : 1</td>
</tr>
<tr>
<td>2</td>
<td>(\text{Ph})</td>
<td>4 : 1</td>
</tr>
<tr>
<td>3</td>
<td>(i\text{-Pr})</td>
<td>6.4 : 1</td>
</tr>
<tr>
<td>4</td>
<td>(\text{Et})</td>
<td>7.1 : 1</td>
</tr>
<tr>
<td>5</td>
<td>(\text{Me})</td>
<td>7.2 : 1</td>
</tr>
</tbody>
</table>

\(^{a}\) Data from Ref. 46.
Scheme 8.159
Scheme 8.160
8.3.9.3. Nucleophilic Additions

Oxazoline-directed conjugate addition of nucleophiles to a naphthalene nucleus is one of the most useful methods to prepare dihydronaphthalenes. Since Meyers’ last comprehensive review, the focus has been directed to stereoselective synthesis of these important compounds. Meyers’ laboratory has continued their preeminence in this field and has expanded the scope and applications of this reaction.

Ethoxyvinyl lithium (EVL) is an effective lithiation agent at low temperatures (−78 °C) in the presence of HMPA (see Section 8.3.9.1). However, in the absence of HMPA, it reacts like a normal lithium reagent and cleanly adds to oxazolinylnaphthalenes at higher temperatures (−10 °C). Thus, addition of EVL to 4,4-dimethyl-2-(1-naphthyl)oxazoline generates an intermediate carbanion (not shown) that is alkylated to afford 493, usually as a single diastereomer (dr > 100:1) (Scheme 8.161). The resulting vinyl ether in 493 can be easily converted to the corresponding methyl ketone. This reaction is applicable to oxazoline substituted anthracene and phenanthrene rings as well (Table 8.31).

In their syntheses of key intermediates 496 and 498 required for (−)-aphanorphine and (−)-eptazocine respectively, Meyers’ group used a lithiosilane as a surrogate for LiH in the initial conjugate addition (Scheme 8.162). As expected, the lithiosilane adds to the starting oxazolinylnaphthalene from the face opposite to the bulky isopropyl group. Methylation of the intermediate carbanion then occurs on the face opposite to the bulky silyl group to produce the tandem adduct 495. The use of ether in the solvent mixture was critical to achieve the high diastereoselectivity. It was assumed that the low complexation ability of ether affords some rigidity and order in the transition state. Given the steric demands of the silyl group, it is not surprising that the minor diastereomer arose from the isomeric silyl addition but still coupled with trans-methylation. Subsequent conversion of 495 to 496 and 498 was straightforward. The stereochemistry of the saturated oxazoline 498 was confirmed by X-ray crystallography. Degnan and Meyers recently expanded the utility of this reaction using a silyl group as an oxygen or nitrogen surrogate via Tamao oxidation and chemical modifications.

![Scheme 8.161](image-url)
Meyers and Shimano further expanded the scope of this methodology to include lithium amides as the nucleophile. The authors meticulously optimized the reaction conditions and determined the scope of the amide addition. Selected examples are listed in Table 8.32 (Scheme 8.163). The best results were obtained when THF was used as the solvent together with a stoichiometric amount of HMPA, relative to the lithium amide. The reaction was quite sensitive to the steric demand of the amide. Thus, lithium diethylamide give no product whereas lithium methyl n-pentylamide and lithium piperidide gave efficient reaction. Primary amides also failed to react.

Unlike analogous reactions with a carbon nucleophile, the initial attack of the lithium amide was reversible. A strong piece of supporting evidence was the exclusive formation of the butyl addition product when n-butyllithium was added after initial formation of the aza enolate (Scheme 8.164). The reaction outcome is therefore heavily dependent on the secondary reaction with the

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>E, % Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Me, 50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Me, 98</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Me, 98</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Me, 97</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Me, 66</td>
</tr>
</tbody>
</table>

Data from Ref. 403.
electrophile that renders the overall reaction irreversible. Consequently, strong electrophiles readily trap the intermediate carbanion whereas weak electrophiles only lead to recovery of the starting material after work up (Table 8.32, entry 8).

The authors proposed a chelating transition state model to explain these results (Fig. 8.14). The thermodynamically more stable intermediate resulting from initial lithium amide addition should have the amino group on the face opposite to the bulky tert-butyl group. Due to the same steric effect, the HMPA ligand should also occupy a position on the β face. The electrophile approaches the enolate from the α face and gives the trans product. For bulky amines, either the aza enolate does not form due to severe steric hindrance or the aza enolate is inactive for the same reason.

The utility of this reaction was demonstrated by converting the initial adduct 506 to a β-amino acid 509 and ultimately the β-lactam 510 (Scheme 8.165). It is noteworthy that the oxazoline ring in 506 was stable to cold concentrated HCl and the oxazoline ring in 507 was stable to hot caustic. However, the authors also noted
Table 8.32. Addition of Lithium Amides to Oxazolinylnaphthalenes

![Chemical Structures](image_url)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxazoline</th>
<th>R_1R_2NLi</th>
<th>Electrophile</th>
<th>% Yield</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>MeI</td>
<td>94</td>
<td>98.5 : 1.5</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>MeI</td>
<td>93</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>MeI</td>
<td>93</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>MeI</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>MeI</td>
<td>95</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>AllylBr</td>
<td>92</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>7</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>BnBr</td>
<td>67</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>Me$_2$NLi</td>
<td>EtO_2Et</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Entry</td>
<td>Oxazoline</td>
<td>R$_1$R$_2$NLi</td>
<td>Electrophile</td>
<td>% Yield</td>
<td>dr</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td></td>
<td>MeI</td>
<td>96</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>10</td>
<td>502 (R = H)</td>
<td>Me$_2$NLi</td>
<td>MeI</td>
<td>91</td>
<td>97.5 : 2.5</td>
</tr>
<tr>
<td>11</td>
<td>502 (R = H)</td>
<td></td>
<td>MeI</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>502 (R = H)</td>
<td></td>
<td>MeI</td>
<td>94</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>13</td>
<td>502 (R = H)</td>
<td></td>
<td>MeI</td>
<td>94</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>14</td>
<td>502 (R = H)</td>
<td></td>
<td>MeI</td>
<td>94</td>
<td>>99 : 1</td>
</tr>
<tr>
<td>15</td>
<td>502 (R = OMe)</td>
<td></td>
<td>MeI</td>
<td>90</td>
<td>>99 : 1</td>
</tr>
</tbody>
</table>

Data from Ref. 407.

Scheme 8.164
that the oxazoline ring in 506 is hydrolyzed to a hydroxy amide using 1 N HCl at room temperature. No explanation was given for this unusual behavior.

The same authors later reported that although sterically hindered lithium dialkylamides do not react under the normal conditions, they do undergo an unusual 1,6-addition to the oxazolinylnaphthalene 511 in the presence of excess HMPA (8–10 equiv). These reactions are also diastereoselective to afford the trans tandem adduct as the major product (Scheme 8.166). A dimeric lithium
amide–HMPA complex was postulated to rationalize these results in view of the earlier findings (see above). Adduct 512 has been converted to useful δ-amino acid derivatives.

More recently, Meyers and Kolotuchin reported that nucleophilic addition to the 1-position of the 3-methoxy-(2-oxazolinyl)naphthalene 513 is preferred over methoxy group displacement. The reaction works well and as expected for RLi (R = n-Bu, sec-Bu, and Ph). However, 1,2-addition to 513 to give the oxazolidine 515 predominates for RLi (R = Me, tert-Bu, and PhMe₂Si) (Scheme 8.167). When 513 contained a chiral oxazoline (R₁ = tert-Bu, R₂ = H), a single diastereomer of 514 was obtained in moderate yields (56 and 60% for R = n-Bu and Ph, respectively). Standard oxazoline chemistry and functional group manipulations were used to convert 514 to a variety of useful, chiral tetralones 516.

The absence of methoxy group displacement was rationalized in the following manner. Initial nucleophilic addition to the 3-position leads to an intermediate, 517, in which the aromaticity of both rings was destroyed whereas addition to the 1-position gives an intermediate 518, which retains the aromaticity of one benzene ring (Fig. 8.15).

![Scheme 8.167](image-url)

Figure 8.15. Proposed intermediates for nucleophilic addition to 3-methoxy-(2-oxazolinyl)naphthalene.
8.3.10. Oxazolines as Chiral Directing Groups

Discussions of oxazolines as chiral directing groups are included in the previous sections under the appropriate reaction classifications. Meyers has already published a recent review of chiral oxazolines (1998) that focused primarily on their use in aromatic reactions and Ullmann coupling reactions in particular. The examples of oxazolines as chiral directing groups described in this section will include reactions that are not discussed in any previous section of this chapter.

Elliott and co-workers reported an asymmetric hetero-Diels–Alder reaction using a chiral 2-(alkenyl)oxazoline as the enophile. Initial addition of the isocyanate to gives the bicyclic [4 + 2] adduct. Depending on the substituents, can undergo a [2 + 2] cycloaddition with a second molecule of an isocyanate to generate the tricyclic compound. For , ring opens to give the tetrahydrooxazolopyrimidinecarboxamide (Scheme 8.168). Selected examples are summarized in Table 8.33.

In all cases, the initial addition to generate was diastereospecific, that is, the isocyanate always adds to from the face opposite to the 4-ethyl substituent of the oxazoline. In the cases wherein was isolated (Entries 17–20 from Table 8.33), the stereochemistry of the two additional chiral centers from the secondary [2 + 2] cycloaddition was controlled by the chiral center formed during the initial reaction, that is, the isocyanate reacts with from the opposite face of the neighboring group. For , reacted with arylisocyanate to give tricyclic adducts and as a 1.7:1 mixture of diastereomers (Entries 18–20). For , reacted with phenylisocyanate

Scheme 8.168

![Diagram of the reaction scheme](image-url)
The reaction rate depends on the electronic nature of the substituent \((R_3)\) on the isocyanate. Isocyanates with electron-withdrawing groups react faster than those with electron-donating groups. The reaction is also sensitive to the steric bulk on the isocyanate and the oxazoline. Thus, neither tert-butyl- nor benzylisocyanate react under the conditions examined. 4,4-Dimethyl-2-(2-propenyl)oxazoline was unreactive, even under forcing conditions. The authors proposed a stepwise mechanism involving a 1,3-dipolar intermediate \(523\) to rationalize these results (Scheme 8.169). Computational studies by the same group also supported this mechanism.410 The authors suggested that the asymmetric induction may originate from the reduction of the steric interaction between the isocyanate oxygen atom and the ethyl group during the cyclization of \(523\).

Murakami and Taguchi utilized a diastereoselective Grignard addition to a substituted-chiral oxazoline aldehyde \(524\) (Scheme 8.170) in an improved stereoselective synthesis of \(\delta\)-ribo-phytosphingosine.113 The good stereoselectivity observed for \(525\) can be rationalized by a Felkin–Ahn transition state model although a chelation control mechanism could not be ruled out.

In an effort to demonstrate the interesting concept of a catalytic chiral auxilliary, Williams and co-workers showed that the oxazoline-substituted acrylate ester \(526\)
gave modest levels of diastereoselectivity as well as rate acceleration in a Diels–Alder reaction using cyclopentadiene in competition studies with benzyl acrylate (Scheme 8.171).411 Their strategy relied on a rapid transesterification of 527 with benzyl alcohol to give 528 as the final product. Furthermore, transesterification of the oxazoline alcohol 529 with benzyl acrylate to give 526 had to be equally rapid to support the catalytic cycles.

Scheme 8.169

Scheme 8.170
This same group also devised a stereoselective oxidation of sulfides 530 using a chiral oxazoline as the directing group (Scheme 8.172). The sulfoxides 531 were obtained in good yields (up to 90%) and selectivities (up to 94% de) using \(\text{t-BuOOH/Ti(i-PrO)}_4 \) or \(m\text{-CPBA} \) as the oxidant. The authors found that a free hydroxy group in 530 was necessary to achieve high selectivities. Thus, a TIPS protected derivative of 530 gave a much lower selectivity for the sulfoxide with the opposite configuration. The sulfoxide configuration was determined by X-ray crystallography or by authentic synthesis. The oxazoline–sulfoxide ligands 531 were used to examine electronic effects in catalytic allylic substitutions.

The authors proposed transition state models 532 and 533 to account for the diastereoselectivities observed in metal-catalyzed and \(m\text{-CPBA} \) oxidations, respectively (Fig. 8.16). The organization as well as directing role of the hydroxy group is
fairly obvious based on the models. Model 533 also explains the strong solvent dependence of the selectivity when the oxidation is carried out with \(m \)-CPBA. Solvents with strong hydrogen bonding capabilities disrupt the intramolecular hydrogen bonding resulting in lower selectivities.

Uemura and co-workers applied similar principles for their copper-catalyzed sulfimidation of diaryl sulfides (Scheme 8.173).357,413,414 The reaction was carried out in the presence of a copper(II) salt using either tosyliminophenyliodane (TsN\(_{\text{Cl}}\)/C\(_{\text{Ph}}\)) or N-chloro-\(p \)-toluenesulfonamide (Chloramine-T) sodium salt as the imidation reagent. A diaryl sulfide 534 was imidated to give the \(N \)-tosylsulfimides 535 in modest yield with excellent diastereoselectivity (up to 99\% de). In this case, however, a chiral 4-(methoxmethyl)oxazoline directing group gave better results than the corresponding 4-(hydroxymethyl)oxazoline analogue. The tosyl group of 535 was hydrolyzed to afford the sulfimides 536 that were used as chiral ligands in catalytic allylic substitutions.357

![Figure 8.16. Transition state models for oxidations.](image)

\begin{center}
\textbf{Scheme 8.173}
\end{center}
The authors proposed a working mechanism to explain the diastereoselectivities (Scheme 8.174). Thus, the prereaction complex 537 reacts with the Chloramine-T to yield an intermediate chlorosulfonium ion 538. Further reaction of 538 with toluenesulfonamide anion effected a configurational inversion to give the observed product.

Very recently, Pelter and co-workers showed that oxazolines were a strong Ψ-geminal directing group, characteristic of all carbonyl compounds in reactions of cyclophanes.176 Thus, bromination of the oxazolinylcyclophane 539 gave exclusively the Ψ-geminal bromide 540 in excellent yield (Scheme 8.175). The bromide 540 served as a precursor to potential bidentate ligands, such as the acid 541, the phenyl sulfide 542 and diphenylphosphine 543.

8.3.11. Oxazolines as Ligands in Asymmetric Catalysis

The use of chiral oxazolines as ligands for catalytic asymmetric synthesis is undoubtedly the most important development in oxazoline chemistry. Compared with other ligands, oxazolines offer the advantage of being easily accessible from chiral amino alcohols that are, in turn, readily available from a chiral pool of amino acids. There have been numerous reports on this exciting use of oxazolines during the last 10 years. Many of the ligands studied to date contain at least two oxazoline units. The synthesis and reactions of bis(oxazolines) are discussed in detail in Chapter 9; the discussions in this section are limited to mononuclear oxazolines.
There are many excellent reviews on asymmetric catalysis. Prominent among these reviews are two recently published books. One is a three volume work published in 1999 and edited by Jacobsen, Pfaltz, and Yamamoto.362 The other was published in 2000 and edited by Ojima.363 Moreover, Lemaire and co-authors have extensively reviewed nitrogen-containing ligands for asymmetric catalysis in 2000.415 Pfaltz reviewed the use of chiral heterocycles in asymmetric catalysis.23 These books and reviews provide a comprehensive discussion and examination of various catalytic asymmetric reactions and encompass the topic of this section. Additionally, Pfaltz and Helmchen specifically reviewed the use of phosphino-oxazoline ligands, one of the most frequently used subclasses of mononuclear oxazolines, in asymmetric synthesis for the literature up to 2000.21 Therefore, the discussions here are intended to be a brief overview of recent developments (1999–2001) in this very active and fruitful research area. This section is organized to show the diversity of oxazoline structures as well as the type of catalytic reactions in which they function as useful ligands. For a more detailed treatment of catalytic process as well as earlier literature references, the reader is directed to the aforementioned comprehensive reviews.
8.3.11.1. Oxazoline Ligands

Mononuclear oxazolines useful for asymmetric catalysis are generally bidentate ligands that can be classified into the following four basic categories: phosphino-oxazolines (PhosOx, Figs. 8.17–8.19), pyridine-oxazolines (PyrOx, Fig. 8.20) including the quinoline-oxazolines, sulfide-oxazolines (SulfOx, Fig. 8.21), selenide-oxazolines (SelOx, Fig. 8.22), and hydroxy-oxazolines (HydrOx, Fig. 8.23). Additional coordinating groups can be added to these basic classes of ligand structures and can sometimes provide enhanced levels of selectivity. The coordination chemistry of oxazolines has been reviewed extensively by Muller and co-authors covering the literature up to 1999. Unless otherwise warranted, the coordination chemistry is generally not discussed in this section.

![Figure 8.17. PhosOx ligands.](image-url)
Figure 8.18. PhosOx ligands.
Figure 8.19. PhosOx ligands.

Reactions and Applications 485
a: $R_1 = i$-Pr; $R_2 = H$; $R_3 = H$; $R_4 = H$
a: $R_1 = H$; $R_2 = H$; $R_3 = H$; $R_4 = H$
b: $R_1 = H$; $R_2 = Ph$; $R_3 = H$; $R_4 = H$
b: $R_1 = H$; $R_2 = i$-Bu; $R_3 = CH_2CH_2COTG$
c: $R_1 = i$-Pr; $R_2 = H$; $R_3 = Cl$; $R_4 = H$
c: $R_1 = i$-Bu; $R_2 = H$; $R_3 = CH_2CH_2COTG$
d: $R_1 = i$-Pr; $R_2 = H$; $R_3 = OMe; R_4 = H$
d: $R_1 = H; R_2 = Ph; R_3 = OMe; R_4 = H$
e: $R_1 = H; R_2 = Ph; R_3 = Cl; R_4 = H$
e: $R_1 = i$-Bu; $R_2 = H; R_3 = Cl; R_4 = H$
f: $R_1 = H; R_2 = Ph; R_3 = OMe; R_4 = H$
f: $R_1 = H; R_2 = Ph; R_3 = OMe; R_4 = H$
g: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = Me$
g: $R_1 = i$-Pr; $R_2 = H; R_3 = OMe; R_4 = Me$
h: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = Ph$
h: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = OMe$
i: $R_1 = i$-Pr; $R_2 = H; R_3 = Ph; R_4 = H$
i: $R_1 = i$-Pr; $R_2 = H; R_3 = Ph; R_4 = H$
j: $R_1 = i$-Pr; $R_2 = H; R_3 = OMe; R_4 = Me$
j: $R_1 = i$-Pr; $R_2 = H; R_3 = OMe; R_4 = Me$
k: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = n$-Bu
k: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = i$-Bu
l: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = i$-Bu
l: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = i$-Bu
m: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = i$-Bu
m: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = i$-Bu
n: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = i$-Bu
n: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = i$-Bu
o: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = H$
o: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = H$
p: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = H$
p: $R_1 = i$-Pr; $R_2 = H; R_3 = H; R_4 = H$

Figure 8.20. PyrOx ligands.
Allylic Substitution Reactions

The subject of catalytic asymmetric allylic alkylations has been thoroughly and systematically reviewed by Trost and Van Vranken in 1996. Much of the recent literature was reviewed by Pfaltz and Lautens in 1999 and by Trost and Lee in 2000. Many mononuclear oxazoline ligands have been successfully employed in...
palladium catalyzed allylic substitution reactions. Despite the shortcomings (see below), asymmetric allylic substitution of racemic diphenylallyl acetate 577 using dimethyl malonate (Scheme 8.176) has been a standard reaction used by many researchers to evaluate new chiral ligands. The performance of selected ligands in this reaction is summarized in Table 8.34.98,117,118,123,180,208,209,225,357,413,419–429

Table 8.34 is organized to show a generic ligand structure and the ligand that gave the best results, whether optimized or not.

Figure 8.22. SelOx ligands.

Figure 8.23. HydrOx ligands.
Since the enantioselectivity of this reaction is known to be sensitive to the solvent, base, counterion, and source of catalyst, one should be cautious in comparing results from different groups. Many groups observed some cooperative effect in the selectivity when additional chirality is present in the ligand. In cases wherein the new chiral elements exert opposite chiral induction (noncooperative), the directive effect of the oxazoline ligand often dominates except in the cases of chiral bridgehead phosphines and . Here, the chirality of the phosphine was shown to be more important (entry 3). Although axial diastereomers and exist as an equilibrium mixture in solution, only complexes with palladium (entry 18).

A similar phenomenon was observed for the diastereomers and . It is not surprising that this was not observed for and considering the higher rotation barrier. The origins of enantioselection can be understood through structural analysis by X-ray crystallography and solution NMR. Other soft nucleophiles, such as acetylacetone (ligands and), dimethyl methylmalonate (ligand), benzylamines (ligand), and silyl enolates (ligand) gave similar selectivities.

TABLE 8.34. PALLADIUM-CATALYZED ALKYLATION OF DIPHENYLALLYL ACETATE WITH DIMETHYL MALONATE

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Best Ligand</th>
<th>% Yield</th>
<th>% ee</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>544a-d</td>
<td>544a, 544d</td>
<td>95</td>
<td>98 (R)</td>
<td>118, 419</td>
</tr>
<tr>
<td>2</td>
<td>545a-l</td>
<td>545a</td>
<td>100</td>
<td>90 (S)</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>546a-d, 547a-d</td>
<td>546a</td>
<td>100</td>
<td>94 (S)</td>
<td>117</td>
</tr>
<tr>
<td>4</td>
<td>551b</td>
<td>551b</td>
<td>99</td>
<td>91 (R)</td>
<td>420, 421</td>
</tr>
<tr>
<td>5</td>
<td>551c</td>
<td>551c</td>
<td>99</td>
<td>97 (R)</td>
<td>421</td>
</tr>
<tr>
<td>6</td>
<td>554</td>
<td>554a, c</td>
<td>>95 (conv.)</td>
<td>90 (S)</td>
<td>422</td>
</tr>
<tr>
<td>7</td>
<td>555a-f</td>
<td>555a</td>
<td>100</td>
<td>96 (S)</td>
<td>423</td>
</tr>
<tr>
<td>8</td>
<td>555g</td>
<td>555g</td>
<td>95</td>
<td>92 (S)</td>
<td>424</td>
</tr>
<tr>
<td>9</td>
<td>556a-c-558</td>
<td>556a</td>
<td>100 (conv.)</td>
<td>88 (S)</td>
<td>425</td>
</tr>
<tr>
<td>10</td>
<td>559a-d</td>
<td>559a</td>
<td>100 (conv.)</td>
<td>72 (S)</td>
<td>426</td>
</tr>
<tr>
<td>11</td>
<td>560a-i</td>
<td>560i</td>
<td>94</td>
<td>93 (S)</td>
<td>208, 427</td>
</tr>
<tr>
<td>12</td>
<td>561a-d</td>
<td>561a</td>
<td>60–100</td>
<td>80 (R)</td>
<td>225</td>
</tr>
<tr>
<td>13</td>
<td>562a-c</td>
<td>562c</td>
<td>93</td>
<td>92 (S)</td>
<td>209, 427</td>
</tr>
<tr>
<td>14</td>
<td>563a-f</td>
<td>563c</td>
<td>94</td>
<td>77 (S)</td>
<td>123, 427</td>
</tr>
<tr>
<td>15</td>
<td>563g-m</td>
<td>563j</td>
<td>79</td>
<td>78 (R)</td>
<td>428</td>
</tr>
<tr>
<td>16</td>
<td>564a-c</td>
<td>564b</td>
<td>88</td>
<td>78 (S)</td>
<td>427</td>
</tr>
<tr>
<td>17</td>
<td>534a-e-536a-c</td>
<td>536b</td>
<td>99</td>
<td>90 (S)</td>
<td>413, 357</td>
</tr>
<tr>
<td>18</td>
<td>565a-g, 566a-g</td>
<td>565e/566e</td>
<td>93</td>
<td>82 (S)</td>
<td>429</td>
</tr>
<tr>
<td>19</td>
<td>567, 568</td>
<td>567b</td>
<td>98</td>
<td>94 (S)</td>
<td>180</td>
</tr>
<tr>
<td>20</td>
<td>569, 570</td>
<td>569b</td>
<td>98</td>
<td>93 (S)</td>
<td>180</td>
</tr>
</tbody>
</table>
At least two groups examined the issue of catalyst recycle by using polymer-bound or water-soluble ligands. Although a diphenylallyl system serves as a good starting point to evaluate chiral ligands, Burgess and Hou suggested that the smaller dimethylallyl system, generated from \(\text{579} \), should be used as a more stringent test for ligand performance. Selected examples are listed in Table 8.35 (Scheme 8.177). As expected, the enantioselectivities using \(\text{579} \) dropped in comparison with those obtained using the diphenylallyl system \(\text{577} \). It is important to note that the best ligand for the diphenylallyl system may not necessarily give the best selectivity for the dimethylallyl system.

A number of groups have also studied alkylation in cyclic allyl systems. Selected examples of reactions using 3-acetoxycyclohexene \(\text{581} \) are listed in Table 8.36 (Scheme 8.178). Although the proline-based PhosOx ligands \(\text{545} \) did not give good selectivities in reactions with \(\text{577} \) (Table 8.34, entry 2), here using \(\text{581} \) the selectivity with \(\text{545a} \) was reasonable (Table 8.36, entry 2). Gilbertson and co-workers studied the effects of substrate ring size on the ligand performance and found that \(\text{545} \) gave best selectivities (up to 90%) using 3-acetoxycyclopentene as the substrate. Interestingly, good selectivity (80% ee) was still obtained when the PhosOx ligand contained an achiral oxazoline moiety (e.g. \(\text{545g} \)). The authors attributed the effect of substrate ring size and the lack of good selectivities in the diphenylallyl system to the small size of the chiral pocket around the catalytic center.

When unsymmetrical allylic substrates are used, two regioisomers are produced. Monosubstituted allyl substrates react primarily at the unsubstituted terminus to give an achiral linear product (Scheme 8.179). However, Pfaltz and co-workers were able to reverse the regioselectivity and obtain the more highly substituted

TABLE 8.35. PALLADIUM-CATALYZED ALKYLATION OF DIMETHYLALLYL ACETATE AND DIMETHYLALLYL tert-BUTYLCARBONATE WITH DIMETHYL MALONATE

<table>
<thead>
<tr>
<th>Entry</th>
<th>(\text{579} (R))</th>
<th>Ligand</th>
<th>Best Ligand</th>
<th>(\text{580}) % Yield (^a)</th>
<th>% ee</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ac</td>
<td>(536b)</td>
<td>(536b)</td>
<td>63</td>
<td>49 (NR)</td>
<td>357</td>
</tr>
<tr>
<td>2</td>
<td>Boc</td>
<td>(544)</td>
<td>(544f)</td>
<td>77</td>
<td>82 (R)</td>
<td>118, 419</td>
</tr>
<tr>
<td>3</td>
<td>Boc</td>
<td>(554)</td>
<td>(554f)</td>
<td>>95 (conv.)</td>
<td>70 (S)</td>
<td>422</td>
</tr>
</tbody>
</table>

\(^a \) Not reported: NR.
product enatioselectively using ligands 556–558. More recently, the same group reported a selective preparation of either regioisomer using enantiomers of the catalyst as well as enantiomerically enriched disubstituted substrates.

This alkylation reaction is generally carried out using a palladium catalyst although other metals can be effective as well. Williams and co-workers recently reported the use of zero-valent platinum complexes as catalysts. When the PhosOx ligand 553a was used, the enantioselectivities were inferior to results obtained using the corresponding palladium complex. Additionally, the selectivities were sensitive to excess ligand. The authors concluded that the platinum complex is hemilabile, that is, the complex can accept an additional ligand resulting in a loss of chelation. It is noteworthy that the X-ray crystal structures of the PtCl₂(553a) and PdCl₂(553a) complexes were very similar.

Overman’s group improved their earlier versions of chiral catalysts for the rearrangement of allylic imidates 583 to the amides 584 (Scheme 8.180). High selectivities were obtained using cyclopalladated catalysts bearing ferrocenoxazoline moieties 585–587. These catalysts were conveniently prepared by oxidative insertion of Pd(0) to oxazoline-substituted ferrocenyl iodides. The iodide complex was inactive and was converted to the active trifluoroacetate complex using silver trifluoroacetate. The enantioselectivities were generally 75–95% ee although most reactions took more than a day to complete. Not surprisingly, the olefin configuration as well as the chiral catalyst determines the product stereochemistry.

Table 8.36. Palladium-Catalyzed Alkylation of 3-AcetoxyCyclohexene with Dimethyl Malonate

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Best Ligand</th>
<th>% Yield</th>
<th>% ee</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>544a–d</td>
<td>544d</td>
<td>95</td>
<td>79 (S)</td>
<td>419</td>
</tr>
<tr>
<td>2</td>
<td>545a</td>
<td>545a</td>
<td>93</td>
<td>80 (S)</td>
<td>98, 431</td>
</tr>
<tr>
<td>3</td>
<td>556–558</td>
<td>556b</td>
<td>100 (conv.)</td>
<td>71 (R)</td>
<td>425</td>
</tr>
<tr>
<td>4</td>
<td>559</td>
<td>559b</td>
<td>91 (conv.)</td>
<td>41 (R)</td>
<td>426</td>
</tr>
</tbody>
</table>
rearrangement is sensitive to the electronic nature of the aryl groups. Imidates with electron-withdrawing aryl groups react much slower than imidates with electron-donating aryl groups. Similarly, reaction of trichloroacetimidates is too slow to be of any practical use. The best results to prepare the \((R)\) isomer of 584 (96% ee, 89–97% yield) were obtained using the \((Z)\) alkene 583 \((R = i\text{-Bu}, Ar_1 = \text{Ph or } o\text{-Tol}, Ar_2 = 4\text{-MeO–Ph})\) and catalyst 585b.

While intramolecular allylic substitution is a straightforward and attractive strategy for construction of carbocycles, there are surprisingly few reports on the asymmetric variant of this cyclization.416–418 Helmchen and Flubacher have reported a Heck-induced enantioselective intramolecular allylic amination reaction of 588 to produce the 2-substituted piperidine derivative 589 (Scheme 8.181).436 Selectivities as high as 80% were obtained with sterically hindered aryl triflates \((Ar = 2,6\text{-di-Me–Ph})\) using the PhosOx ligand 553b. However, the reaction was exceedingly slow and required 10 days to complete.

Allylic substitution using hard nucleophiles proceeds through a different mechanism.416–418 Instead of attacking the allyl group of the \(\pi\) allyl–metal complex, hard nucleophiles attack the metal first and the product is subsequently formed by reductive elimination. Nickel(0) complexes have often been used for this purpose. Reports of good enantioselectivities in this type of reaction are limited.

\[
\begin{align*}
\text{NHBn} & \quad \text{ArX} \\
\text{Pd(OAc)}_2 & \quad \text{Ligand} \\
\text{588} & \quad \text{589}
\end{align*}
\]

\(X = \text{I, OTf}; \text{Ar} = \text{Ph, 2,6-di-Me–Ph}; \text{Ligand} = 553\text{b, c}\)

Scheme 8.181
Uemura and co-workers recently reported their success using ferrocene-based PhosOx ligands. Reactions using an arylboronic acid as the nucleophile gave good yields with various allylic substrates although enantioselectivities were moderate (up to 53% ee). Better results were obtained using an aryl Grignard reagent as the nucleophile. While acyclic substrates gave low selectivities (<40% ee), cyclohexenyl substrates gave better results (Scheme 8.182). The best selectivity for the (S) isomer of 591 (95% ee) was obtained with 3-phenoxycyclohexene (X = OPh) as the substrate, 2-naphthylmagnesium bromide (Ar = 2-naphthyl) as the nucleophile, and 548a as the ligand. The PhosOx ligand 553a was less effective than 548, which demonstrated the importance of planar chirality in this reaction. Unlike the reaction with an aryl boronic acid as the nucleophile, the Grignard reagent produced a significant amount of biaryl as the byproduct. The biaryl byproduct was thought to arise from reduction of the Ni(II) precatalyst by the Grignard reagent generating an active Ni(0) species.

![Scheme 8.182](image)

8.3.11.3. Heck Reactions

The Heck reaction is a synthetically powerful reaction wherein a carbon–carbon bond is formed between two \(sp^2 \) hybridized carbon atoms. The syn nature of the addition of vinyl–aryl palladium species to carbon–carbon double bond precludes a syn \(\beta \)-hydride elimination for cyclic olefins. As a result, a new chiral center is formed. Shibasaki and Vogl provided a comprehensive review of this subject in 1999. Overman and Dondre reviewed the intramolecular version of this reaction in 2000. Pfaltz and co-authors specifically reviewed this reaction using PhosOx ligands.

Although BINAP has been proven the most effective ligand system for the asymmetric Heck reaction, it promotes double bond migration resulting in mixtures of isomers when the energy differences between the isomers are small. In 1996, Pfaltz and co-workers first demonstrated that chiral PhosOx ligands are very effective for highly enantioselective as well as regioselective Heck reactions. Subsequent research by several groups expanded the structural diversity of the PhosOx ligands leading to some improvements in catalyst activity although selectivities have not yet surpassed the selectivity (99% ee) achieved using Pfaltz’s best ligand, the tert-leucinol-based PhosOx 553c. The Heck reaction of dihydrofuran 592 and cyclohexenyl triflate 593a or phenyl triflate 593b has been
chosen by many researchers as a model to evaluate the efficiency of the chiral ligands. Selected examples are listed in Table 8.37 (Scheme 8.183).\(^98,117,421,445–450\)

The stereochemistry of the oxazoline usually determines the stereochemical outcome of this reaction. However, this rule does not apply when planar or axial chirality is involved and exceptions have been described. For example, an exception is the proline-based ligand\(^545\) wherein the chirality of the oxazoline was found unimportant.\(^98,445\) Another exception is the ferrocene-based ligand\(^550\) in which the planar chirality is the major factor that determines the stereochemical outcome of the reaction.\(^447\) Still another exception is the binaphthyl-based PhosOx\(^551\) wherein the axial chirality dominates. This result was consistent with structural analysis by X-ray crystallography.\(^448\) And it is perhaps not very surprising considering the similarity of the binaphthyl-based PhosOx ligands to the powerful BINAP ligands.

The Heck reaction yields the final product through a \(\beta\)-hydride elimination whereas hydroarylation or hydrovinylation generates the final product via a reductive elimination. Nonetheless, both reactions share a common first step, that is, addition of an aryl or a vinyl palladium species to an alkene, and thus are briefly discussed here. Norbornene\(^595\) is the most studied alkene to evaluate an the

TABLE 8.37. ASYMMETRIC INTERMOLECULAR HECK REACTION

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Triflate</th>
<th>Best Ligand</th>
<th>(\text{594a} %) \text{ Yield}</th>
<th>(\text{594b} %) \text{ Yield}</th>
<th>% ee</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>545a,b,d,l</td>
<td>593a</td>
<td>545a</td>
<td>99 (conv.)</td>
<td>86 (S)</td>
<td>98, 445</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>546a–d, 547a–d</td>
<td>593a</td>
<td>546b</td>
<td>91</td>
<td>93 (R)</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>549a–e</td>
<td>593a</td>
<td>549b</td>
<td>100 (conv.)</td>
<td>94 (R)</td>
<td>446</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>550a–i</td>
<td>593b</td>
<td>550g</td>
<td>75</td>
<td>92 (R)</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>551a,b</td>
<td>593b</td>
<td>551a</td>
<td>65</td>
<td>88 (R)</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>551b,c</td>
<td>593b</td>
<td>551c</td>
<td>84</td>
<td>86 (S)</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>552</td>
<td>593a</td>
<td>552</td>
<td>91</td>
<td>98 (R)</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>555a–f</td>
<td>593b</td>
<td>555b</td>
<td>100</td>
<td>96 (R)</td>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>
asymmetric version of this reaction. Zhou and co-workers recently reported their results using the PyrOx ligands 563 (Scheme 8.184). exo-2-Phenylnorbornane 596 was produced exclusively with the best enantioselectivity (74% ee) obtained using 563a.

\[
\begin{align*}
\text{PhI} & \quad \text{PhPd(dba)}_2 \\
\text{Et}_3\text{N/HCO}_2\text{H} & \quad \text{Ligand} = 563a, \text{c, n-p}
\end{align*}
\]

Scheme 8.184

8.3.11.4. Hydrogenation Reactions

Enantioselective hydrogenation reactions have received the most attention and success in asymmetric catalysis over the years. Historically, high selectivities were achieved primarily with functionalized substrates using Rh(I) or Ru(II) complexes containing chiral diphosphine ligands. Recent advances in this area include the enantioselective hydrogenation of nonfunctionalized substrates and the proliferation of other ligands including oxazolines. This subject has been frequently and systematically reviewed. For example, Noyori and co-authors provided a comprehensive review of asymmetric hydrogenation of various substrates in 2000. For a more detailed examination on the reaction with specific substrates, the reader is referred to the following reviews contained in the book edited by Jacobsen, Pfaltz, and Yamamoto: Brown’s chapter on the hydrogenation of functionalized alkenes, Halterman’s chapter on the reaction with nonfunctionalized alkenes, the chapter by Noyori and Ohkuma on carbonyl substrates, and the chapter by Blaser and Spindler on imino substrates. This subsection is intended to be a brief overview of recent advances using mononuclear oxazoline ligands.

Mononuclear oxazolines are among the most effective ligands for enantioselective hydrogenation of nonfunctionalized alkenes. The styrene substrate 597 is one of the most studied nonfunctionalized alkenes used to evaluate the efficiency of new chiral ligands (Scheme 8.185). Selected examples of enatiosselective hydrogenation of 597 using iridium catalysts are shown in Table 8.38.
TABLE 8.38. ASYMMETRIC HYDROGENATION OF STYRENES 597 (SCHEME 8.185)

<table>
<thead>
<tr>
<th>Entry</th>
<th>597 (X, R₁, R₂, R₃)</th>
<th>Best Ligand</th>
<th>Conditions</th>
<th>598 % Yield</th>
<th>% ee</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H, Me, Ph, H</td>
<td>544l</td>
<td>0.2% cat., 50 bar, 2 h</td>
<td>99</td>
<td>95 (S)</td>
<td>457</td>
</tr>
<tr>
<td>2</td>
<td>H, Me, Ph, H</td>
<td>553j</td>
<td>1% cat., 50 bar, 2 h</td>
<td>>99 (conv.)</td>
<td>99 (R)</td>
<td>359</td>
</tr>
<tr>
<td>3</td>
<td>H, Me, Ph, H</td>
<td>554g</td>
<td>0.1% cat., 50 bar, 2 h</td>
<td>100 (conv.)</td>
<td>97 (R)</td>
<td>458</td>
</tr>
<tr>
<td>4</td>
<td>H, Me, Ph, H</td>
<td>554j</td>
<td>0.4% cat., 50 bar, 2 h</td>
<td>100 (conv.)</td>
<td>98 (R)</td>
<td>458</td>
</tr>
<tr>
<td>5</td>
<td>H, Me, Ph, H</td>
<td>556c</td>
<td>4% cat., 100 bar, 2 h</td>
<td>15 (conv.)</td>
<td>94 (R)</td>
<td>425</td>
</tr>
<tr>
<td>6</td>
<td>H, Me, Ph, H</td>
<td>558</td>
<td>4% cat., 100 bar, 2 h</td>
<td>100 (conv.)</td>
<td>75 (R)</td>
<td>425</td>
</tr>
<tr>
<td>7</td>
<td>H, Me, Ph, H</td>
<td>599d</td>
<td>0.2% cat., 50 bar, 2 h</td>
<td>99</td>
<td>98 (S)</td>
<td>459</td>
</tr>
<tr>
<td>8</td>
<td>H, Me, Ph, H</td>
<td>599d</td>
<td>0.2% cat., 50 bar, 2 h</td>
<td>99</td>
<td>93 (S)</td>
<td>457</td>
</tr>
<tr>
<td>9</td>
<td>MeO, Me, Ph, H</td>
<td>544l</td>
<td>0.2% cat., 50 bar, 2 h</td>
<td>>99 (conv.)</td>
<td>99 (R)</td>
<td>359</td>
</tr>
<tr>
<td>10</td>
<td>MeO, Me, Ph, H</td>
<td>553j</td>
<td>1% cat., 50 bar, 2 h</td>
<td>>99 (conv.)</td>
<td>99 (R)</td>
<td>359</td>
</tr>
<tr>
<td>11</td>
<td>MeO, Me, Ph, H</td>
<td>557</td>
<td>4% cat., 100 bar, 2 h</td>
<td>57 (conv.)</td>
<td>92 (R)</td>
<td>425</td>
</tr>
<tr>
<td>12</td>
<td>MeO, Me, Ph, H</td>
<td>558</td>
<td>4% cat., 100 bar, 2 h</td>
<td>98 (conv.)</td>
<td>62 (R)</td>
<td>425</td>
</tr>
<tr>
<td>13</td>
<td>MeO, Me, Ph, H</td>
<td>599d</td>
<td>0.6% cat., 50 bar, 2 h</td>
<td>99</td>
<td>97 (S)</td>
<td>459</td>
</tr>
<tr>
<td>14</td>
<td>MeO, Me, Me, H</td>
<td>544a</td>
<td>0.6% cat., 50 bar, 2 h</td>
<td>90</td>
<td>80 (S)</td>
<td>457</td>
</tr>
<tr>
<td>15</td>
<td>MeO, Me, Me, H</td>
<td>553e</td>
<td>0.3% cat., 50 bar, 2 h</td>
<td>>99 (conv.)</td>
<td>61 (R)</td>
<td>359</td>
</tr>
<tr>
<td>16</td>
<td>MeO, Me, Me, H</td>
<td>554i</td>
<td>0.1% cat., 50 bar, 2 h</td>
<td>100 (conv.)</td>
<td>96 (R)</td>
<td>458</td>
</tr>
<tr>
<td>17</td>
<td>MeO, Me, Me, H</td>
<td>557</td>
<td>4% cat., 100 bar, 2 h</td>
<td>100 (conv.)</td>
<td>85 (R)</td>
<td>425</td>
</tr>
<tr>
<td>18</td>
<td>MeO, Me, Me, H</td>
<td>599d</td>
<td>1% cat., 50 bar, 2 h</td>
<td>100 (conv.)</td>
<td>75 (R)</td>
<td>426</td>
</tr>
<tr>
<td>19</td>
<td>MeO, Me, Me, H</td>
<td>599d</td>
<td>0.6% cat., 50 bar, 2 h</td>
<td>99</td>
<td>91 (S)</td>
<td>459</td>
</tr>
<tr>
<td>20</td>
<td>MeO, Me, Et, H</td>
<td>599d</td>
<td>0.6% cat., 50 bar, 2 h</td>
<td>94</td>
<td>84 (NR)</td>
<td>459</td>
</tr>
<tr>
<td>21</td>
<td>MeO, Me, H, Me</td>
<td>544a</td>
<td>0.6% cat., 50 bar, 2 h</td>
<td>70</td>
<td>75 (R)</td>
<td>457</td>
</tr>
<tr>
<td>22</td>
<td>MeO, Me, H, Me</td>
<td>554g</td>
<td>0.4% cat., 50 bar, 2 h</td>
<td>100 (conv.)</td>
<td>85 (R)</td>
<td>458</td>
</tr>
<tr>
<td>No.</td>
<td>Substituents</td>
<td>Page</td>
<td>Catalyst Concentration</td>
<td>Pressure</td>
<td>Reaction Time</td>
<td>Conversion</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>------</td>
<td>------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>23</td>
<td>MeO, Me, H, Me</td>
<td>558</td>
<td>4% cat., 100 bar, 2 h</td>
<td>100 (conv.)</td>
<td>90 (S)</td>
<td>425</td>
</tr>
<tr>
<td>24</td>
<td>MeO, Me, H, Me</td>
<td>559d</td>
<td>1% cat., 50 bar, 2 h</td>
<td>100 (conv.)</td>
<td>70 (S)</td>
<td>426</td>
</tr>
<tr>
<td>25</td>
<td>MeO, Me, H, Me</td>
<td>599d</td>
<td>1% cat., 50 bar, 2 h</td>
<td>95</td>
<td>78 (R)</td>
<td>459</td>
</tr>
<tr>
<td>26</td>
<td>H, Me, CO₂Et, H</td>
<td>553i</td>
<td>1% cat., 50 bar, 2 h</td>
<td>86 (conv.)</td>
<td>81 (R)</td>
<td>359</td>
</tr>
<tr>
<td>27</td>
<td>H, Me, CO₂Et, H</td>
<td>554h</td>
<td>0.5% cat., 50 bar, 2 h</td>
<td>100 (conv.)</td>
<td>90 (R)</td>
<td>458</td>
</tr>
<tr>
<td>28</td>
<td>H, Me, CO₂Et, H</td>
<td>556c</td>
<td>4% cat., 100 bar, 2 h</td>
<td>32 (conv.)</td>
<td>91 (R)</td>
<td>425</td>
</tr>
<tr>
<td>29</td>
<td>H, Me, CO₂Et, H</td>
<td>558</td>
<td>4% cat., 100 bar, 2 h</td>
<td>100 (conv.)</td>
<td>75 (R)</td>
<td>425</td>
</tr>
<tr>
<td>30</td>
<td>H, Me, CO₂Et, H</td>
<td>559c</td>
<td>1% cat., 50 bar, 2 h</td>
<td>99 (conv.)</td>
<td>92 (R)</td>
<td>426</td>
</tr>
<tr>
<td>31</td>
<td>Cl, Me, Ph, H</td>
<td>553j</td>
<td>1% cat., 50 bar, 2 h</td>
<td>99 (conv.)</td>
<td>99 (R)</td>
<td>359</td>
</tr>
<tr>
<td>32</td>
<td>Cl, Me, Ph, H</td>
<td>558</td>
<td>4% cat., 100 bar, 2 h</td>
<td>52 (conv.)</td>
<td>78 (R)</td>
<td>425</td>
</tr>
<tr>
<td>33</td>
<td>H, H, CH₂OAc, Me</td>
<td>544a</td>
<td>0.5% cat., 50 bar, 2 h</td>
<td>53</td>
<td>72 (NR)</td>
<td>457</td>
</tr>
<tr>
<td>34</td>
<td>H, H, CH₂OAc, Me</td>
<td>544b</td>
<td>0.5% cat., 50 bar, 2 h</td>
<td>95</td>
<td>57 (NR)</td>
<td>457</td>
</tr>
<tr>
<td>35</td>
<td>H, H, CH₂OH, Me</td>
<td>544i</td>
<td>1% cat., 50 bar, 2 h</td>
<td>80</td>
<td>67 (NR)</td>
<td>457</td>
</tr>
<tr>
<td>36</td>
<td>H, H, CH₂OH, Me</td>
<td>599d</td>
<td>1% cat., 50 bar, 2 h</td>
<td>99</td>
<td>93 (NR)</td>
<td>459</td>
</tr>
<tr>
<td>37</td>
<td>MeO, Et, H, H</td>
<td>544a</td>
<td>0.3% cat., 50 bar, 2 h</td>
<td>99</td>
<td>44 (R)</td>
<td>457</td>
</tr>
<tr>
<td>38</td>
<td>MeO, Et, H, H</td>
<td>554j</td>
<td>0.1% cat., 1 bar, 2 h</td>
<td>100 (conv.)</td>
<td>88 (S)</td>
<td>458</td>
</tr>
<tr>
<td>39</td>
<td>MeO, Et, H, H</td>
<td>599d</td>
<td>0.3% cat., 50 bar, 2 h</td>
<td>91</td>
<td>31 (R)</td>
<td>459</td>
</tr>
<tr>
<td>40</td>
<td>H, Et, H, H</td>
<td>544a</td>
<td>0.3% cat., 50 bar, 2 h</td>
<td>99</td>
<td>40 (R)</td>
<td>457</td>
</tr>
<tr>
<td>41</td>
<td>MeO, Me, Me, Me</td>
<td>553d</td>
<td>2% cat., 50 bar, 2 h</td>
<td>99 (conv.)</td>
<td>81 (NR)</td>
<td>359</td>
</tr>
</tbody>
</table>
The relationship between selectivity vs. ligand topography was determined for some ligands based on the x-ray crystal structure of the corresponding iridium complexes. The structures of the respective oxazoline-carbene ligands 599a–d are shown in Figure 8.24.459

In a number of thoughtfully designed and carefully executed experiments, Burgess and co-workers demonstrated that double-bond migrations are competitive with hydrogenation in at least some of the reactions using an iridium complex.457 For example, deuteration of (E)-2-(4-methoxyphenyl)-2-butene 597a gave the expected deuterated product 598a with deuterium detected only at the carbon atoms of the double bond and recovered 597a that was completely undeuterated (Scheme 8.186). In contrast, deuterium scrambling was observed from deuteration of (Z)-2-(4-methoxyphenyl)-2-butene 597b and the recovered 597b showed deuterium incorporation into the α-methyl group. Interestingly, no double-bond migration or isomerization in the recovered styrene was observed in the latter reaction.

The authors proposed the mechanism in Scheme 8.187 to account for these results. It was suggested that the π-allyl complex 600 produced from 597a was less
stable than the π-allyl complex 601 prepared from 597b. Therefore, formation of 600 and further reaction does not compete with the direct addition reaction to 597a. However, formation of complex 601 may be sufficiently competitive to allow deuterium scrambling. The possibility of double-bond migration adds some degree of difficulty to the design of ligands for this type of hydrogenation reaction. Using a similar method, this group also demonstrated that double-bond migration is less prevalent in reactions using the new oxazoline-carbene ligands 599a–d.459

In an effort to develop an environmentally friendly process, Pfaltz and co-workers employed supercritical carbon dioxide as the solvent for the hydrogenation of imines 602a,b to produce the α-methylbenzylamines 603a,b (Scheme 8.188).460

Thus, the Ir(I)-553a complex exhibited high activity for the hydrogenation of 602a in supercritical CO2 and produced 603a with an enantioselectivity similar to that obtained in CH2Cl2. The authors also demonstrated successful reaction using the recycled catalyst. However, they cautioned that supercritical CO2 should not be regarded simply as a “nonpolar substitute solvent”. For example, hydrogenation of 602b did not exceed 30% conversion in supercritical CO2 even at prolonged reaction times or with higher catalyst loadings whereas the same reaction in CH2Cl2 went to completion within normal reaction time.
2-Oxazolines

Scheme 8.188

TABLE 8.39. ENANTIOSELECTIVE TRANSFER HYDROGENATION OF KETONES

<table>
<thead>
<tr>
<th>Entry</th>
<th>604 (R₁, R₂)</th>
<th>Best Catalyst</th>
<th>% Yield</th>
<th>% ee</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>94 (conv.)</td>
<td>>99.6 (R)</td>
<td>467</td>
</tr>
<tr>
<td>2</td>
<td>Ph, Me</td>
<td>RuCl₂[548d]PPh₃</td>
<td>95 (conv.)</td>
<td>72 (R)</td>
<td>467</td>
</tr>
<tr>
<td>3</td>
<td>Ph, Me</td>
<td>RuCl₂[553a]PPh₃</td>
<td>43 (conv.)</td>
<td>55 (R)</td>
<td>467</td>
</tr>
<tr>
<td>4</td>
<td>Ph, Me</td>
<td>RuCl₂[606]PPh₃</td>
<td>96</td>
<td>72 (R)</td>
<td>461</td>
</tr>
<tr>
<td>5</td>
<td>Ph, Et</td>
<td>RuCl₂[548d]PPh₃</td>
<td>99 (conv.)</td>
<td>>99.7 (R)</td>
<td>467</td>
</tr>
<tr>
<td>6</td>
<td>Ph, n-Bu</td>
<td>RuCl₂[548d]PPh₃</td>
<td>99 (conv.)</td>
<td>98.7 (R)</td>
<td>467</td>
</tr>
<tr>
<td>7</td>
<td>Tol, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>98 (conv.)</td>
<td>>99.3 (R)</td>
<td>467</td>
</tr>
<tr>
<td>8</td>
<td>4-F-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>>99.9 (R)</td>
<td>467</td>
</tr>
<tr>
<td>9</td>
<td>4-Cl-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>98.7 (R)</td>
<td>467</td>
</tr>
<tr>
<td>10</td>
<td>4-Br-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>>99.3 (R)</td>
<td>467</td>
</tr>
<tr>
<td>11</td>
<td>3-Me-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>98 (conv.)</td>
<td>>99.9 (R)</td>
<td>467</td>
</tr>
<tr>
<td>12</td>
<td>3-F-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>98 (conv.)</td>
<td>>99.6 (R)</td>
<td>467</td>
</tr>
<tr>
<td>13</td>
<td>3-Cl-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>>99.7 (R)</td>
<td>467</td>
</tr>
<tr>
<td>14</td>
<td>3-Br-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>77 (conv.)</td>
<td>>99.7 (R)</td>
<td>467</td>
</tr>
<tr>
<td>15</td>
<td>2-Me-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>>99.9 (R)</td>
<td>467</td>
</tr>
<tr>
<td>16</td>
<td>2-F-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>92 (conv.)</td>
<td>96.6 (R)</td>
<td>467</td>
</tr>
<tr>
<td>17</td>
<td>2-Cl-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>>99.7 (R)</td>
<td>467</td>
</tr>
<tr>
<td>18</td>
<td>2,4-di-Me-Ph, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>>99.9 (R)</td>
<td>467</td>
</tr>
<tr>
<td>19</td>
<td>2-furyl, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>66 (conv.)</td>
<td>95 (R)</td>
<td>467</td>
</tr>
<tr>
<td>20</td>
<td>t-Bu, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>81 (conv.)</td>
<td>>99 (S)</td>
<td>467</td>
</tr>
<tr>
<td>21</td>
<td>cyclohexyl, Me</td>
<td>RuCl₂[548d]PPh₃</td>
<td>68 (conv.)</td>
<td>52 (S)</td>
<td>467</td>
</tr>
<tr>
<td>22</td>
<td>cyclohexyl, Me</td>
<td>RuCl₂[548d]PPh₃</td>
<td>31 (conv.)</td>
<td>66 (S)</td>
<td>467</td>
</tr>
<tr>
<td>23</td>
<td>n-hexyl, Me</td>
<td>RuCl₂[548a]PPh₃</td>
<td>99 (conv.)</td>
<td>26 (S)</td>
<td>467</td>
</tr>
</tbody>
</table>
PhosOx ligands were also effective for ruthenium (II)-catalyzed transfer hydrogenation of alkyl ketones 604 (Scheme 8.189). Both Pfaltz’s and Uemura’s groups examined the complexation of PhosOx ligands with ruthenium (II) using spectroscopic techniques including X-ray crystallography.461,462 These studies showed that ligand 606 forms geometric isomers of hexacoordinated RuCl$_2$L$_2$ complexes,461 whereas ligand 548 forms one major diastereomer of the pentacoordinated complex RuCl$_2$LPPPh$_3$.462 These complexes, RuCl$_2$(606)$_2$ and RuCl$_2$(548)PPh$_3$ were used in transfer hydrogenation of ketones by i-PrOH, an enantioselective version of the Meerwein–Ponndorf–Verley reduction.463–466

Interestingly, both groups found that mixtures of isomeric complexes can be used in place of isomerically pure complexes without a significant loss in selectivity.461,462 The data in Table 8.39 461,467 indicates that extremely high selectivities were obtained using ferrocene-based PhosOx ligands 548a,d.467 The fact that ligand 553a (entry 3) gave poorer conversion and selectivity with acetophenone than ligand 548a (entry 1) suggests the importance of the planar chirality in 548. Additionally, modest-to-excellent selectivities were also obtained with the refractory alkyl methyl ketones (entries 20–22). Kinetic resolution of racemic aryl methyl carbinols can be also achieved using the ferrocene-based PhosOx ligands (yields up to 49% and ee’s up to 99.8%).467

8.3.11.5. Additions of Dialkylzincs to Aldehydes

Asymmetric addition of a dialkylzinc reagent to an aldehyde, catalyzed by a Lewis base or a Lewis acid, is a viable alternative to enantioselective reduction of ketones as means to prepare enantiomerically enriched alcohols like 605 and 608.468 The HydrOx ligands are among the most effective Lewis bases for this addition reaction. The asymmetric induction results from complexation of the ligand with the dialkylzinc reagent prior to reaction with the aldehyde. Previously, it was established that phenyl addition proceeds overwhelmingly when an alkyl phenylzinc reagent is used.469 Table 8.40 (Scheme 8.190) summarizes selected recent examples of asymmetric additions of alkylzinc reagents to a variety of aliphatic, aromatic, and heterocyclic aldehydes 607.170,374,378,470,471 Bolm and co-authors suggested that the ferrocenyloxazoline diselenide itself, 571 may serve as a precatalyst and that the active catalytic species may be the alkyl zinc selenide resulting from reaction of 571 and a dialkylzinc reagent.374

A linear correlation between the ee of the ferrocene ligand 572b and ee of the product has been established.370,472 However, there is a remarkable nonlinear effect observed for the addition of dimethylzinc to benzaldehyde when employing a diastereomeric mixture of the HydrOx ligands 572a and 573.472 Thus, 1-phenyl ethanol was produced in 95% ee even when a 50:50 mixture of 572a and 573 was used. This discovery suggests that the diastereomeric mixture generated by preparation of these ligands may be useful as an asymmetric catalyst without tedious separation of the individual diastereomers.
TABLE 8.40. ASYMMETRIC ADDITION OF DIALKYLZINC REAGENTS TO ALDEHYDES

<table>
<thead>
<tr>
<th>Entry</th>
<th>607 (R₁)</th>
<th>Dialkylzinc (R₂, R₃)</th>
<th>Ligand</th>
<th>L mol%</th>
<th>% Yield</th>
<th>% ee</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>94</td>
<td>75 (S)</td>
<td>470</td>
</tr>
<tr>
<td>2</td>
<td>hexyl</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>74 (S)</td>
<td>378</td>
</tr>
<tr>
<td>3</td>
<td>Ph(CH₂)₂</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>76 (S)</td>
<td>378</td>
</tr>
<tr>
<td>4</td>
<td>Ph(CH₂)₂</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>91</td>
<td>50 (S)</td>
<td>470</td>
</tr>
<tr>
<td>5</td>
<td>(E)-styryl</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>88 (R)</td>
<td>378</td>
</tr>
<tr>
<td>6</td>
<td>(E)-styryl</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>97</td>
<td>90 (S)</td>
<td>471</td>
</tr>
<tr>
<td>7</td>
<td>Bn</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>82</td>
<td>83 (S)</td>
<td>471</td>
</tr>
<tr>
<td>8</td>
<td>i-Pr</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>75</td>
<td>91 (S)</td>
<td>471</td>
</tr>
<tr>
<td>9</td>
<td>t-Bu</td>
<td>Ph, Et</td>
<td>571</td>
<td>5</td>
<td>85</td>
<td>65 (S)</td>
<td>374</td>
</tr>
<tr>
<td>10</td>
<td>t-Bu</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>68</td>
<td>94 (S)</td>
<td>471</td>
</tr>
<tr>
<td>11</td>
<td>t-Bu</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>99</td>
<td>56 (S)</td>
<td>470</td>
</tr>
<tr>
<td>12</td>
<td>Ph</td>
<td>Et, Et</td>
<td>574a</td>
<td>10</td>
<td>>90 (conv.)</td>
<td>68 (R)</td>
<td>170</td>
</tr>
<tr>
<td>13</td>
<td>Ph</td>
<td>Et, Et</td>
<td>574b</td>
<td>10</td>
<td>>90 (conv.)</td>
<td>54 (R)</td>
<td>170</td>
</tr>
<tr>
<td>14</td>
<td>Ph</td>
<td>Et, Et</td>
<td>574c</td>
<td>10</td>
<td>>90 (conv.)</td>
<td>8 (R)</td>
<td>170</td>
</tr>
<tr>
<td>15</td>
<td>Ph</td>
<td>Et, Et</td>
<td>575</td>
<td>10</td>
<td>>90 (conv.)</td>
<td>75 (R)</td>
<td>170</td>
</tr>
<tr>
<td>16</td>
<td>Tol</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>85 (R)</td>
<td>378</td>
</tr>
<tr>
<td>17</td>
<td>Tol</td>
<td>Ph, Et</td>
<td>571</td>
<td>5</td>
<td>80</td>
<td>76 (R)</td>
<td>374</td>
</tr>
<tr>
<td>18</td>
<td>Tol</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>86</td>
<td>98 (R)</td>
<td>471</td>
</tr>
<tr>
<td>19</td>
<td>4-Cl−Ph</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>96 (R)</td>
<td>378</td>
</tr>
<tr>
<td>20</td>
<td>4-Cl−Ph</td>
<td>Ph, Et</td>
<td>571</td>
<td>5</td>
<td>85</td>
<td>84 (R)</td>
<td>374</td>
</tr>
<tr>
<td>21</td>
<td>4-Cl−Ph</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>86</td>
<td>97 (R)</td>
<td>471</td>
</tr>
<tr>
<td>22</td>
<td>4-Cl−Ph</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>10</td>
<td>92</td>
<td>90 (R)</td>
<td>470</td>
</tr>
<tr>
<td>23</td>
<td>4-Cl−Ph</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>99</td>
<td>82 (R)</td>
<td>470</td>
</tr>
<tr>
<td>24</td>
<td>4-Cl−Ph</td>
<td>Ph, Ph</td>
<td>572b</td>
<td>10</td>
<td>99</td>
<td>88 (R)</td>
<td>470</td>
</tr>
<tr>
<td>25</td>
<td>2-Br−Ph</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>83 (R)</td>
<td>378</td>
</tr>
<tr>
<td>26</td>
<td>2-Br−Ph</td>
<td>Ph, Et</td>
<td>571</td>
<td>5</td>
<td>65</td>
<td>77 (R)</td>
<td>374</td>
</tr>
<tr>
<td>27</td>
<td>2-Br−Ph</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>64</td>
<td>91 (R)</td>
<td>471</td>
</tr>
<tr>
<td>28</td>
<td>2-Br−Ph</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>98</td>
<td>31 (R)</td>
<td>470</td>
</tr>
<tr>
<td>29</td>
<td>4-MeO−Ph</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>82</td>
<td>98 (R)</td>
<td>471</td>
</tr>
<tr>
<td>30</td>
<td>3-MeO−Ph</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>93 (R)</td>
<td>378</td>
</tr>
<tr>
<td>31</td>
<td>3-MeO−Ph</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>10</td>
<td>99</td>
<td>96 (R)</td>
<td>471</td>
</tr>
<tr>
<td>32</td>
<td>2,4,6-tri-Me−Ph</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>80 (R)</td>
<td>378</td>
</tr>
<tr>
<td>33</td>
<td>4-Ph−Ph</td>
<td>Ph, Et</td>
<td>571</td>
<td>5</td>
<td>86</td>
<td>85 (R)</td>
<td>374</td>
</tr>
<tr>
<td>34</td>
<td>4-Ph−Ph</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>98</td>
<td>97 (R)</td>
<td>471</td>
</tr>
<tr>
<td>35</td>
<td>1-naphthyl</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>99</td>
<td>28 (R)</td>
<td>470</td>
</tr>
<tr>
<td>36</td>
<td>2-naphthyl</td>
<td>Ph, Ph</td>
<td>571</td>
<td>5</td>
<td>96</td>
<td>76 (R)</td>
<td>374</td>
</tr>
<tr>
<td>37</td>
<td>2-naphthyl</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>70</td>
<td>96 (R)</td>
<td>471</td>
</tr>
<tr>
<td>38</td>
<td>ferrocenyl</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>89</td>
<td>>96 (R)</td>
<td>470</td>
</tr>
<tr>
<td>39</td>
<td>2-furyl</td>
<td>Ph, Et</td>
<td>452</td>
<td>2</td>
<td>>80</td>
<td>95 (R)</td>
<td>378</td>
</tr>
<tr>
<td>40</td>
<td>2-furyl</td>
<td>Ph, Et</td>
<td>572a</td>
<td>10</td>
<td>99</td>
<td>95 (R)</td>
<td>471</td>
</tr>
<tr>
<td>41</td>
<td>2-pyridyl</td>
<td>Ph, Ph</td>
<td>572a</td>
<td>5</td>
<td>98</td>
<td>3 (R)</td>
<td>470</td>
</tr>
</tbody>
</table>
Nishiyama and Itoh reviewed asymmetric hydrosilylation and related reactions in 2000.475 Although a number of catalytic systems are known to be very effective for the asymmetric hydrosilylation of ketones, reports of efficient catalysts for the analogous reaction with imines are limited.476 Uemura and co-workers recently reported that ferrocene-based PhosOx 548 were effective ligands for iridium-catalyzed hydrosilylation of imines (Scheme 8.191).477 The best results for 2-phenyl-1-pyrroline 609 were obtained using 548d [\(\geq95\%\) yield of (S)-2-phenylpyrrolidine 610, 88\% ee]. PhosOx 553a also proved to be an effective catalyst and afforded 610 in comparable yield and ee. Ruthenium(II) catalysts gave similar results, but a rhodium(I) catalyst did not perform as well. Interestingly, the X-ray crystal structure of \([\text{Ir(548a)(cod)}\text{BF}_4]\) was very similar to that determined for \([\text{Rh(548a)(cod)}\text{BF}_4]\) (cod = 1,5-cyclooctadiene).

![Scheme 8.191](image)

The same group also reported ruthenium-catalyzed asymmetric hydrosilylation of ketoximes (Scheme 8.192).478 With (\(E\))-3,4-dihydro-1(2H)-naphthalenone oxime 611, the best results were obtained with PhosOx 548d to afford (\(R\))-1-aminotetralin 612 in 65\% yield and 83\% ee. Addition of AgOTf was somewhat beneficial to improve both the selectivities and yields. Although the authors did not elaborate on the role of AgOTf, it presumably activates the catalyst by removing a chloride resulting in a more effective cationic species.

![Scheme 8.192](image)

Palladium-catalyzed enantioselective hydrosilylation of carbon–carbon double bonds is well known.479 Widenhoefer’s group recently extended this reaction to cyclization of functionalized 1,6-dienes. The PyrOx ligands were excellent ligands for this reaction, and comparative evaluations of ligand performance for the hydrosilylation-cyclization of dimethyl diallylmalonate 613 have been reported (Scheme 8.193).480,481 The trans-isomer of 614 is the preferred product and
diastereomeric excesses are usually >95%. The best enantioselectivity was obtained at −40 °C using the PyrOx ligand 560j that gave the (R, R) isomer of 614 in 89% yield and 91% ee. A wide range of silanes and dienes can be used in this reaction with satisfactory results. Employing disiloxanes such as pentamethyl-disiloxane (HSiMe₂OTMS)⁴⁸² or 1-tert-butyl-3,3-dimethyl-1,1-diphenyldisiloxane (HSiMe₂OTBDPS)⁴⁸³ in place of triethylsilane permits facile incorporation of a silyl-protected alcohol into 614.

8.3.11.7. Michael Addition Reactions

Asymmetric Michael additions have been reviewed by Tomioka and Nagaoka in 1999⁴⁸⁴ and Kanai and Shibasaki in 2000.⁴⁸⁵ Reasonable enantioselectivities were obtained using PhosOx and Sulfox ligands. Pfaltz and Escher recently examined the use of the binaphthyl-based phosphite-oxazoline ligands 615–618 (Fig. 8.25) for the addition of diethylzinc to cyclic enones 619.⁴⁸⁶ The results of the enantioselective Michael addition are shown in Table 8.41 (Scheme 8.194). These same ligands were also evaluated in the Michael addition of diethylzinc to (E)-4-phenyl-3-buten-2-one 621 (Scheme 8.195). Ligand 615f (aS) gave the best results and afford the (S) enantiomer of 4-phenyl-2-hexanone 622 in 99% yield and 87% ee.

Williams’ group observed low enantioselectivities for the Michael addition of a prochiral nucleophile, ethyl 2-cyanopropionate 623, to methyl vinyl ketone 624 catalyzed by chiral platinum complexes (Scheme 8.196).⁴⁸⁷ The NMR analysis indicated that these cationic Pt complexes act as Lewis acids toward nitriles. The X-ray crystal structure as well NMR analysis showed that the solvent ligand that is readily displaced by an organic substrate is situated cis to the nitrogen donor in the Pt complex and, therefore, is in a “chiral pocket” created by the oxazoline ring.

8.3.11.8. Cyclopropanation Reactions

Catalytic asymmetric cyclopropanations via carbene transfer to alkenes were reviewed by Singh and co-workers in 1997,⁴⁸⁸ Doyle and Protopopova in 1998,⁴⁸⁹ and mostly recently by Doyle in 2000.⁴⁹⁰ The reaction can be catalyzed by copper,⁴⁹¹ rhodium,⁴⁹² and other metals.⁴⁹³ Bis(oxazolines) are known to be among the most effective ligands for this cyclopropanation reaction (see Chapter 9).
Figure 8.25. Binaphthyl-based phosphite-oxazoline ligands.

Table 8.41. Asymmetric Michael additions to cyclic enones

<table>
<thead>
<tr>
<th>Entry</th>
<th>619 (n)</th>
<th>Best Ligand</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>615d (aR)</td>
<td>41</td>
<td>94 (R)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>618 (aR)</td>
<td>69</td>
<td>90 (R)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>615b (aR)</td>
<td>96</td>
<td>90 (R)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>616 (aS)</td>
<td>97</td>
<td>94 (NR)</td>
</tr>
</tbody>
</table>

aData from Ref. 486.

bNot reported: NR.
Mononuclear oxazolines have been less studied. Moderate enantioselectivities (up to 60%) were obtained using PyrOx as ligands for the copper(I)-catalyzed carbene-transfer reaction of ethyl diazoacetate to styrene. However, the diastereoselectivities (cis/trans) in these reactions were generally poor.

8.3.11.9. Miscellaneous Catalytic Reactions

Mikami and co-workers reported the first examples of an asymmetric Fujiwara–Moritani reaction, which is generally catalyzed by chiral Pd(II) complexes (Scheme 8.197). Reaction of 1-cyano-1-cyclohexene with benzene gave

Mononuclear oxazolines have been less studied. Moderate enantioselectivities (up to 60%) were obtained using PyrOx as ligands for the copper(I)-catalyzed carbene-transfer reaction of ethyl diazoacetate to styrene. However, the diastereoselectivities (cis/trans) in these reactions were generally poor.
(6R)-6-phenyl-1-cyano-1-cyclohexene 627. The optimum reaction conditions produced 627 in 25% yield and 44% ee using 628b as the ligand.

Pfaltz and Lücking reported that alkyne couplings can be catalyzed efficiently by palladium–PhosOx catalysts.498 High yields (up to 95%) were obtained for homocouplings of alkynes under solvent-free conditions. More interestingly, using an enantiomerically pure ligand effected kinetic resolution of racemic propargylic alcohols. For example, when ethyl 2-butylnoate 629 was cross-coupled with a racemic propargyl alcohol 630 (2.2 equiv) in the presence of the PhosOx ligand 553k, the eneynol 631 was obtained in 46% yield and 53% ee (Scheme 8.198).

![Scheme 8.198](#)

Recently, Feng and co-workers reported an asymmetric sulfide oxidation499,500 catalyzed by titanium complexes bearing HydrOx ligands, for example, 576 (Scheme 8.199).501 Enantioselectivities approached a level of synthetic utility for oxidation of aryl alkyl sulfides 632 although the yields of the sulfoxide 633 were poor due to overoxidation to the sulfone 634. The overoxidation is especially significant for reactions with high enantioselectivity.

![Scheme 8.199](#)

8.3.12. Polymeric Oxazolines

Oxazolines undergo polymerization upon exposure to a variety of cationic initiators such as strong Lewis acids or strong protic acids. Copolymerization between different oxazolines of defined composition can be carried out in a random manner or in a controlled fashion resulting in block polymers. Alternatively, oxazolines can also be grafted onto other types of polymers. It is beyond the scope of this chapter to review in detail this enormous and important subject. Instead, the
reader is referred to several excellent reviews that deal with polymerization of oxazolines.502–508

Polymeric oxazolines have diverse industrial applications and are used as amphiphilic copolymer membranes, as ink-receptive layers for ink-jet recording sheets, and as molded castings for solid rocket fuel motors. Polymeric oxazolines can be found as fiber binders in polymer composite materials, as components of interpenetrating polymer networks, as thermoset and powder coating cross-linking agents, and as glass fiber coatings. In addition, polymeric oxazolines are precursors to multifunctional cyclophosphazenes used as novel photoinitiators, are chain extenders or blend compatibilizers to modify elongation, viscosity, and impact strength of polymer blends, and are precursors for hyperbranched polyether–polyamide dendrimers.

Polymeric oxazolines have also been used as vehicles for controlled drug release509,510 and DNA transfection,511 as polymeric micelles, which serve as carriers for drug transport (e.g., paclitaxel),512 and as formulation additives for controlled-release of insecticides.513

8.3.13. Miscellaneous Reactions

Achiral 2-stannyloxazolines are known to undergo Stille coupling with aromatic halides.9 However, Stille couplings with chiral 2-halooxazolines were not reported until Meyers and Novachek prepared the requisite 2-bromooxazoline 365 (see Scheme 8.116) and successfully coupled 365 with a variety of alkynyl and alkenylstannanes to afford chiral 2-substituted oxazolines 635 in reasonable yields (Scheme 8.200).329

\[
\begin{align*}
\text{N} & \quad \text{O} \\
\text{Br} & \quad \text{t-But} \\
\text{RSnMe}_3 & \quad \text{Pd(PPh}_3)_4 \\
\text{365} & \quad \text{40–72%} \\
\text{t-But} & \quad \text{635}
\end{align*}
\]

Scheme 8.200

Molinski and Shafer reported a novel synthesis of 1,4-oxazinones 637 by SeO\textsubscript{2}–promoted oxidative rearrangement of 2-alkyloxazolines 636 (Scheme 8.201).514 The best yields were obtained when R\textsubscript{1} was H, t-Bu, or aryl (60–94%). The yield was low (33%) when R\textsubscript{1} is i-Pr and no desired product was obtained when R\textsubscript{1} = Me. More interestingly, the stereochemical integrity of the oxazoline was preserved during the reaction. For R\textsubscript{1} = H, oxazinone 637 is a “chiral glycine” synthon and is useful for asymmetric synthesis of amino acids. The same group later corrected the mechanism proposed in the original paper. After careful kinetic and labeling studies, the authors proposed a mechanism involving rearrangement of intermediate 639 (Scheme 8.201).515
In a special case, the spirocyclic oxazoline 640 was found to be unstable and undergoes rearrangement to the thietane N-acylimine 641 (Scheme 8.202)\(^\text{308,516}\). A zwitterionic intermediate 642 was proposed to account for the formation of 641. A biradical 643 is also a possible intermediate for this rearrangement.

The C=C bond in a 5-(alkyldene)oxazoline 644 is activated for electrophilic reactions similar to that in analogous vinyl acetates. Rohm & Haas researchers exploited this property to prepare chloromethyl ketone fungicides 646 (Scheme 8.203)\(^\text{517}\). The overall process constitutes an indirect chlorination of \(\alpha\)-amido ketones since the 5-(vinylidene)oxazolines were prepared from \(\alpha\)-amido ketones.
In a series of papers, Jarry and co-workers demonstrated the utility of a 2-aminooxazoline 647 (Fig. 8.26) to prepare bicyclic heterocycles. This oxazoline undergoes annulation reactions with bifunctional electrophiles to give triazinones or pyrimidinones. Selected examples are summarized in Table 8.42.518–522 The structures of many of the products were confirmed by X-ray crystallography. The ring nitrogen of 647 is known to be more nucleophilic, and thus the initial reaction occurs there normally. This finding is consistent with the product distributions seen for entries 1 and 3. However, acyclic products were also observed when ethoxycarbonyl isocyanate (entry 2) or ethyl 3-ethoxy-2-cyanoacrylate 648 (entries 4 and 6) were used as electrophiles. These acyclic products appear to result from initial reaction with the 2-amino group. Based on a semiempirical computational study, the authors proposed dual pathways for the reaction of 647 with 648 to explain the cyclized and acyclic products (Scheme 8.204).521 Thus, the cyclic product was proposed to arise from initial attack by the ring nitrogen (pathway a) whereas the azadiene arose from initial attack by the 2-amino group (pathway b).
Table 8.42. Reaction of 647 with Bifunctional Electrophiles

<table>
<thead>
<tr>
<th>Entry</th>
<th>647 (R)</th>
<th>E⁺ (Conditions)</th>
<th>Cyclic Product</th>
<th>Acyclic Product</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl, alkoxy, aryloxy, 2⁺ amino</td>
<td>EtO₂CNCS</td>
<td></td>
<td>None</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHCl₃, rt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>t-BuO, ArO</td>
<td>EtO₂CNCO</td>
<td></td>
<td>EtO₂CHN</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH₂Cl₂, 0 °C to rt</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MeO, PhO</td>
<td>EtO₂CCl</td>
<td></td>
<td>None</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Et₃N, acetone, rt</td>
<td></td>
<td>EtO₂C</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8.26

![Diagram of 647](image)
<table>
<thead>
<tr>
<th>Entry</th>
<th>647 (R)</th>
<th>E^+ (Conditions)</th>
<th>Cyclic Product</th>
<th>Acyclic Product</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PhO</td>
<td></td>
<td></td>
<td></td>
<td>521</td>
</tr>
<tr>
<td>5</td>
<td>t-Bu, 2° amino</td>
<td></td>
<td></td>
<td>None</td>
<td>522</td>
</tr>
<tr>
<td>6</td>
<td>2° amino</td>
<td></td>
<td></td>
<td></td>
<td>522</td>
</tr>
</tbody>
</table>
8.4. SUMMARY

2-Oxazolines continue to find numerous applications in organic synthesis. Since the last review by Meyers in 1994, new reagents have been introduced and new methods for their preparation have been uncovered. The popularity of this ring system in organic synthesis has grown due to the well-understood chemical behavior. The use of oxazolines in directed metalation reactions to construct complex molecules or as protecting groups is ubiquitous throughout the literature. Chiral oxazolines, readily accessible from a large pool of chiral amino alcohols, have been widely employed as auxiliaries in asymmetric syntheses. For example, an important extension in the area of aromatic substitution of aryloxazolines is the development of symmetrical, unsymmetrical and axially chiral biaryl synthesis. Similarly, oxazoline-directed nucleophilic additions to naphthalenes as a synthetic method for the preparation of dihydronaphthalenes have also expanded to include asymmetric versions with excellent stereochemical controls.

Another significant development in oxazoline chemistry is the application of oxazoline-containing ligands for asymmetric catalysis, such as palladium-catalyzed allylic substitutions, Heck reactions, hydrogenations, dialkylzinc additions to aldehydes, and Michael reactions. The discovery of diastereoselective metatation of chiral ferrocenyloxazolines has further expanded the availability of chiral ligands for metal-catalytic reactions.

Other applications of oxazolines have also been discovered. Anomeric oxazolines have now emerged as useful glycosyl acceptors in the glycosylation of sugars. 2-Alkenyloxazolines have been found to undergo asymmetric Michael addition and hetero-Diels–Alder reactions. Further explorations in these areas of oxazoline chemistry will undoubtedly continue and the list of new applications will grow.

Acknowledgments

The authors thank Synthetic Chemistry, Schering-Plough Research Institute for support without which this endeavor would not have been possible.

REFERENCES

22. For a review on chiral semicorrin ligands in asymmetric catalysis, see: Pfaltz, A. Synlett 1999, 835–842.
References

References

519

524 2-Oxazolines
References 525

References 527

CHAPTER 9

Chiral Bis(oxazolines)

Arun K. Ghosh

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois

Geoff Bilcer

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois

Steve Fidanze

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois

9.1. Introduction .. 530
9.2. Bis(oxazoline) Ligands 530
9.3. Bis(oxazoline)-Metal Complexes 532
 9.3.1. Geometry of Ligand–Metal Complexes 532
 9.3.2. X-ray Crystal Structure 533
9.4. Synthesis of Bis(oxazoline) Ligands 534
9.5. Carbon–Carbon Bond-Forming Reactions 538
 9.5.1. Cyclopropanation 538
 9.5.1.1. Styrene and Ethyl Diazooacetate 538
 9.5.1.2. Styrene and Other Diazooacetates 541
 9.5.1.3. Miscellaneous Cyclopropanations 541
 9.5.2. Diels–Alder Reactions 545
 9.5.2.1. Cyclopentadiene and 3-Acryloyl-1,3-oxazolidin-2-one .. 546
 9.5.2.2. Various Dienes and Dienophiles 551
 9.5.2.3. Bis(oxazoline)-Mediated Diels–Alder Reactions in Total Synthesis ... 552
 9.5.3. Hetero-Diels–Alder and Ene Reactions 554
 9.5.4. 1,3-Dipolar Cycloadditions 561
 9.5.5. Allylic Substitutions 562
 9.5.6. Mukiayama Aldol 565
 9.5.7. Conjugate Addition 567
 9.5.7.1. Free Radical Conjugate Addition 567
 9.5.7.2. Michael Addition 567
As we have seen in the preceding chapters, oxazoles, and oxazolines come in many different forms and have shown numerous useful applications. In this chapter, we will discuss the chiral C_2-symmetric bis(oxazoline). This category of oxazolines has become a powerful tool in the realm of synthetic organic chemistry. The past several decades have seen impressive advances in synthetic medicinal agents for treatment of complex human diseases. Such progress has been fueled by the discovery and development of asymmetric processes since many therapeutic agents often possess multiple asymmetric centers. It is now regulation that these agents be prepared in an enantiomerically pure form. Thus, there has been a major emphasis on the synthesis of organic molecules having defined stereochemistry with a certain degree of predictability. The introduction of chiral C_2-symmetric bis(oxazoline) ligands in asymmetric synthesis has greatly enhanced this skill and led to many improvements in a variety of asymmetric organic transformations.

9.2. BIS(OXAZOLINE) LIGANDS

In 1989, the first bis(oxazoline) ligands were introduced by Nishiyama and co-workers.\(^1\)–\(^2\) These bis(oxazolinylypyridines), also called “py-box” ligands \(1\) were originally used for the enantioselective hydrosilylation of ketones (Fig. 9.1).

The bis(oxazoline) ligand bu-box \(2\) was introduced the following year by Masamune.\(^3\) The effectiveness of this ligand was demonstrated in the cyclopropanation reaction of styrene with ethyl diazoacetate. Subsequently, 1991 led to several additions to the library of available bis(oxazoline) ligands. Some of these ligands include those introduced by Evans\(^4\) \(3\) and Masamune\(^5\) \(4, 5\) that were utilized in cyclopropanation reactions. Corey\(^6\) investigated Diels–Alder reactions using the phe-box ligand \(6\), while ligand \(7\), introduced by Helmchen,\(^7\) was employed in hydrosilylation and transfer hydrogenation reactions. The remainder of the decade
1a R = Ph
1b R = i-Pr
1c R = t-Bu
1d R = i-Bu

2

3

4

5

6

7a R = Ph
7b R = i-Pr
7c R = t-Bu

8

9a R = H
9b R = Me

10

11a R = i-Pr
11b R = t-Bu

12a R = Ph
12b R = i-Pr
12c R = t-Bu

13a R = Ph
13b R = i-Pr
13c R = t-Bu

14

Figure 9.1. Bis(oxazoline) ligands.
saw the introduction of additional ligands by Corey8 and Davies9 (cyclopropanation), Ghosh9 and Davies10 (Diels–Alder), Desimoni11 10 (Diels–Alder), Ikeda12 11 (allylic substitution), Andersson13 12 (cyclopropanation), Hayashi14 13 (cyclopropanation), and Curran15 14 (Diels–Alder). This small sampling of bis(oxazoline) ligands and their related reactions demonstrates the power and versatility of this type of ligand in organic synthesis.

9.3. BIS(OXAZOLINE)-METAL COMPLEXES

Bis(oxazoline) ligands are generally used in conjunction with a metal cation that is coordinated by the nitrogen atoms of the ligand. The geometry of this complex controls the stereoselectivities observed in the various reactions involving them. Bis(oxazoline)–metal complexes exhibit a number of notable features. These include (1) the presence of a C_2-symmetric axis that reduces the number of possible transition states, (2) a metal complex that is conformationally constrained, and (3) a metal center in close proximity to the ligand donor that imposes a strong steric bias on the metal center.

9.3.1. Geometry of Ligand–Metal Complexes

Many different ligand–metal complexes have been used as catalysts for a variety of organic transformations.16 These complexes are formed \textit{in situ} by stirring the bis(oxazoline) ligand with various metal salts [CuOTf, Cu(OTf)$_2$, Ni(ClO$_4$)$_2$·6H$_2$O, MgI$_2$, etc.]. Some of the most commonly used metals are copper, magnesium, and ruthenium. It has been proposed by Corey and Ishihara that the magnesium(II) complex of the phe-box ligand adopts a tetrahedral geometry around the metal.17 In contrast, Evans and co-workers have speculated that the copper(II) complex of the bu-box ligand adopts a square-planar geometry about the metal center, as shown in Figure 9.2.4 The difference between these two conformations, tetrahedral

![Figure 9.2. Bis(oxazoline)–metal complexes.](image-url)
and square planar, leads to reversal of enantioselectivity, particularly in the Diels–Alder reaction.4,17

One of the most studied ligand–metal complexes is the bis(oxazoline)–ruthenium(II) complex.18–23 Kurasowa and co-workers proposed that the aqua and amine complexes of bis(oxazoline)–ruthenium(II) 17a–d also adopt a tetrahedral geometry about the metal center.21,22 These are only a few of many examples of the complexes formed between a variety of transition metals and bis(oxazoline) ligands that have been studied.16

9.3.2. X-ray Crystal Structure

Various X-ray crystal structures of metal–ligand complexes provided evidence of the geometry of the complexes in the solid state, even though the structure of these complexes may differ in solution. The first crystal structure of a bis(oxazoline)–metal complex was determined in 1994 by Brown and co-workers.24 This group crystallized and elucidated the structure of \(\text{N,N-bis-[2-((4S)-(methyl)-1,3-oxazolyl)} \text{]methane-bi(} \eta^2 \text{ethene}) \text{rhodium(I)}, \) 18a, as depicted in Figure 9.3. The key features of this crystal structure include the \(C_2 \)-axis of symmetry, the axial positions of the methyl groups and the orientation of the ethene molecules, orthogonal to the complexation square plane. In 1995, Woodward and co-workers were able to crystallize and determine the structure of benzylbis(oxazoline) with ruthenium

![Figure 9.3. Bis(oxazoline)–metal crystal structures (two-dimensional representation).](image-url)
and cyclooctadiene 18b.20 Ghosh and co-workers determined the structure of inda-box 9a with cobalt 18c.16 Kanemasa and Curran resolved the cationic aqua complex of DBF-box 18d.15 A number of structures of titanium–bis(oxazoline) complexes 18e have been determined by Singh through various spectroscopic techniques.23

Other ligand–metal complexes whose crystal structures have been determined include the complex of \textit{i}-pr-box with tungsten tetracarbonyl,20 Corey’s phe-box ligand complexed to ruthenium,19,21,22 along with several Nishiyama-type py-box ligands coordinated to palladium25,26 and molybdenum.27

9.4. SYNTHESIS OF BIS(OXAZOLINE) LIGANDS

Optically active natural and unnatural amino acids as well as various cyclic amino alcohols have been utilized in the synthesis of a wide variety of bis(oxazoline) ligands. As previously mentioned, the first bis(oxazoline) ligands, py-box 1a–d, were synthesized by Nishiyama and co-workers in 1989.1,2 The common material for their syntheses was pyridine 2,6-dicarboxylic acid 19. Conversion of 19 to the acid chloride was achieved by treatment with thionyl chloride, as illustrated in Figure 9.4. This was followed by condensation with (S)-valinol in the presence of triethylamine. Conversion of the resulting bis(amidodiol) 20 to py-box-\textit{ip} 1b was achieved by sequential treatment of 20 with thionyl chloride at 50 °C followed by cyclization with aqueous sodium hydroxide in methanol to afford py-box-\textit{ip} 1b in 60% overall yield. The same synthetic scheme can be used to obtain the other

![Figure 9.4. Synthesis of py-box-\textit{ip} ligand 1b.](image-url)
isomer and the ligands containing different functionalities on the bis(oxazolines) (structures 1a, 1c, and 1d) by altering the amino alcohol used.

Masamune and co-workers reported that i-pr-box 22 can also be obtained from (S)-valinol by a similar strategy (see above). Thus, 21 was reacted with diethylmalonate and the resulting diamide was treated with thionyl chloride followed by sodium hydroxide in a mixture of ethanol and tetrahydrofuran (THF) to yield i-pr-box 22 (Fig. 9.5). The synthesis of i-pr-box 22 can also be achieved directly by treatment of 21 with diethyl iminomalonate in the presence of triethylamine.

Evans and co-workers synthesized bu-box 3 starting from commercially available (S)-tert-leucine. Lithium aluminum hydride reduction of (S)-tert-leucine afforded the amino alcohol 23 which, as shown in Figure 9.6, was acylated with dimethylmalonyl dichloride 24 to provide the corresponding bis(amidodiol) 25 in

Figure 9.5. Synthesis of i-pr-box ligand 22.

Figure 9.6. Synthesis of bu-box ligand 3.
88% yield. Cyclization was achieved by treatment with triphenylphosphine and triethylamine in carbon tetrachloride followed by heating to yield bu-box 3 in 62% yield.

In 1998, Evans published an improved synthesis of bu-box 3 starting from the same amino acid. The updated synthesis began with sodium borohydride–iodine reduction to afford amino alcohol 23 followed again by treatment with dimethylmalonyl dichloride 24 to afford 25 in 88% yield (from 23). Cyclization was achieved by treatment of 25 with toluenesulfonyl chloride and triethylamine in the presence of a catalytic amount of dimethylaminopyridine to afford bu-box 3 in 82% yield (Fig. 9.6).

Corey and Ishihara’s synthesis of phe-box ligand 29 began with the trifluoroacetyl derivative of (S)-phenylglycine 26. Treatment of 26 with methylmagnesium iodide, as shown in Figure 9.7, followed by potassium hydroxide in methanol afforded amino alcohol 27 in 88% yield (2 steps). This was then acylated with dimethylmalonyl dichloride 24 and triethylamine followed by cyclization using methanesulfonic acid at reflux to afford phe-box ligand 29 in 78% yield.

Two other synthetic approaches to ring closure can be illustrated with Masamune’s protocol for the construction of ligand 31 and Desimoni’s protocol for the construction of the structurally related ligand 10 (Fig. 9.8). Thus, starting from bisamide 30, Masamune and co-workers effected ring closure through treatment with dichlorodibutylstannane in refluxing xylene to afford bis(oxazoline) 31. Desimoni’s protocol called for treatment of 30 first with methanesulfonyl chloride and triethylamine in dichloromethane followed by heating with aqueous sodium hydroxide in ethanol. This yielded the isomeric bis(oxazoline) 10.
The constrained bis(oxazolines) 9a and 9b can be constructed beginning with malononitrile 32 as shown by Ghosh and co-workers.\(^9\) Thus, treatment of 32 with anhydrous hydrochloric acid in dioxane, as shown by Lehn and co-workers,\(^{29}\) yielded imidate salt 33 (Fig. 9.9). Condensation of the imidate salt with commercially available (1S,2R)-1-aminoindan-2-ol afforded the conformationally constrained bis(oxazoline) inda-box 9a. Alkylation at the bridging methylene of 9a was carried out by Davies and co-workers.\(^{30}\) Treatment of 9a with lithium diisopropylamide followed by alkylation with methyl iodide afforded 9b. Alternatively, alkylation with diiodoalkanes incorporated ring systems at the bridging position (structures 34a–d).

![Diagram](image_url)

Figure 9.8. Synthesis of tetraphenyl bis(oxazoline) ligands 31 and 10.

Figure 9.9. Synthesis of inda-box ligands 9a, b and 34a–d.
9.5. CARBON–CARBON BOND-FORMING REACTIONS

Chiral C_2-symmetric bis(oxazoline) ligands have become very important in organic synthesis since their introduction in 1989. They have allowed chemists control over the stereoisochiometrical outcome of many different types of reactions. Their utility in many carbon–carbon bond forming reactions is especially well documented.

9.5.1. Cyclopropanation

One of the many carbon–carbon bond-forming reactions that have been studied using the chiral C_2-symmetric bis(oxazoline) ligands is the cyclopropanation reaction. This reaction has been extensively studied by many independent research groups.

9.5.1.1. Stryene and Ethyl Diazoacetate

Of the cyclopropanation reactions studied, the reaction between styrene and ethyl diazoacetate has become the benchmark for determining the utility of a bis(oxazoline) ligand in cyclopropanations. In 1990, Masamune and co-workers introduced several bis(oxazoline) ligands including 2 and 35–40 as catalysts for the cyclopropanation of styrene with ethyl diazoacetate. The reactive species in these reactions were determined to be the bis(oxazoline) dimers of type $2a$ and $38a–40a$, as shown in Figure 9.10.

This complex was generated by treatment of ligand 2, for example, with n-butyllithium followed by addition of 0.5 equiv of copper(II) chloride. This species was purified by column chromatography and used in 1 mol % (relative to ethyl diazoacetate) in the reaction between styrene (3 equiv) and ethyl diazoacetate (1 equiv). The results of these experiments are summarized in Table 9.1 (Fig. 9.11). As can be seen from these results, the yields range from 72–88%, the trans/cis ratios are all approximately equal (~70:30), but the enantioselectivities for the isomers

![Figure 9.10. Masamune’s bis(oxazoline)-Cu(II) complexes.](image-url)
are best with the complex derived from the bulky bu-box ligand 2a ($ee = 90\%$ for the trans isomer and 77\% for the cis).

In 1991, Evans and co-workers employed CuOTf-derived complexes of bis-(oxazoline) ligands 2, 3, 7b, 38, and 45 in the same cyclopropanation reaction of

Table 9.1. Masumune’s Cu(II)-Bis(Oxazoline)-Catalyzed Cyclopropanation

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Isolated % Yield</th>
<th>trans/cis (43:44)</th>
<th>trans (43) ee (config)</th>
<th>cis (44) ee (config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35a</td>
<td>78</td>
<td>71:29</td>
<td>28% (1S,2S)</td>
<td>30% (1S,2R)</td>
</tr>
<tr>
<td>36a</td>
<td>88</td>
<td>75:25</td>
<td>48% (1S,2S)</td>
<td>36% (1S,2R)</td>
</tr>
<tr>
<td>37a</td>
<td>78</td>
<td>72:28</td>
<td>19% (1S,2S)</td>
<td>31% (1S,2R)</td>
</tr>
<tr>
<td>38a</td>
<td>72</td>
<td>71:29</td>
<td>46% (1R,2R)</td>
<td>31% (1R,2S)</td>
</tr>
<tr>
<td>39a</td>
<td>76</td>
<td>71:29</td>
<td>36% (1R,2R)</td>
<td>15% (1R,2S)</td>
</tr>
<tr>
<td>40a</td>
<td>81</td>
<td>70:30</td>
<td>60% (1R,2R)</td>
<td>52% (1R,2S)</td>
</tr>
<tr>
<td>2a</td>
<td>80</td>
<td>75:25</td>
<td>90% (1R,2R)</td>
<td>77% (1R,2S)</td>
</tr>
</tbody>
</table>

aData from Ref. 3.

Table 9.2. Evans’ Cu(I)-Bis(Oxazoline)-Catalyzed Cyclopropanation

<table>
<thead>
<tr>
<th>Ligand</th>
<th>trans/cis (43:44)</th>
<th>trans (43) ee (config)</th>
<th>cis (44) ee (config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>77:23</td>
<td>98% (1R,2R)</td>
<td>93% (1R,2S)</td>
</tr>
<tr>
<td>3</td>
<td>73:27</td>
<td>99% (1R,2R)</td>
<td>97% (1R,2S)</td>
</tr>
<tr>
<td>7b</td>
<td>66:34</td>
<td>3% (1R,2R)</td>
<td>8% (1R,2S)</td>
</tr>
<tr>
<td>38</td>
<td>64:36</td>
<td>64% (1R,2R)</td>
<td>48% (1R,2S)</td>
</tr>
<tr>
<td>45</td>
<td>69:31</td>
<td>49% (1R,2R)</td>
<td>45% (1R,2S)</td>
</tr>
</tbody>
</table>

aData from Ref. 4.
styrene and ethyl diazoacetate. The active catalyst was prepared by mixing bis(oxazoline) and CuOTf in a 1:1 ratio. It has been shown that the bulky bu-box ligands 2 and 3 provided the best selectivities, for both trans/cis ratio and enantioselectivity (Table 9.2). Evans ligand 3 containing the geminal methyl groups exhibited a slight improvement in enantioselectivities over Masamune’s bu-box 2. These results show that the presence of a six- rather than five-membered metal chelating species (3 vs. 7b), the presence of geminal methyl groups to prevent enolization (3 vs. 2) and the bulky tert-butyl groups (3 vs. 45) are optimal for cyclopropanation using this type of bis(oxazoline) ligand (Fig. 9.12).

Other types of bis(oxazoline) ligands have been tested using the reaction of styrene and ethyl diazoacetate. Of note is Nishiyama’s py-box-ip ligand 1b, which was used in 2 mol% and with [Ru(II)Cl2(p-cymene)]2 as a metal source. The best result from these conditions was a yield of 73%, trans/cis ratio of 91:9 with a trans enantiomeric excess (ee) of 89% and a cis ee of 79%, as shown in Figure 9.13. The selectivity observed in Nishiyama’s reaction can be explained by the following model, shown in Figure 9.14.

![Figure 9.13. Nishiyama’s Ru(II)-py-box-ip catalyzed cyclopropanation.](image)

![Figure 9.14. Transition state for cyclopropanation using Ru(II)-py-box-ip.](image)
complex of py-box-\textit{ip} 1b with ruthenium(II) chloride and diazoacetate. The orientation of the styrene attacking from the \textit{re}-face is controlled by the isopropyl substituent on the ligand favoring the formation of product 43 containing the \textit{trans}-\((1R,2R)\) stereochemistry.

Table 9.3 contains a sampling of various other bis(oxazoline) ligands that have been used in the cyclopropanation reaction of styrene with ethyl diazoacetate (Table 9.3, Fig. 9.15).33–40

\subsection{Styrene and Other Diazoacetates}

Many ligands have also been evaluated with other alkyl diazoacetates. Of note are the sterically demanding diazoacetate esters, such as \textit{tert}-butyl and menthyl diazoacetates (Table 9.4, Fig. 9.16). Masamune and co-workers examined bu-box ligand 2a using styrene with both \textit{l}-\((\textit{C}0\text{)}\)-menthyl and \textit{d}-\((\text{+})\)-menthyl diazoacetates.3 It has been shown that the use of these sterically more demanding diazoacetates led to higher selectivities for both trans/cis isomers and enantioselectivities (trans/cis = 86:14; trans = 98\% ee; cis = 96\% ee for \textit{l}-\((\textit{C}0\text{)}\)-menthyl diazoacetate). Evans4 and Nishiyama31 investigated their ligands, 3 and 1b, respectively, with \textit{tert}-butyl diazoacetate. Evans reported a yield of 75\%, trans/cis ratio of 81:19, trans ee of 96\% and cis ee of 93\%. Nishiyama’s py-box-\textit{ip} ligand 1b exhibited similar results (trans/cis = 97:3; trans = 94\% ee; cis = 85\% ee).

\subsection{Miscellaneous Cyclopropanations}

Cyclopropanations using bis(oxazoline) catalysts are not limited to reactions of styrene; many different types of olefins can be used in cyclopropanations. The work of Masamune and co-workers included an example using 2,3,3-trimethylbutene with his bu-box complex 2a and \textit{l}-\((\textit{C}0\text{)}\)-menthyl diazoacetate.3,5 The product was obtained in 60\% yield, trans/cis ratio of 95:5, trans ee of 80\% and cis ee of 91\%.

Silyl enol ethers can also be used in the cyclopropanation reaction. Reissig showed that the reaction between methyl diazoacetate 53 and various enol ethers 52a–c using bu-box ligand 3 proceeded in moderate yields, as shown in Table 9.5 (Fig. 9.17a), with trans/cis ratios up to 97:3 and ee between 32 and 49\%.35 Pfaltz showed that cyclic enol ethers can be used as well.41 Cyclopentenyl enol ether 55 proceeded with methyl diazoacetate 53 and bu-box ligand 3 to afford the cyclopropanation products in 56\% yield, a trans/cis ratio of 27:73, trans ee of 87\% and cis ee of 92\% (Fig. 9.17b, p. 544).

Intramolecular cyclopropanations are also well documented in the literature. It has been shown by Koskinen and co-workers that the cyclopropanation of diazomalonate 57, illustrated in Figure 9.18, using benzyl bis(oxazoline) 40 and copper(I) triflate afforded lactone 58 in 73\% yield and 32\% ee.36 Nishiyama and co-workers showed that cyclopropanations of diazoacetates 59a–c proceeded in yields ranging from 79–93\% and 24–86\% ee (Table 9.6, Fig. 9.18, p. 544).32
TABLE 9.3. CYCLOPROPANATIONS USING VARIOUS METALS AND LIGANDS

![Figure 9.15a](image)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>% Yield</th>
<th>trans/cis (43:44)</th>
<th>trans (43) ee (config)</th>
<th>cis (44) ee (config)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12b<sup>a,c</sup></td>
<td>76</td>
<td>70:30</td>
<td>84% (1R,2R)</td>
<td>65% (1R,2S)</td>
<td>33</td>
</tr>
<tr>
<td>47<sup>a,c</sup></td>
<td>85</td>
<td>70:30</td>
<td>84% (1R,2R)</td>
<td>85% (1R,2S)</td>
<td>34</td>
</tr>
<tr>
<td>13a<sup>a,d</sup></td>
<td>43</td>
<td>67:33</td>
<td>55% (1R,2R)</td>
<td>57% (1R,2S)</td>
<td>14</td>
</tr>
<tr>
<td>13b<sup>a,d</sup></td>
<td>58</td>
<td>60:40</td>
<td>62% (1R,2R)</td>
<td>61% (1R,2S)</td>
<td>14</td>
</tr>
<tr>
<td>13c<sup>a,d</sup></td>
<td>59</td>
<td>59:41</td>
<td>87% (1R,2R)</td>
<td>86% (1R,2S)</td>
<td>14</td>
</tr>
<tr>
<td>12a<sup>a,c</sup></td>
<td>64</td>
<td>80:20</td>
<td>38% (1R,2R)</td>
<td>21% (1R,2S)</td>
<td>37</td>
</tr>
<tr>
<td>48a<sup>a,c</sup></td>
<td>72</td>
<td>74:26</td>
<td>49% (1R,2R)</td>
<td>59% (1R,2S)</td>
<td>38</td>
</tr>
<tr>
<td>48b<sup>a,c</sup></td>
<td>69</td>
<td>68:32</td>
<td>74% (1R,2R)</td>
<td>84% (1R,2S)</td>
<td>38</td>
</tr>
<tr>
<td>49<sup>b,c</sup></td>
<td>51</td>
<td>90:10</td>
<td>60% (1S,2S)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>50a<sup>a,c</sup></td>
<td>83</td>
<td>62:38</td>
<td>75% (1R,2R)</td>
<td>85% (1R,2S)</td>
<td>40</td>
</tr>
<tr>
<td>50b<sup>a,c</sup></td>
<td>70</td>
<td>75:25</td>
<td>69% (1R,2R)</td>
<td>66% (1R,2S)</td>
<td>40</td>
</tr>
<tr>
<td>50c<sup>a,c</sup></td>
<td>85</td>
<td>70:30</td>
<td>18% (1R,2R)</td>
<td>17% (1R,2S)</td>
<td>40</td>
</tr>
<tr>
<td>50d<sup>a,c</sup></td>
<td>69</td>
<td>71:29</td>
<td>36% (1R,2R)</td>
<td>28% (1R,2S)</td>
<td>40</td>
</tr>
<tr>
<td>50e<sup>a,c</sup></td>
<td>91</td>
<td>65:35</td>
<td>57% (1R,2R)</td>
<td>51% (1R,2S)</td>
<td>40</td>
</tr>
<tr>
<td>50f<sup>a,c</sup></td>
<td>85</td>
<td>66:34</td>
<td>64% (1R,2R)</td>
<td>60% (1R,2S)</td>
<td>40</td>
</tr>
</tbody>
</table>

^aMetal = CuOTf.
^bMetal = [RuCl₂(μ-cymene)]₂.
^cA 1 mol% catalyst.
^dA 2 mol% catalyst.

Figure 9.15b. Cyclopropanation ligands.
TABLE 9.4. CYCLOPROPANATION OF DIAZOACETATE ESTERS

![Chemical reaction image](image)

Figure 9.16

<table>
<thead>
<tr>
<th>Metal</th>
<th>Ligand</th>
<th>R</th>
<th>% Yield</th>
<th>trans/cis (43:44)</th>
<th>trans (43) ee (config)</th>
<th>cis (44) ee (config)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuCl₂ 2a</td>
<td>l-menthyl</td>
<td>72</td>
<td>86:14</td>
<td>98% (1R,2R)</td>
<td>96% (1R,2S)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CuCl₂ 2a</td>
<td>d-menthyl</td>
<td>71</td>
<td>84:16</td>
<td>98% (1R,2R)</td>
<td>80% (1R,2S)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CuOTf 3</td>
<td>t-Bu</td>
<td>75</td>
<td>81:19</td>
<td>96% (1R,2R)</td>
<td>93% (1R,2S)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CuOTf 3</td>
<td>BHT</td>
<td>85</td>
<td>94:6</td>
<td>99% (1R,2R)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CuO-Bu 51</td>
<td>d-menthyl</td>
<td>-</td>
<td>83:17</td>
<td>90% (1S,2S)</td>
<td>90% (1S,2R)</td>
<td></td>
<td>33, 34</td>
</tr>
<tr>
<td>Ru 1b</td>
<td>d-menthyl</td>
<td>85</td>
<td>95:5</td>
<td>86% (1R,2R)</td>
<td>95% (1R,2S)</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Ru 1b</td>
<td>l-menthyl</td>
<td>87</td>
<td>95:5</td>
<td>95% (1R,2R)</td>
<td>76% (1R,2S)</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Ru 1b</td>
<td>t-Bu</td>
<td>81</td>
<td>97:3</td>
<td>94% (1R,2R)</td>
<td>85% (1R,2S)</td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

TABLE 9.5. CYCLOPROPANATION OF ENOL ETHERS

![Chemical reaction image](image)

Figure 9.17a

<table>
<thead>
<tr>
<th>R</th>
<th>% Yield</th>
<th>trans (1α, 2β, 3β)/cis (1α, 2α, 3α)</th>
<th>trans % ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu</td>
<td>48</td>
<td>90:10</td>
<td>32</td>
</tr>
<tr>
<td>i-Pr</td>
<td>54</td>
<td>97:3</td>
<td>40</td>
</tr>
<tr>
<td>SiMe₃</td>
<td>39</td>
<td>97:3</td>
<td>49</td>
</tr>
</tbody>
</table>

aData from Ref. 35.
The power of chiral C_2-symmetric bis(oxazolines) in cyclopropanation reactions has also been exhibited in total synthesis. One example is Corey and co-workers’ synthesis of sirenin 63 using bis(oxazoline) ligand 8 (Fig. 9.19). They showed that the intramolecular cyclopropanation of diazo derivative 61 proceeded in 77% yield and with 90% ee. Shibasaki and co-workers constructed prostratin 67 through the intermediate cyclopropane 66, also shown in Figure 9.19. Using bis(oxazoline) ligand 64 and copper(I) triflate-derived catalyst, compound 66 was prepared in 70% yield and 92% ee from diazo derivative 65.42

Table 9.6. Intramolecular Cyclopropanations

<table>
<thead>
<tr>
<th>Product</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>60a</td>
<td>93</td>
<td>86</td>
</tr>
<tr>
<td>60b</td>
<td>79</td>
<td>24</td>
</tr>
<tr>
<td>60c</td>
<td>91</td>
<td>76</td>
</tr>
</tbody>
</table>

aData from Ref. 32.
9.5.2. Diels–Alder Reactions

The Diels–Alder reaction is one of the most powerful reactions in organic synthesis. It allows the formation of up to four contiguous chiral centers in one reaction. Asymmetric Diels–Alder reactions,43 in particular catalytic asymmetric Diels–Alder reactions,16,44 have become very important because they allow...
chemists to construct these chiral centers in an efficient and stereopredictable manner.

9.5.2.1. Cyclopentadiene and 3-Acryloyl-1,3-oxazolidin-2-one

Metal complexes of bis(oxazoline) ligands are excellent catalysts for the enantioselective Diels–Alder reaction of cyclopentadiene and 3-acryloyl-1,3-oxazolidin-2-one. This reaction was most commonly utilized for initial investigation of the catalytic system. The selectivity in this reaction can be twofold. Approach of the dienophile (in this case, 3-acryloyl-1,3-oxazolidin-2-one) can be from the endo or exo face and the orientation of the oxazolidinone ring can lead to formation of either enantiomer (R or S) on each face. The ideal catalyst would offer control over both of these factors leading to reaction at exclusively one face (endo or exo) and yielding exclusively one enantiomer. Corey and co-workers first experimented with the use of bis(oxazoline)–metal complexes as catalysts in the Diels–Alder reaction between cyclopentadiene 68 and 3-acryloyl-1,3-oxazolidin-2-one 69; the results are summarized in Table 9.7 (Fig. 9.20). For this reaction, 10 mol% of various iron(III)-phe-box 6 complexes were utilized at a reaction temperature of −50 °C for 2–15 h. The yields of cycloadducts were ~85%. The best selectivities were observed when iron(III) chloride was used as the metal source and the reaction was stirred at −50 °C for 15 h. Under these conditions the facial selectivity was determined to be 99:1 (endo/exo) with an endo ee of 84%.

Corey and co-workers subsequently examined the stereochemical outcome by using substituted phe-box ligand 29 in the same reaction. Complexes of iron(III) and magnesium(II) were investigated (Table 9.8, Fig. 9.21). It has been shown that

<table>
<thead>
<tr>
<th>Metal</th>
<th>Time (h)</th>
<th>% Yield</th>
<th>endo/exo</th>
<th>endo ee (config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCl₂I</td>
<td>15</td>
<td>85</td>
<td>97:3</td>
<td>80% (R)</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>15</td>
<td></td>
<td>99:1</td>
<td>84% (R)</td>
</tr>
<tr>
<td>FeI₃/I₂</td>
<td>2</td>
<td>95</td>
<td>96:4</td>
<td>82% (R)</td>
</tr>
</tbody>
</table>

aData from Ref. 6.

![Figure 9.20](image)
the use of magnesium(II) led to improved selectivities (up to 98:2 endo/exo with 91% endo ee for the 2R isomer). Furthermore, ligand–metal complexes prepared from MgI₂ and one equivalent of iodine as a cocatalyst or 2 equiv of AgSbF₆ furnished similar endo enantioselectivity (91% ee).

The observed selectivities for these reactions led to their proposed transition states. The rationalized model for iron chelation (72, Fig. 9.22) shows that iron

<table>
<thead>
<tr>
<th>Metal</th>
<th>Time (temp)</th>
<th>% Yield</th>
<th>endo/exo</th>
<th>endo ee (config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeI₃</td>
<td>19 h (−50 °C)</td>
<td>87</td>
<td>95:5</td>
<td>85% (R)</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>24 h (−80 °C)</td>
<td>82</td>
<td>97:3</td>
<td>91% (R)</td>
</tr>
<tr>
<td>Mg(SbF₆)₂</td>
<td>3 h (−80 °C)</td>
<td>84</td>
<td>98:2</td>
<td>91% (R)</td>
</tr>
</tbody>
</table>

aData from Ref. 17.

Figure 9.21

Figure 9.22. Corey–Ishihara transition state.
binds in an octahedral complex with the oxazolidinone occupying one axial and one equatorial position on the metal, which is sterically favored over the other possibility of the oxazolidinone binding to both axial positions (binding to both equatorial positions leads to the (2S) adduct, which is not the observed product). The magnesium chelation model 73 shows the metal chelating in a tetrahedral complex leading, as in the iron reactions, to the major product with endo facial selectivity and enantioselectivity for the (2R) isomer.

In 1993, Evans and co-workers examined phe-box 6, i-pr-box 45, and bu-box 3 ligands in the Diels–Alder reaction of cyclopentadiene 68 and 3-acryloyl-1,3-oxazolidin-2-one 69 using a weak Lewis acid such as copper(II) triflate. The results are summarized in Table 9.9. The reaction was carried out between −50 and −78 °C for 3–18 h and achieved selectivities of up to 98:2 (endo/exo) with an endo ee of >98% (using bu-box 3). Interestingly, the enantiomer produced in these reactions was the (2S) configuration, compared to the (2R) isomer obtained with iron(III) and magnesium(II) as reported by Corey. This observed stereochemistry was explained by the chelation model of the copper(II) complex 74 (Fig. 9.23)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Time (temp)</th>
<th>% Yield</th>
<th>endo/exo</th>
<th>endo ee (config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3 h (−50 °C)</td>
<td>92</td>
<td>95:5</td>
<td>30% (S)</td>
</tr>
<tr>
<td>45</td>
<td>3 h (−50 °C)</td>
<td>93</td>
<td>96:4</td>
<td>58% (S)</td>
</tr>
<tr>
<td>3</td>
<td>18 h (−78 °C)</td>
<td>86</td>
<td>98:2</td>
<td>>98% (S)</td>
</tr>
</tbody>
</table>

aData from Ref. 45.
in which the copper binds with square-planar geometry in relation to the ligand and oxazolidinone. This leads to re-face approach of the diene and (2S) configuration of the product.

Ghosh and co-workers have also demonstrated that the Cu(II)-bis(oxazoline) complexes of conformationally constrained inda-box ligands 9a and ent-9a are excellent catalysts for the enantioselective Diels–Alder reaction. Using copper(II) triflate as the metal source, the reaction resulted in selectivities up to >99:1 endo/exo ratio with endo ee up to 99% (2R isomer), as shown in Table 9.10 (Fig. 9.24). Of particular interest, Cu(II)-phe-box ligand 6-derived catalyst complex exhibited considerably lower enantioselectivity (30%). Furthermore, they have shown that the use of Mg(II) as the chelating metal resulted in a reversal of stereochemistry [up to 98:2 endo/exo and 61% endo ee for the (2S) isomer]. Davies also showed that the use of copper(II) triflate with his structurally related inda-box ligands 9b and 34a led to similar selectivities.

Desimoni and co-workers were able to produce either enantiomer (2R or 2S) of the Diels–Alder cycloadduct using the same isomer of phe-box ligand ent-6 under different reaction conditions (Fig. 9.25, Table 9.11). They found that when using magnesium(II) perchlorate as the metal source, the reaction produced cycloadduct in >98% yield with an endo/exo ratio of 93:7 and an endo ee of 70% for the (2S) isomer. In contrast, when magnesium(II) perchlorate was used in the presence of 2 equiv of water, the reaction afforded the cycloadduct again in >98% yield with an endo/exo ratio of 93:7, but in this instance, the endo ee was 65% for the (2R) isomer. This selectivity difference was explained by a change in

TABLE 9.10. INDA-BOX-MEDIATED DIELS–ALDER REACTION

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Metal</th>
<th>Time (temp)</th>
<th>% Yield</th>
<th>endo/exo</th>
<th>endo ee (config)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ent-9a</td>
<td>Cu (50 mol%)</td>
<td>6 h (−78 °C)</td>
<td>78</td>
<td>>99:1</td>
<td>97% (R)</td>
<td>9</td>
</tr>
<tr>
<td>ent-9a</td>
<td>Cu (8 mol%)</td>
<td>8 h (−78 °C)</td>
<td>94</td>
<td>>99:1</td>
<td>98% (R)</td>
<td>9</td>
</tr>
<tr>
<td>9a</td>
<td>Cu (8 mol%)</td>
<td>8 h (−78 °C)</td>
<td>98</td>
<td>>99:1</td>
<td>94% (S)</td>
<td>9</td>
</tr>
<tr>
<td>ent-9a</td>
<td>Cu (4 mol%)</td>
<td>8 h (−78 °C)</td>
<td>90</td>
<td>>99:1</td>
<td>99% (R)</td>
<td>9</td>
</tr>
<tr>
<td>ent-9a</td>
<td>Mg (100 mol%)</td>
<td>7 h (−78 °C)</td>
<td>81</td>
<td>98:2</td>
<td>61% (S)</td>
<td>9</td>
</tr>
<tr>
<td>ent-9a</td>
<td>Mg (10 mol%)</td>
<td>7 h (−78 °C)</td>
<td>76</td>
<td>95:5</td>
<td>34% (S)</td>
<td>9</td>
</tr>
<tr>
<td>9b</td>
<td>Cu</td>
<td>− (−65 °C)</td>
<td>130:1</td>
<td>92% (S)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>34a</td>
<td>Cu</td>
<td>− (−70 °C)</td>
<td>96:1</td>
<td>98% (S)</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
the chelation geometry about the magnesium in the presence of water. In the absence of water, the metal chelated in a tetrahedral geometry, shown in structure 75, as previously mentioned, allowing for re-face approach of the diene and the formation of the product containing the (2S) isomer. In the presence of water, the chelation geometry about the metal became octahedral, as shown in structure 76, thus favoring si-face approach of the diene and the formation of the product containing the (2R) isomer.

Interestingly, Ghosh and co-workers showed that when using copper(II) perchlorate hydrates \([\text{Cu(ClO}_4]_2 \cdot 6\text{H}_2\text{O}]\), the observed stereochemistry of the cycloaduct did not change as compared to the use of copper(II) triflate, as shown in Figure 9.26. This suggests that the metal–ligand–substrate complex in the presence or absence of water remained square planar when using copper(II).

Kanemasa, Curran, and co-workers did an extensive study on the metal and counterion effects in the Diels–Alder reaction using the DBF-box ligand 14. Their results are summarized in Table 9.12 (Fig. 9.27). It has been shown that, for this ligand, the optimal conditions were use of nickel(II) perchlorate at \(-40 \, ^\circ\text{C}\) for 14 h leading to 96% yield of cycloadduct in a ratio of 97:3 (endo/exo) with >99% endo ee.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Metal</th>
<th>Temperature °C</th>
<th>% Yield</th>
<th>endo/exo</th>
<th>endo ee (config)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ent-6</td>
<td>Mg(ClO_4)_2</td>
<td>-50</td>
<td>>98</td>
<td>93:7</td>
<td>70% (S)</td>
<td>46</td>
</tr>
<tr>
<td>ent-6</td>
<td>Mg(ClO_4)_2·2H_2O</td>
<td>-50</td>
<td>>98</td>
<td>93:7</td>
<td>65% (R)</td>
<td>47</td>
</tr>
</tbody>
</table>
9.5.2.2. Various Dienes and Dienophiles

Diels–Alder reactions involving bis(oxazoline) ligands are not limited to the reaction between cyclopentadiene and 3-acyrloyl-1,3,-oxazolidin-2-one; they can be used with a wide variety of dienes and dienophiles. Evans demonstrated the utility of py-box ligand 1d in the reaction between cyclopentadiene 68 and various
substituted acroleins 77a–e.50 These results, summarized in Table 9.13 (Fig. 9.28), included yields up to 96% with endo/exo ratios up to 94:6 and 2:98 and ee up to 99%.

Ghosh’s9,48 and Kanemasa’s groups 49 examined their ligands 9, ent-9 and 14, respectively, in the Diels–Alder reactions of oxazolidinones 80a–d and cyclopentadiene 68. Their results are summarized in Table 9.14 (Fig. 9.29).

There are also several other examples of bis(oxazoline)–metal complex catalyzed Diels–Alder reactions of cyclopentadiene and other unsaturated esters.16,51,52 The corresponding cycloadducts were isolated in yields up to 92% with endo/exo ratios up to >99:1 and ee up to >95% (Table 9.15, Fig. 9.30).

9.5.2.3. Bis(oxazoline)-Mediated Diels–Alder Reactions in Total Synthesis

Evans has utilized Cu(II)-bis(oxazoline)-mediated Diels–Alder reactions as the key step in several total syntheses. In 1996, Evans and co-workers used bu-box ligand 3 in the intramolecular Diels–Alder reaction of oxazolidinone 87 to form cycloadduct 88 enantioselectively, as shown in Figure 9.31.53 Compound 88 was subsequently converted to (–)-isopulo’upone 89.

Diels–Alder reaction of furan 90 and 3-acrylol-1,3-oxazolidin-2-one 69 was effectively carried out with Cu(II)-bu-box 3-derived complex. The corresponding
TABLE 9.14. DIELS–ALDER REACTIONS OF N-ACYL OXAZOLIDINONES

\[
\begin{align*}
N-\text{Acyl Oxazolidinone} & \quad \text{Dienophile} \\
\text{80a} & \quad R = \text{Me} \\
\text{80b} & \quad R = \text{Ph} \\
\text{80c} & \quad R = \text{CO}_2\text{Et} \\
\text{80d} & \quad R = n-\text{Pr}
\end{align*}
\]

Figure 9.29

<table>
<thead>
<tr>
<th>Dienophile</th>
<th>Ligand</th>
<th>Metal</th>
<th>Time (temp)</th>
<th>% Yield</th>
<th>endo/exo</th>
<th>endo ee (config)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>80a</td>
<td>ent-9a</td>
<td>Cu</td>
<td>26 h (0 °C)</td>
<td>84</td>
<td>92:8</td>
<td>94% (R)</td>
<td>9</td>
</tr>
<tr>
<td>80a</td>
<td>ent-9a</td>
<td>Mg</td>
<td>48 h (0 °C)</td>
<td>76</td>
<td>92:8</td>
<td>55% (S)</td>
<td>9</td>
</tr>
<tr>
<td>80b</td>
<td>ent-9a</td>
<td>Cu</td>
<td>72 h (r.t.)</td>
<td>78</td>
<td>80:20</td>
<td>35% (S)</td>
<td>9</td>
</tr>
<tr>
<td>80c</td>
<td>ent-9a</td>
<td>Cu</td>
<td>8 h (-45 °C)</td>
<td>75</td>
<td>93:7</td>
<td>94% (S)</td>
<td>9</td>
</tr>
<tr>
<td>80a</td>
<td>14</td>
<td>Ni(ClO)\textsubscript{4}\textsubscript{2} \cdot 3H\textsubscript{2}O</td>
<td>20 h (r.t.)</td>
<td>90</td>
<td>92:8</td>
<td>93% (S)</td>
<td>49</td>
</tr>
<tr>
<td>80d</td>
<td>14</td>
<td>Ni(ClO)\textsubscript{4}\textsubscript{2} \cdot 3H\textsubscript{2}O</td>
<td>72 h (r.t.)</td>
<td>100</td>
<td>93:7</td>
<td>94% (S)</td>
<td>49</td>
</tr>
<tr>
<td>80a</td>
<td>9a</td>
<td>Cu(ClO)\textsubscript{4}\textsubscript{2} \cdot 6H\textsubscript{2}O</td>
<td>36 h (-30 °C)</td>
<td>85</td>
<td>95:5</td>
<td>99% (S)</td>
<td>48</td>
</tr>
<tr>
<td>80c</td>
<td>9a</td>
<td>Cu(ClO)\textsubscript{4}\textsubscript{2} \cdot 6H\textsubscript{2}O</td>
<td>7 h (-78 °C)</td>
<td>95</td>
<td>92:8</td>
<td>92% (R)</td>
<td>48</td>
</tr>
</tbody>
</table>

TABLE 9.15. DIELS–ALDER REACTIONS WITH VARIOUS DIENOPHILES

\[
\begin{align*}
\text{Dienophile} & \quad \text{Ligand} \quad \text{Metal} \\
\text{84a} & \quad R = \text{OEt}, R_1 = \text{COPh} \\
\text{84b} & \quad R = \text{OEt}, R_1 = \text{SPh} \\
\text{84c} & \quad R = \text{OCH}_2\text{CF}_3, R_1 = \text{SPh} \\
\text{84d} & \quad R = \text{CO}_2\text{Me}, R_1 = \text{Ph}
\end{align*}
\]

Figure 9.30

<table>
<thead>
<tr>
<th>Dienophile</th>
<th>Ligand</th>
<th>Metal</th>
<th>% Yield</th>
<th>endo/exo</th>
<th>endo ee (config)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>84a</td>
<td>83</td>
<td>MgI\textsubscript{2}</td>
<td>88</td>
<td>>99:1</td>
<td>87% (R)</td>
<td>51</td>
</tr>
<tr>
<td>84b</td>
<td>6</td>
<td>CuBr\textsubscript{2}/AgSbF\textsubscript{6}</td>
<td>92</td>
<td>15:1</td>
<td>>95% (S)</td>
<td>52</td>
</tr>
<tr>
<td>84c</td>
<td>6</td>
<td>CuBr\textsubscript{2}/AgSbF\textsubscript{6}</td>
<td>92</td>
<td>13:1</td>
<td>>95% (S)</td>
<td>52</td>
</tr>
<tr>
<td>84d</td>
<td>14</td>
<td>Mg(ClO)\textsubscript{4}\textsubscript{2}</td>
<td>75</td>
<td>86:14</td>
<td>30% (R)</td>
<td>16</td>
</tr>
<tr>
<td>84d</td>
<td>14</td>
<td>Cu(SbF\textsubscript{6})\textsubscript{2}</td>
<td>50</td>
<td>94:6</td>
<td>68% (R)</td>
<td>16</td>
</tr>
</tbody>
</table>
cycloadduct 91 was obtained in 97% ee. This cycloadduct was converted to ent-shikimic acid 92 as shown in Figure 9.32. Similarly, cyclocondensation of diene 93 with oxazolidinone 69 formed the cycloadduct 94 (endo ee 98%), which was transformed into ent-C1-tetrahydrocannabinol 95.

Another example of a bis(oxazoline)–metal complex catalyzed reaction in total synthesis was illustrated by Murai and co-workers in the construction of a precursor for the synthesis of azadirachtin 97. The cycloadduct 71 was obtained in 99% ee and 97% yield (Fig. 9.33).

9.5.3. Hetero-Diels–Alder and Ene Reactions

The addition of olefins to aldehydes can take place via an ene reaction. As shown in Figure 9.34, reaction of methylenecyclohexene 98 with ethyl glyoxylate 99 forms the ene product 100. Evans and co-workers showed that such an ene reaction can be carried out enantioselectively by utilizing bis(oxazoline)–metal complexes. Examples of ene products with yields up to 99% and ee up to 97% are summarized in Table 9.16 (Fig. 9.34).

Using a diene, the reaction can proceed through the ene pathway as above, or through the hetero-Diels–Alder pathway. For example, the condensation of 2,3-dimethyl-1,3-butadiene 103 with glyoxylate esters 99, 104, and 105 can proceed to form either a hetero Diels–Alder cycloadduct 106 or an ene product 107 (Fig. 9.35).
Jørgensen and co-workers showed that in the presence of bu-box ligand 3 complexed with copper(II) triflate or phe-box ligand ent-6 complexed with copper(II) triflate, the above reaction proceeded in a combined yield of up to 86% with product ratios (106:107) varying from 1:2 to 2:1 and ee between 77 and 95% for either product (Table 9.17, Fig. 9.35).58–62

It has been shown that complete selectivity for the hetero-Diels–Alder cycloaduct 109 (100% endo, 60% ee) can be achieved in the hetero-Diels–Alder reaction of 1,3-cyclohexadiene 108 and ethyl glyoxylate 99 using ent-6 and copper(II) triflate derived catalyst complex. Another interesting reaction introduced by Jørgensen and co-workers was the reaction between 1,3-cyclohexadiene 108 and diethyl ketomalonate 110 to form cycloadduct 111 in 76% yield with an ee of 84% (Fig. 9.35b, p. 558).63
Figure 9.33. Synthetic study toward azadirachtin.

TABLE 9.16. ENANTIOSELECTIVE ENE REACTIONS OF ETHYL GLYOXYLATE

<table>
<thead>
<tr>
<th>Alkene</th>
<th>Ligand</th>
<th>Metal</th>
<th>% Yield 100</th>
<th>% Yield 102</th>
<th>ee (config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>3</td>
<td>Cu(SbF₆)₂</td>
<td>90</td>
<td></td>
<td>97% (S)</td>
</tr>
<tr>
<td>98</td>
<td>6</td>
<td>Cu(OTf)₂</td>
<td>99</td>
<td></td>
<td>87% (R)</td>
</tr>
<tr>
<td>101</td>
<td>3</td>
<td>Cu(SbF₆)₂</td>
<td></td>
<td>97</td>
<td>93% (S)</td>
</tr>
<tr>
<td>101</td>
<td>6</td>
<td>Cu(OTf)₂</td>
<td></td>
<td>99</td>
<td>89% (R)</td>
</tr>
</tbody>
</table>

Data from Ref. 57.
Activated dienes such as Danishefsky’s diene 112 can also be used in the hetero-Diels–Alder reaction with alkyl glyoxylates. Ghosh and co-workers showed that this reaction proceeded to form cycloadducts 113a,b in yields up to 76% and ee up to 70% using either bu-box 3, phe-box 6 or inda-box ent-9a.64 The results are summarized in Table 9.18 (Fig. 9.36).

Subsequently, Jørgensen and co-workers carried out reactions using Danishefsky’s diene 112 and α-keto esters 114a–d to afford cycloadducts 115a–d in yields up to 95% with ee up to 99% (Table 9.19, Fig. 9.37a).65

TABLE 9.17. ENANTIOSELECTIVE HETERO-DIELS–ALDER AND ENE REACTION PRODUCTS

<table>
<thead>
<tr>
<th>Ligand</th>
<th>R</th>
<th>Temperature (°C)</th>
<th>106 yield (ee)</th>
<th>107 yield (ee)</th>
<th>106:107</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Me</td>
<td>20</td>
<td>25% (90%)</td>
<td>39% (85%)</td>
<td>1:1.6</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>20</td>
<td>20% (85%)</td>
<td>36% (83%)</td>
<td>1:1.8</td>
</tr>
<tr>
<td>3</td>
<td>i-Pr</td>
<td>20</td>
<td>12% (77%)</td>
<td>12% (83%)</td>
<td>1:1</td>
</tr>
<tr>
<td>ent-6</td>
<td>Me</td>
<td>20</td>
<td>36% (81%)</td>
<td>50% (85%)</td>
<td>1:1.4</td>
</tr>
<tr>
<td>ent-6</td>
<td>Et</td>
<td>20</td>
<td>31% (83%)</td>
<td>50% (88%)</td>
<td>1:1.6</td>
</tr>
<tr>
<td>ent-6</td>
<td>i-Pr</td>
<td>20</td>
<td>31% (87%)</td>
<td>40% (90%)</td>
<td>1:1.3</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>20</td>
<td>20% (85%)</td>
<td>36% (83%)</td>
<td>1:1.8</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>−30</td>
<td>5% (95%)</td>
<td>4% (94%)</td>
<td>1:0.8</td>
</tr>
<tr>
<td>ent-6</td>
<td>Et</td>
<td>20</td>
<td>31% (83%)</td>
<td>50% (88%)</td>
<td>1:1.6</td>
</tr>
<tr>
<td>ent-6</td>
<td>Et</td>
<td>0</td>
<td>22% (85%)</td>
<td>32% (89%)</td>
<td>1:1.5</td>
</tr>
<tr>
<td>ent-6</td>
<td>Et</td>
<td>−30</td>
<td>13% (85%)</td>
<td>7% (90%)</td>
<td>1:0.6</td>
</tr>
</tbody>
</table>

aData from Ref. 58.
Whiting’s group performed an aza-Diels–Alder condensation using Danishefsky’s diene 112 and methyl α-[(4-methoxyphenyl)imino]acetate 116, which afforded the tetrahydropyridone 117 in 67% yield and 92% ee (Fig. 9.37b).66

Enantioselective hetero-Diels–Alder reactions of α,β-unsaturated acyl phosphonates and enol ethers have been reported by Evans in 1998.67,68 As depicted in Figure 9.38a, cyclocondensation of dienes 118a and 118b with enol ethers 119a–c

\begin{table}[h]
\centering
\begin{tabular}{ |c|c|c|c|c| }
\hline
Ligand & R & Time (temp) & % Yield 113a or 113b & ee (config) \\
\hline
6 & Et & 9 h (–78 °C) & 27 & 44% (S) \\
6 & Me & 9 h (–78 °C) & 40 & 47% (S) \\
3 & Et & 8 h (–78 °C) & 42 & 17% (R) \\
3 & Me & 9 h (–78 °C) & 37 & 2% (R) \\
ent-9a & Et & 9 h (–78 °C) & 70 & 72% (S) \\
ent-9a & Me & 9 h (–78 °C) & 67 & 70% (S) \\
ent-9a & Et & 9 h (rt) & 76 & 50% (S) \\
\hline
\end{tabular}
\caption{HETERO–DIELS–ALDER REACTION OF DANISHEFSKY’S DIENE WITH GLYOXYLATE ESTERSa}
\end{table}

aData from Ref. 64.
afforded the cycloadducts 120a–d in up to >99:1 endo/exo ratio with yields up to 98\% and selectivities as high as 99\% (ee). Selected examples are presented in Table 9.20 (Fig. 9.38a).

Ghosez and co-workers also presented a hetero-Diels–Alder reaction using a hetero-atom-containing diene 121 and the oxazolidinone 80a in the presence of bu-box 3 complexed with copper(II) triflate to afford the cycloadduct 122 in 80\% yield (>99:1 exo/endo, 95\% ee) as shown in Figure 9.38b.69

Bis(oxazoline)-mediated hetero-Diels–Alder reactions have also been utilized in total synthesis. For example, Ghosh and co-workers used inda-box 9a in the construction of a key intermediate for the synthesis of laulimalide 123, a potent
TABLE 9.20. ENANTIOSELECTIVE HETERO-DIELS–ALDER REACTIONS OF \(\alpha,\beta\)-UNSATURATED ACYL PHOSPHONATES

![Chemical structure](image)

Figure 9.38a

<table>
<thead>
<tr>
<th>R</th>
<th>Vinyl Ether</th>
<th>X</th>
<th>% Yield</th>
<th>% ee</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>119a</td>
<td>OTf</td>
<td>89</td>
<td>99</td>
<td>67</td>
</tr>
<tr>
<td>OEt</td>
<td>119a</td>
<td>SbF<sub>6</sub></td>
<td>98</td>
<td>97</td>
<td>68</td>
</tr>
<tr>
<td>Me</td>
<td>119b</td>
<td>OTf</td>
<td>91</td>
<td>95</td>
<td>67</td>
</tr>
<tr>
<td>Me</td>
<td>119c</td>
<td>SbF<sub>6</sub></td>
<td>55</td>
<td>92</td>
<td>67</td>
</tr>
</tbody>
</table>

![Chemical structure](image)

Figure 9.38b. Hetero-Diels–Alder reactions with aza dienes.

![Chemical structure](image)

Figure 9.39. Natural products via enantioselective hetero-Diels–Alder reactions.
antitumor agent. Jørgensen and co-workers have also utilized this reaction in the syntheses of (R)-dihydroactinidiolide 124 and (R)-actinidiolide 125 as illustrated in Figure 9.39.

9.5.4. 1,3-Dipolar Cycloadditions

Lewis acid catalyzed 1,3-dipolar cycloadditions of olefins and nitrones are useful synthetic transformations that have the potential of defining up to three contiguous chiral centers. Presumably, such reactions can also be catalyzed by chiral Lewis acids derived from metal–bis(oxazoline) complexes.

Miura and co-workers attempted the cyclization of phenylacetylene 126 with (Z)-α,N-diphenylnitrone 127 to form β-lactams 128 and 129 in the presence of i-pr-box 45 and copper(I) iodide or bu-box 3 and copper(I) iodide, as shown in Figure 9.40 (Table 9.21). When the ligands were used in catalytic amounts, precipitation of the copper acetylide was observed and virtually no cycloadduct was formed. However, when the reaction was carried out using 1 equiv of ligand and copper(I) iodide, the trans cycloadduct 128 was formed in up to 54% yield and 68% ee.

The Jørgensen and Desimoni groups have also carried out bis(oxazoline)-metal complex-catalyzed 1,3-dipolar cycloadditions with nitrones. Cycloaddition of α,β-unsaturated oxazolidinones such as 69, 80a, and 130 with nitrone 127 in the presence of phe-box ligands 6 and ent-6 provided quantitative yields of cycloadducts. Selectivities of up to 100:0 endo/exo ratio and corresponding endo ee as high as 82% were achieved (Table 9.22, Fig. 9.41a).

Similarly, cycloaddition of ethyl vinyl ether 119 and 133 afforded an excellent yield of 134 and 135 as shown in Figure 9.41b.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Ligand/Cul</th>
<th>% Yield</th>
<th>trans</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>1:0.1</td>
<td>45</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1:1</td>
<td>54</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1:1</td>
<td>53</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

(Data from Ref. 72.)
TABLE 9.22. ENANTIOSELECTIVE 1,3-DIPOLAR CYCLOADDITION OF α,β- UNSATURATED OXAZOLIDINONES AND NITRONES

![Diagram of the reaction]

<table>
<thead>
<tr>
<th>Alkene</th>
<th>Ligand</th>
<th>Additive</th>
<th>endo/exo</th>
<th>endo % ee</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>80a</td>
<td>6</td>
<td></td>
<td>84:16</td>
<td>75</td>
<td>73</td>
</tr>
<tr>
<td>130</td>
<td>6</td>
<td></td>
<td>>95:5</td>
<td>82</td>
<td>73</td>
</tr>
<tr>
<td>80a</td>
<td>ent-6</td>
<td>4 Å MS</td>
<td>96:4</td>
<td>79</td>
<td>73</td>
</tr>
<tr>
<td>80a</td>
<td>ent-6</td>
<td>H$_2$O</td>
<td>94:6</td>
<td>73</td>
<td>74</td>
</tr>
<tr>
<td>69</td>
<td>ent-6</td>
<td>4 Å MS</td>
<td>73:27</td>
<td>82</td>
<td>75</td>
</tr>
<tr>
<td>69</td>
<td>ent-6</td>
<td>H$_2$O</td>
<td>100:0</td>
<td>48</td>
<td>75</td>
</tr>
<tr>
<td>69</td>
<td>ent-6</td>
<td>H$_2$O</td>
<td>90:10</td>
<td>36</td>
<td>75</td>
</tr>
<tr>
<td>80a</td>
<td>ent-6</td>
<td></td>
<td>97:3</td>
<td>46</td>
<td>77</td>
</tr>
</tbody>
</table>

Figure 9.41a

9.5.5. Allylic Substitutions

Pfaltz and co-workers have done substantial work in the area of allylic substitution reactions involving bis(oxazoline) ligands.33,78,79 The substitution reaction of racemic 1,3-diphenylallyl acetate 136 with the anion of dimethylmalonate in the presence of 1–2 mol% palladium-bis(oxazoline) complex afforded enantiomerically enriched diethyl (E)-(1,3-diphenylallyl)malonate 137, as shown in Figure 9.42.

The results from various palladium complexes derived from bis(oxazoline) ligands ent-45, 139, and 140 were examined using the above reaction and are
shown in Table 9.23 (Fig. 9.43a). The substitution product 137 was obtained in yields of up to 99% and ee up to 97%.

Pfaltz’s group also investigated ligand 139 in the reaction involving the asymmetric allylic acetate 141. A substitution ratio (142a/142b) of 93:7 was observed in this case and both products were obtained as pure enantiomers (Fig. 9.43b).

Ikeda and co-workers examined ferrocene-based ligands 11a and 11b in the same allylic substitution reaction of racemic acetate 136 (Fig. 9.44, Table 9.24). This catalytic system resulted in quantitative yield of 137 with ee of 96 and 99%, respectively.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Solvent</th>
<th>% Yield</th>
<th>% ee</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>THF</td>
<td>85</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>139</td>
<td>THF/Et₂O</td>
<td>99</td>
<td>84</td>
<td>78</td>
</tr>
<tr>
<td>139</td>
<td>CH₂Cl₂</td>
<td>97</td>
<td>88</td>
<td>78</td>
</tr>
<tr>
<td>ent-45</td>
<td>THF</td>
<td>94</td>
<td>94</td>
<td>79</td>
</tr>
<tr>
<td>140</td>
<td>THF</td>
<td>94</td>
<td>97</td>
<td>79</td>
</tr>
</tbody>
</table>

Figure 9.42. Palladium-catalyzed allylic malonate substitution.
An interesting allylic substitution reaction of (E)-cinnamyl methyl carbonate \textbf{143} has been examined by Pfaltz’s group. The use of a molybdenum complex of ligand \textbf{144} resulted in \textbf{145} in 88\% yield with an ee of 99\% [for the (R) isomer] (Fig. 9.45).

![Figure 9.45. Molybdenum-mediated allylic substitution.](image)

TABLE 9.24. FERROCENE-BOX–MEDIATED ENANTIOSELECTIVE SUBSTITUTION OF 1,3-DIPHENYLALLYL ACETATE WITH DIETHYLMALONATEa

<table>
<thead>
<tr>
<th>Ligand</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>11b</td>
<td>100</td>
<td>99</td>
</tr>
</tbody>
</table>

aData from Ref. 12.
Mukiayama aldol reactions between silyl enol ethers and various carbonyl containing compounds is yet another reaction whose stereochemical outcome can be influenced by the presence of bis(oxazoline)—metal complexes. Evans has carried out a great deal of the work in this area.81–85 In 1996, Evans and co-workers reported the copper(II)- and zinc(II)-py-box (1a–c) catalyzed aldol condensation between benzyloxycetaldehyde 146 and the trimethylsilyl enol ether [(1-tert-butylthio)vinyl]oxy trimethylsilane 147.81,82,85 Complete conversion to aldol adduct 148 was achieved with enantiomeric excesses up to 96% [using copper(II) triflate]. The use of zinc as the coordination metal led to consistently lower selectivities and longer reaction times, as shown in Table 9.25 (Fig. 9.46).

In 1997, Evans reported on the aldol reaction using the same enol ether 147 with a variety of glyoxylates and pyruvates using tin triflate and copper triflate.83,84 As shown in Table 9.26 (Fig. 9.47a), reaction of several pyruvates using bu-box ligand 3 complexed with copper(II) triflate afforded yields of up to 99% with selectivities up to 96% (ee) for adduct 150.84 Evans also investigated the aldol condensation between methyl pyruvate 151 and several different substituted enol ethers 152, again using bu-box 3 and copper(II) triflate. These reactions achieved selectivities up to 98:2 (syn/anti) with syn ee up to 98% and yields up to 96% (Table 9.27, Fig. 9.47b).84

Another type of aldol condensation using cyclic enol ethers was demonstrated by Yamamoto and co-workers in which the condensation of tributyl (1-cyclohexene-1-yloxy)stannane 154 with benzaldehyde proceeded in 74% yield, as shown in Figure 9.48.86 The ratio of anti product 155 to syn product 156 was 36:64 with an anti ee of 84% (Fig. 9.48).

TABLE 9.25. MUKAIYAMA ALDOL REACTION OF BENZYLROYACETALDEHYDE AND A TRIMETHYLSILYL ENOL ETHERa

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Metal</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Cu(OTf)2</td>
<td>96</td>
</tr>
<tr>
<td>1b</td>
<td>Cu(SbF6)2</td>
<td>85</td>
</tr>
<tr>
<td>1c</td>
<td>Cu(SbF6)2</td>
<td>9</td>
</tr>
<tr>
<td>1a</td>
<td>Zn(OTf)2</td>
<td>40</td>
</tr>
<tr>
<td>1b</td>
<td>Zn(SbF6)2</td>
<td>36</td>
</tr>
<tr>
<td>1c</td>
<td>Zn(SbF6)2</td>
<td>18</td>
</tr>
</tbody>
</table>

aData from Ref. 81.
TABLE 9.26. ENANTIOSELECTIVE ALDOL REACTION MEDIATED BY Bu-BOXa

\[
\begin{array}{cccc}
\text{RO} & \text{OTMS} & \text{ligand 3} & \text{Cu(OTf)}_2 \\
\text{RO} & \text{R}_1 & \text{St-Bu} & \text{THF, 1 N HCl} \\
149 & 147 & 150 \\
\end{array}
\]

Figure 9.47a

<table>
<thead>
<tr>
<th>R</th>
<th>R\textsubscript{1}</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>99</td>
<td>96</td>
</tr>
<tr>
<td>Bu</td>
<td>Me</td>
<td>99</td>
<td>95</td>
</tr>
<tr>
<td>t-Bu</td>
<td>Me</td>
<td>99</td>
<td>91</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>94</td>
<td>84</td>
</tr>
<tr>
<td>Me</td>
<td>t-Bu</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Et</td>
<td>i-Pr</td>
<td>36</td>
<td>84</td>
</tr>
</tbody>
</table>

aData from Ref. 84.

TABLE 9.27. Cu(II)-Bu-BOX-MEDIATED MUKAIYAMA ALDOL REACTIONSa

\[
\begin{array}{cccc}
\text{MeO} & \text{O} & \text{O} & \text{Me} \\
\text{MeO} & \text{R}_1 & \text{ligand 3} & \text{Cu(OTf)}_2 \\
\text{MeO} & \text{R} & \text{THF, 1 N HCl} & \text{153} \\
151 & 152 & 153 \\
\end{array}
\]

Figure 9.47b

<table>
<thead>
<tr>
<th>R</th>
<th>R\textsubscript{1}</th>
<th>Enol Geometry</th>
<th>syn/anti</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>t-BuS</td>
<td>Z</td>
<td>94:6</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Me</td>
<td>t-BuS</td>
<td>E</td>
<td>95:5</td>
<td>88</td>
<td>98</td>
</tr>
<tr>
<td>Me</td>
<td>EtS</td>
<td>Z</td>
<td>94:6</td>
<td>90</td>
<td>93</td>
</tr>
<tr>
<td>Me</td>
<td>EtS</td>
<td>E</td>
<td>98:2</td>
<td>91</td>
<td>98</td>
</tr>
<tr>
<td>t-Bu</td>
<td>EtS</td>
<td>Z</td>
<td>90:10</td>
<td>88</td>
<td>93</td>
</tr>
</tbody>
</table>

aData from Ref. 84.

Figure 9.48. Cu(II)-py-box-mediated Mukaiyama aldol reaction.
9.5.7. Conjugate Addition

9.5.7.1. Free Radical Conjugate Addition

Stereocontrolled free radical conjugate additions have been studied using C_2-symmetric bis(oxazoline)–metal complexes. The most common reaction used to study the effectiveness of these ligands in free radical conjugate additions is the reaction of alkyl iodides, electron-deficient alkenes and allyltributyl stannane. Thus, using this reaction, Porter and co-workers have studied bis(oxazoline) ligands 6 and ent-6.87,88 Stoichiometric amounts of these ligands complexed with zinc(II) triflate were employed in the reaction of iodocyclohexane 157a or tert-butyl iodide 157b and 3-acryloyl-1,3-oxazolidin-2-one 69 in the presence of allyltributyl stannane 158. The results are summarized in Table 9.28 (Fig. 9.49). The corresponding addition products 159a and 159b were obtained in up to 92% yield with ee up to 90%.

Sibi’s group studied a similar reaction using ligands 9b, 34a–c, and 161 with iodides 157b and 157c, tributyltin hydride 160 and N-crotonyl oxazolidinone 80a or N-cinnamoyl oxazolidinone 80b.89,90 As shown in Table 9.29 (entries 7 and 9), the inda-box ligands exhibited optimum results with yields up to 92% and selectivities up to 93% (ee). The use of the ligand–metal complexes in catalytic amounts led to lower yields and enantioselectivities (Fig. 9.50).89

9.5.7.2. Michael Addition

Another type of conjugate addition reaction in which bis(oxazoline)–metal complexes have been used is the Michael addition reaction. Early work in this

TABLE 9.28. PHE-BOX-MEDIATED FREE RADICAL CONJUGATE ADDITION

<table>
<thead>
<tr>
<th>Ligand</th>
<th>R</th>
<th>Solvent</th>
<th>% Yield</th>
<th>ee (config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c-hexyl</td>
<td>CH$_2$Cl$_2$</td>
<td>62</td>
<td>50% (S)</td>
</tr>
<tr>
<td>6</td>
<td>c-hexyl</td>
<td>ether</td>
<td>61</td>
<td>80% (S)</td>
</tr>
<tr>
<td>6</td>
<td>t-Bu</td>
<td>pentane/CH$_2$Cl$_2$</td>
<td>78</td>
<td>88% (S)</td>
</tr>
<tr>
<td>ent-6</td>
<td>t-Bu</td>
<td>pentane/CH$_2$Cl$_2$</td>
<td>92</td>
<td>90% (R)</td>
</tr>
</tbody>
</table>

Data from Ref. 87.

![Figure 9.49](image-url)
area met with limited success. Bernardi and Scolastico, for example, attempted the Michael addition of the silyl enol ether 163 to 2-methoxycarbonylcyclopent-2-enone 164. 91 These reactions resulted in only moderate yields and poor enantioselectivity (Table 9.30, Fig. 9.51).

A number of subsequent Michael reactions catalyzed by bis(oxazoline)–metal complexes however, proceeded with improved enantioselectivity. $^{92–97}$ For example, Michael reactions of 166a and 166b and oxazolidinone 80a using Cu(II)–bis(oxazoline) 3 provided products 167a and 167b in high ee as shown in Figure 9.52 a. 92,93 Conjugate additions of O-benzylhydroxylamine 169 to α,β-unsaturated pyrazole derivatives $^{168a–c}$ have been shown to proceed with good enantioselectivities and isolated yields (Table 9.31, Fig. 9.52a). 94

Michael addition of ethylacetoacetate 171 to nitroalkenes, for example, β-nitrostyrene 172 also proceeded with excellent enantioselectivities. 95 Evans reported the Cu(II)-bis(oxazoline) catalyzed Michael addition of methylthio enolsilane 174 to the fumarate derivative 80c to provide 175 in 98% ee as shown in Figure 9.52b. 95,96
Stereoselective addition to aldehydes is another powerful tool in organic chemistry. Two very specific types of this reaction include allylation of aldehydes and cyanohydrin formation. These are both reactions that can benefit from the use of chiral bis(oxazoline) ligands.98,99,100–102 Two examples are summarized in Figure 9.53.

TABLE 9.30. POLAR CONJUGATE ADDITION REACTIONa

<table>
<thead>
<tr>
<th>Ligand</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>43</td>
</tr>
</tbody>
</table>

aData from Ref. 91.

TABLE 9.31. BIS(OXAZOLINE)-MEDIATED CONJUGATE ADDITIONS

<table>
<thead>
<tr>
<th>Product</th>
<th>% Yield</th>
<th>anti/syn</th>
<th>% ee</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>167a</td>
<td>89</td>
<td>8.5:1</td>
<td>95</td>
<td>92</td>
</tr>
<tr>
<td>167b</td>
<td>95</td>
<td>24:1</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>170a</td>
<td>87</td>
<td>88</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>170b</td>
<td>84</td>
<td>88</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>170c</td>
<td>57</td>
<td>70</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

9.5.8. Allylation and Cyanohydrin Formation

Stereoselective addition to aldehydes is another powerful tool in organic chemistry. Two very specific types of this reaction include allylation of aldehydes and cyanohydrin formation. These are both reactions that can benefit from the use of chiral bis(oxazoline) ligands.98,99,100–102 Two examples are summarized in Figure 9.53.
9.5.9. Alkylation of Imines and Oximes

Stereoselective addition to carbonyl groups is a powerful tool in organic synthesis and has received a great deal of attention. Addition to imines can be equally as powerful, but has received much less attention. Denmark and co-workers first introduced the use of bis(oxazoline) ligands in the addition reactions of imines. The most successful ligand has been the modified bu-box ligand 182. This ligand was used both stoichiometrically and catalytically in the reaction between various imines and several alkyl lithium species. Selected examples are summarized in Table 9.32 (Fig. 9.54).

Nakamura and co-workers used i-pr-box ligand 22 stoichiometrically for the addition of alkyl zinc reagents 186a–c to cyclic imines 187a and 187b. This
TABLE 9.32. ASYMMETRIC ADDITION TO IMINES

\[
\begin{align*}
\text{N} \quad \text{PMP} & \quad + \quad \text{R}_1 - \text{Li} \\
\text{R} & \quad \text{H} & \quad \text{184a} \quad \text{R}_1 = \text{Me} \\
\text{183a} \quad \text{R} = \text{Ph} & \quad \text{184b} \quad \text{R}_1 = \text{CH}_2=\text{CH} & \quad \text{185a} \quad \text{R} = \text{Ph, R}_1 = \text{Me} \\
\text{183b} \quad \text{R} = \text{PhCH}_2\text{CH}_2 & \quad \text{PMP} = \text{p-methoxyphenyl} & \quad \text{185b} \quad \text{R} = \text{PhCH}_2\text{CH}_2, \text{R}_1 = \text{Me} \\
\text{183c} \quad \text{R} = \text{PhCH}_2\text{CH}_2, \text{R}_1 = \text{CH}_2=\text{CH} & & \quad \text{185c} \quad \text{R} = \text{PhCH}_2\text{CH}_2, \text{R}_1 = \text{CH}_2=\text{CH}
\end{align*}
\]

\text{Figure 9.54}

<table>
<thead>
<tr>
<th>mol% 182</th>
<th>R</th>
<th>R_1</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Ph</td>
<td>Me</td>
<td>95</td>
<td>75</td>
</tr>
<tr>
<td>1.0</td>
<td>PhCH_2CH_2</td>
<td>Me</td>
<td>96</td>
<td>91</td>
</tr>
<tr>
<td>1.0</td>
<td>PhCH_2CH_2</td>
<td>CH_2=CH</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>0.1</td>
<td>Ph</td>
<td>Me</td>
<td>98</td>
<td>68</td>
</tr>
<tr>
<td>0.2</td>
<td>PhCH_2CH_2</td>
<td>Me</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>0.2</td>
<td>PhCH_2CH_2</td>
<td>CH_2=CH</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>

\text{Data from Ref. 103.}

TABLE 9.33. ENANTIOSELECTIVE ADDITION OF ALLYLZINC REAGENTS TO CYCLIC IMINES

\[
\begin{align*}
\text{ZnBr} & \quad + \quad \text{R}_2 & \quad \text{22} \\
\text{R} & \quad \text{R}_1 & \quad \text{R}_2 \quad \% \text{ Yield} \quad \% \text{ ee} \\
\text{186a} \quad \text{R} = \text{H, R}_1 = \text{H} & \quad \text{187a} \quad \text{R}_2 = \text{H} & \quad \text{188a} \quad \text{R} = \text{H, R}_1 = \text{H, R}_2 = \text{H} \\
\text{186b} \quad \text{R} = \text{Me, R}_1 = \text{H} & \quad \text{187b} \quad \text{R}_2 = \text{OMe} & \quad \text{188b} \quad \text{R} = \text{H, R}_1 = \text{H, R}_2 = \text{OMe} \\
\text{186c} \quad \text{R} = \text{H, R}_1 = \text{Ph} & & \text{188c} \quad \text{R} = \text{Me, R}_1 = \text{H, R}_2 = \text{OMe} \\
\text{186d} \quad \text{R} = \text{H, R}_1 = \text{Ph, R}_2 = \text{OMe} & & \text{188d} \quad \text{R} = \text{H, R}_1 = \text{Ph, R}_2 = \text{OMe}
\end{align*}
\]

\text{Figure 9.55a}

<table>
<thead>
<tr>
<th>R</th>
<th>R_1</th>
<th>R_2</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>72</td>
<td>95</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>OMe</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Me</td>
<td>H</td>
<td>OMe</td>
<td>96</td>
<td>97.5</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>OMe</td>
<td>92</td>
<td>77</td>
</tr>
</tbody>
</table>

\text{Data from Ref. 105.}
process led to the 1,2,3,4-tetrahydroisoquinolines 188a–d in yields up to 96% with enantioselectivities up to 97.5% (Table 9.33, Fig. 9.55a).

Hanessian’s group investigated the addition reactions of oximes using bis(oxazoline) ligand ent-39. As shown in Figure 9.55b, reaction of the \(\alpha \)-oximino ester 189 and alkyl zinc reagent 190 afforded the homoallylic hydroxyl amine 191 in 82% yield with an enantioselectivity of 93% ee.

9.5.10. Asymmetric Polymerization

Bis(oxazoline) ligands have also been used to produce polymers containing main chain chirality. Some examples include those by Wagner and co-workers in which \(t \)-pr-box 45 is used to mediate the copolymerization of \(t \)-butylstyrene 192 with carbon monoxide to achieve a polymer of type 193 with stereoregularity up to 98%,107,108 Oishi and co-workers’ polymerization of \(N \)-substituted maleimides 194109–111 and Risse and co-workers’ polymerization of substituted cyclopropenes 196112 are shown in Figure 9.56.

Figure 9.55b

Figure 9.56. Bis(oxazoline)-mediated chiral polymerizations.
9.5.11. Miscellaneous Carbon–Carbon Bond-Forming Reactions

Bis(oxazoline) ligands have been shown to be useful in the many carbon–carbon bond-forming reactions previously listed. They have also been used in a myriad of other carbon–carbon bond-forming reactions. For example, Nakamura and co-workers used bis(oxazoline) ligands $\textit{ent-2}$, $\textit{ent-22}$, and $\textit{ent-39}$ in ligand-induced enantioselective allylzincation. 113 This reaction consisted of the transformation of the cyclopropenone acetal 198 into allylic cyclopropanone acetal 199 in yields ranging from 73 to 90% with selectivities from $>98:2$ for the isomer shown to 1:99 (Fig. 9.57).

Ukaji and co-workers employed bis(oxazoline) ligands in the asymmetric bis(alkoxycarbonylation) reaction of homoallylic alcohols. 114 One example of this reaction, the conversion of homoallylic alcohol 200 to its carbonylation product 201, is illustrated in Figure 9.58. This reaction proceeded in 78% yield with an ee of 50%.

Bis(oxazoline) ligands have also been used to mediate the [2,3]-Wittig rearrangements of allylic ethers. Nakai and co-workers demonstrated the rearrangement of (Z)-crotyl benzyl ether 202 using tert-butyllithium and bis(oxazoline) ligand 203 to form a mixture of erythro 204a and threo 204b rearrangement

![Figure 9.57. Allylzincation.](image1)

![Figure 9.58. Bis(alkoxycarbonylation).](image2)
The reaction conditions favored the formation of erythro product 204a in a ratio of 89:11 with 40% ee for the (1R,2S) isomer (Fig. 9.59). Under the same reaction conditions, (E)-crotyl propargylic ether 205 was converted into homoallylic alcohol 206 in >90% yield [93:7 erythro, 75% ee for (3S,4S) isomer].

Allene annulation is yet another reaction in which bis(oxazoline) ligands are used for asymmetric induction.10,116,117 One example, shown in Figure 9.60, is the reaction of N-tosyl-2-iodoaniline 207 with 1,2-undecadiene. This reaction proceeds...
in the presence of inda-box ligands \textit{ent-9a} or \textit{ent-9b} to afford the annulation product \textit{208} in 98\% (77\% ee) and 90\% (86\% ee) yields, from \textit{ent-9a} or \textit{ent-9b}, respectively.

Other reactions that have been attempted using bis(oxazoline) ligands for chiral induction include the synthesis of chiral fullerenes118 and C–H insertion reactions,119 which met with moderate success. Also, \[2+2\] photocycloaddition120 and Meerwein arylation121 have been attempted, but both of these led to low enantioselectivities.

\section*{9.6. AZIRIDINATION AND EPOXIDATION}

Aziridination and epoxidation of olefins are very important transformations in organic synthesis. Attempts to carry out these reactions enantioselectively by using bis(oxazoline)–metal catalysts have been reported. Evans and co-workers investigated aziridination of cinnamate esters \textit{209a–e} using \([N-(p\text{-toluenesulfonyl})\text{imino}]\text{phenyl-iodinane 207}\) and copper(I) triflate coordinated to several bis(oxazoline) ligands including phe-box 6.122,123 The results are summarized in Table 9.34 (Fig. 9.61).

Jacobsen’s group carried out the conversion of \((E)-N\text{-benzylideneaniline 211}\) to aziridines \textit{212a} and \textit{212b} (Fig. 9.62).124 Knight and co-workers examined the aziridination of styrene \textit{41} using \([N-(p\text{-toluenesulfonyl})\text{imino}]\text{phenyliodinane 207}\).37,125 Jørgensen’s group investigated the conversion of the \(\alpha\text{-imino esters \textit{214a} and \textit{214b}}\) to aziridines \textit{216a} and \textit{216b}.126 However, Waegell and co-workers attempted the epoxidation of \textit{trans}-stilbene \textit{217} with moderate success (Fig. 9.62).127

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Ar} & \textbf{R} & \textbf{% Yield} & \textbf{% ee} \\
\hline
Ph & \text{CO}_2\text{Me} & 63 & 94 \\
Ph & \text{CO}_2\text{Ph} & 64 & 97 \\
Ph & \text{CO}_2\text{CMe}_3 & 60 & 96 \\
\(\beta\)-Naphthyl & \text{CO}_2\text{Me} & 73 & 96 \\
\(\alpha\)-Naphthyl & \text{CO}_2\text{Me} & 76 & 95 \\
\hline
\end{tabular}
\caption{AZIRIDINATION OF CINNAMATE ESTERSa}
\end{table}

aData from Ref. 122.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9_61.png}
\caption{Figure 9.61}
\end{figure}
Uemura and co-workers discovered that prochiral sulfides react with \([N-(p\text{-toluenesulfonyl})\text{imino}]\text{phenyliodinane}\) \(207\) in the presence of bis(oxazoline) ligands to form the corresponding chiral sulfimides.\(^{128-130}\) For example, \((E)\)-cinnamyl phenyl sulfide \(220\) reacted with \(207\) in the presence of copper(I) triflate and \(\text{ent-6}\) to form the chiral sulfimide \(221\) in 80% yield (58% ee) as shown in Figure 9.63.

Figure 9.62. Bis(oxazoline)-mediated aziridinations and epoxidation.

9.7. SULFIMIDATION

Uemura and co-workers discovered that prochiral sulfides react with \([N-(p\text{-toluenesulfonyl})\text{imino}]\text{phenyliodinane}\) \(207\) in the presence of bis(oxazoline) ligands to form the corresponding chiral sulfimides.\(^{128-130}\) For example, \((E)\)-cinnamyl phenyl sulfide \(220\) reacted with \(207\) in the presence of copper(I) triflate and \(\text{ent-6}\) to form the chiral sulfimide \(221\) in 80% yield (58% ee) as shown in Figure 9.63.

Figure 9.63. Bis(oxazoline)-mediated sulfimidation.
9.8. ALLYLIC OXIDATION

Oxidation of olefin containing molecules at the allylic position is yet another important synthetic transformation. There are many examples of oxidation of cyclic olefins including those by Pfaltz’s group.131 These reactions consisted of the oxidation of cyclic olefins \textit{222a–c} by \textit{tert}-butyl perbenzoate in the presence of the copper(I) complexes of ligands 1b, 3, 6, and 45. The corresponding benzoates \textit{223a–c} were obtained in yields up to 84\% with selectivities up to 84\% (ee) (Table 9.35, Fig. 6.64).

Other examples of this type of reaction include those conducted by Andrus and co-workers using the copper(I) complex of ligand \textit{224} in the allylic oxidation of cyclohexene.132 As shown in Figure 9.65, this reaction afforded the oxidation product, (1S)-2-cyclohexen-1-yl 4-nitrobenzoate \textit{225} in 76\% yield and 73\% ee. Clark and co-workers also experimented with the allylic oxidation of cyclohexene using inda-box \textit{ent}-9b to afford the oxidation product, (1S)-2-cyclohexen-1-yl benzoate, \textit{223b} in 76\% yield (71\% ee).133

9.9. REDUCTIONS

9.9.1. Hydrosilylation

Reductive hydrosilylations of ketones using chiral C_2-symmetric bis(oxazolines) as catalysts have been studied by many different groups.1,2,7,134–139 Nishiyama and

TABLE 9.35. BIS(OXAZOLINE)-MEDIATED ALLYLIC OXIDATIONa

<table>
<thead>
<tr>
<th>Ligand</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>66</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>71</td>
</tr>
<tr>
<td>45</td>
<td>69</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
<td>67</td>
</tr>
<tr>
<td>1b</td>
<td>80</td>
<td>71</td>
</tr>
<tr>
<td>45</td>
<td>75</td>
<td>74</td>
</tr>
</tbody>
</table>

aData from Ref. 131.
co-workers used the original bis(oxazolines), especially py-box-\textit{ip} 1b, for the reduction of many ketones.1,134–136 Acetophenone 226 was one of the most common ketones used in these reactions. They used the rhodium complex of ligand 1b as the catalyst and diphenylsilane as the reducing agent to afford \((S)-1\)-phenylethanol 227 (Fig. 9.66). Depending on the Lewis acid additive used, 227 was produced in up to 96\% yield and up to 94\% ee (Table 9.36).

Nishiyama and co-workers also used several cyclic ketones in the hydrosilylation reaction.135 For example, 2-methylcyclohexanone 228 was reduced to form a

TABLE 9.36. HYDROSILYLATION OF ACETOPHENONEa

<table>
<thead>
<tr>
<th>Additive</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BF(_3)•OEt(_2)</td>
<td>90</td>
<td>82</td>
</tr>
<tr>
<td>AgOTf</td>
<td>96</td>
<td>89</td>
</tr>
<tr>
<td>AgBF(_4)</td>
<td>91</td>
<td>94</td>
</tr>
</tbody>
</table>

aData from Ref. 1.

Figure 9.65. Allylic oxidations of cyclohexene.

Figure 9.66
mixture (41:59) of trans-2-methylcyclohexanol 229 and cis-2-methylcyclohexanol 230 in a combined yield of 88%. The selectivities of the products were 91% (ee) for the trans alcohol 229 and 89% (ee) for the cis alcohol 230, as shown in Figure 9.67.

9.9.2. Transfer Hydrogenation

Another asymmetric reduction using bis(oxazoline) ligands is the transfer hydrogenation reaction studied by Zhang and co-workers. 140,141 The transfer hydrogenation reaction of many different ketones including 231a–c have been examined. These ketones were reduced using isopropanol in the presence of the ruthenium complex of bis(oxazoline) ligands 232 or 233. The reaction yields varied widely (up to 100%) and selectivities (up to 97% ee) as summarized in Table 9.37 (Fig. 9.68).

<table>
<thead>
<tr>
<th>Ligand</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>232</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td>232</td>
<td>100</td>
<td>63</td>
</tr>
<tr>
<td>232</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>233</td>
<td>91</td>
<td>97</td>
</tr>
</tbody>
</table>

Reductions 579
9.10. MISCELLANEOUS REACTIONS

Many examples of the use of chiral \(C_2 \)-symmetric bis(oxazoline) ligands have been presented here. Other examples include their use in various heteroannulations, one of which is shown in Figure 9.69. Here, the vinyl iodide, (Z)-3-iodo-2-methyl-2-propen-1-ol, \(\text{235} \) is condensed with 1,2-undecadiene to form the 3-methylene-2\(H \)-pyran derivative \(\text{237} \).\(^\text{142} \) When this reaction was run in the presence of 10 mol\% of bis(oxazoline) ligand \(\text{236} \) complexed with palladium(II), \(\text{237} \) was produced in 70\% yield with 79\% ee.

Bis(oxazoline) ligands have also been used in Wacker-type cyclizations.\(^\text{143} \) For example, the phenolic derivative \(\text{238} \) was cyclized in the presence of ligand \(\text{13b} \) complexed with palladium(II) to yield the 2,3-dihydrobenzofuran \(\text{239} \) in 86\% yield with an ee of 94\% (Fig. 9.70).

\[
\text{OH} \quad n-C_8H_{17}CH=CH_2 \\
\text{I} \\
\text{235}
\]

\[
\text{OH} \\
\text{238}
\]

\[
\text{Ph}
\]

\[
\text{Ph}
\]

\[
\text{O} \quad \text{N} \\
\text{N} \\
\text{O} \\
\text{13b}
\]

\[
\text{5 mol\% Pd(OAc)}_2 \\
10 \text{ mol\%} \text{ 236} \\
1.2 \text{ equiv Ag}_3\text{PO}_4 \\
\text{DMF, 80 °C, 4 h}
\]

\[
\text{I}
\]

\[
\text{OH} \\
\text{239}
\]

\[
\text{86\%; 94\% ee}
\]

\[
\text{580 Chiral Bis(oxazolines)}
\]

\[
\text{Pd(II)-L*} \\
\text{benzoquinone} \\
\text{MeOH}
\]

\[
\text{L*} = \\
\text{13b}
\]

\[
\text{86\%; 94\% ee}
\]

Figure 9.69. Heteroannulation example.

Figure 9.70. Wacker-type cyclization.
Yet another use for bis(oxazoline) ligands is in the synthesis of (α-chloroalkyl)boronates. As shown in Figure 9.71, the alkylboronate 240 was converted to the α-chloro derivative 241 in 86% ee through the use of ytterbium(III) triflate-complexed phe-box 6.

Enantioselective amination of enolsilanes has also benefited from the use of bis(oxazoline) ligands. For example, (Z)-1-phenyl-1-(trimethylsilyloxy)-1-propene, 242 was condensed with 243 using copper(II) triflate-complex bu-box ligand 3 to afford 244 in 95% yield (99% ee) as shown in Figure 9.72.

Bis(oxazoline) ligands have also been employed in the catalytic enantioselective aza-Claisen rearrangement of allylic imidates, chirality recognition in the determination of the ee of 1,1′-bi-2-naphthol, and the enantioselective formation of double and triple helicates.

![Figure 9.71. Synthesis of (α-chloroalkyl)boronates.](image)

Yet another use for bis(oxazoline) ligands is in the synthesis of (α-chloroalkyl)boronates.144 As shown in Figure 9.71, the alkylboronate 240 was converted to the α-chloro derivative 241 in 86% ee through the use of ytterbium(III) triflate-complexed phe-box 6.

Enantioselective amination of enolsilanes has also benefited from the use of bis(oxazoline) ligands.145 For example, (Z)-1-phenyl-1-(trimethylsilyloxy)-1-propene, 242 was condensed with 243 using copper(II) triflate-complex bu-box ligand 3 to afford 244 in 95% yield (99% ee) as shown in Figure 9.72.

Bis(oxazoline) ligands have also been employed in the catalytic enantioselective aza-Claisen rearrangement of allylic imidates,146 chirality recognition in the determination of the ee of 1,1′-bi-2-naphthol,147 and the enantioselective formation of double and triple helicates.148

![Figure 9.72. Enantioselective amination of enolsilanes.](image)
As evident in this chapter, metal complexes of chiral bis(oxazoline) ligands are versatile catalysts for a wide variety of asymmetric transformations. An extensive list of applications has been presented in this chapter. Since the first report of the synthesis of a chiral C_2-symmetric bis(oxazoline) by Nishiyama in 1989, innumerable articles dealing with design, synthesis, and applications of bis(oxazoline) ligands have appeared in the literature. Many new catalytic systems have been devised by employing a variety of metals, counterions and ligands designed from natural and unnatural amino acids or amino alcohols. An impressive level of enantioselectivities, isolated yields, and catalytic efficiencies have been achieved in many cases. The effectiveness of these catalysts and the overall importance of enantio- and diastereoselection in synthesis, especially in this pharmaceutical age, insures that chiral C_2-symmetric bis(oxazoline) ligands will be an important part of organic synthesis for years to come (Table 9.38).

TABLE 9.38. BIS(OXAZOLINE) LIGANDS

<table>
<thead>
<tr>
<th>Ligand</th>
<th>References</th>
<th>Ligand</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1, 2</td>
<td></td>
<td>33, 77, 78</td>
</tr>
<tr>
<td>$R = \text{Ph}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = \text{i-Pr}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = \text{t-Bu}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = \text{i-Bu}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td></td>
<td>33, 34</td>
</tr>
<tr>
<td></td>
<td>98, 99</td>
<td></td>
<td>33, 77, 78</td>
</tr>
</tbody>
</table>
TABLE 9.38 (Continued)

<table>
<thead>
<tr>
<th>Ligand</th>
<th>References</th>
<th>Ligand</th>
<th>References</th>
</tr>
</thead>
</table>
| ![Ligand](image1) | R = t-Bu
R = i-Pr
R = Ph
R = Bn | ![Ligand](image2) | R = Me, R₁ = Ph
R = CH₂OH, R₁ = H
R = Et, R₁ = H |
<p>| | 3 | | 3 |
| | 24 | | 5 |
| | 103, 104 | | 5 |
| | 51 | | 132 |
| | 14 | | 7 |
| | 33, 77, 78 | | 15 |</p>
<table>
<thead>
<tr>
<th>Ligand</th>
<th>References</th>
<th>Ligand</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>R = i-Pr</td>
<td></td>
<td>R = Ph</td>
<td></td>
</tr>
<tr>
<td>R = t-Bu</td>
<td></td>
<td>R = i-Pr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R = t-Bu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>R = i-Pr</td>
<td></td>
<td>R = Ph</td>
<td></td>
</tr>
<tr>
<td>R = t-Bu</td>
<td></td>
<td>R = i-Pr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R = t-Bu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>R = i-Pr</td>
<td></td>
<td>R = H</td>
<td></td>
</tr>
<tr>
<td>R = t-Bu</td>
<td></td>
<td>R = Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>R = H</td>
<td></td>
<td>R = Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>R = Ph</td>
<td></td>
<td>R = Ph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>R = Ph</td>
<td></td>
<td>R = Ph</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 9.38 (Continued)
Chemistry involving chiral C_2-symmetric bis(oxazoline) catalysts remains an exciting and dynamic field, which is evidenced by the number of publications concerning their use since the completion of this chapter. The recent manuscripts deal with a variety of aspects in this field. Some highlights of this research include the use of bis(oxazoline) catalysts in the Mukaiyama-Michael reaction of alkylidene malonates and enolsilanes by Evans and co-workers.149 One example of this reaction shown in Figure 9.73 depicts the reaction of the enolsilane [(1-tert-butylthio)vinyl]oxy trimethylsilane 245 with dimethyl benzylidenemalonate 246. The reaction is catalyzed by 10 mol\% of complexed bu-box ligand 3 in a mixture of 2,2,2-trifluoroethanol, toluene and methylene chloride at $-78\degree$ C and produced the corresponding thioester 247 in 91\% yield with 93\% ee. Evans also investigated the use of bis(oxazolines) in the catalysis of carbonyl-ene reactions with glyoxylate and pyruvate esters,150 the cycloadditions of silyl ketenes,151 and further investigated their utility in hetero Diels–Alder reactions.152

Another recent example of the use of chiral C_2-symmetric bis(oxazoline) ligands is the work by Mamai and co-workers.153 This group studied the cyclopropanation reaction of oxazolidinones 80a and 80b using diphenylsulfonium isopropylide 248,

9.12. ADDENDUM

<table>
<thead>
<tr>
<th>Ligand</th>
<th>References</th>
<th>Ligand</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>89, 90</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>142</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>140, 141</td>
<td></td>
<td>140, 141</td>
</tr>
</tbody>
</table>

Addendum 585
Figure 9.73. Enantioselective Mukaiyama–Michael addition of enolsilanes.

TABLE 9.39. CYCLOPROPANATIONS WITH SULFUR YLIDES

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Lewis Acid</th>
<th>equiv</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>80a R = Me</td>
<td>Zn(OTf)₂</td>
<td>1</td>
<td>63</td>
<td>95</td>
</tr>
<tr>
<td>80a R = Me</td>
<td>ZnBr₂</td>
<td>1</td>
<td>60</td>
<td>93</td>
</tr>
<tr>
<td>80a R = Me</td>
<td>Sn(OTf)₂</td>
<td>1</td>
<td>60</td>
<td>81</td>
</tr>
<tr>
<td>80a R = Me</td>
<td>MgI₂</td>
<td>1</td>
<td>66</td>
<td>46</td>
</tr>
<tr>
<td>80a R = Me</td>
<td>Zn(OTf)₂</td>
<td>0.75</td>
<td>65</td>
<td>82</td>
</tr>
<tr>
<td>80a R = Me</td>
<td>Zn(OTf)₂</td>
<td>0.75</td>
<td>63</td>
<td>55</td>
</tr>
<tr>
<td>80b R = Ph</td>
<td>Zn(OTf)₂</td>
<td>1</td>
<td>69</td>
<td>36</td>
</tr>
<tr>
<td>80b R = Ph</td>
<td>MgI₂</td>
<td>1</td>
<td>70</td>
<td>14</td>
</tr>
</tbody>
</table>

aData from Ref. 153.
as shown in Figure 9.74. The reaction afforded cyclopropane derivatives 249a and 249b in yields ranging from 60 to 70% and ee as high as 95% (Table 9.39, Fig. 9.74).

Many other groups further studied the utility of bis(oxazolines) including Ikeda’s use of biaryl bis(oxazolines) such as 250 (Fig. 9.75) in the zinc-catalyzed asymmetric alkylation of benzaldehyde with diethylzinc. 154 This reaction proceeded in yields up to 92% with ee up to 88%. Kodama and co-workers used a biaryl bis(oxazoline) ligand, namely, [1,1′-]binaphthalenyl-2,2′-diol (BINOL)-box 251, in the lanthanide-catalyzed asymmetric 1,3-dipolar cycloaddition of nitrones to alkenes. 155

Bandini and co-workers studied the zinc triflate-bis(oxazoline)-catalyzed reduction of α-alkoxy-ketones with catecholborane. 156 The example in Figure 9.76 shows the reduction of α-methoxyacetophenone 252. 1-Phenyl-2-methoxyethanol 254 was isolated in 78% yield and 82% ee.
Nakamura and co-workers examined the use of bis(oxazolines) in the addition of \(\alpha \)-thioorganolithiums to various aldehydes.\(^{157}\) One example, shown in Figure 9.77, produced the corresponding hydroxysulfide 257 in 93% yield with an ee of 93%.

Glos and co-workers introduced the aza-bis(oxazolines) 258 and 259 (Fig. 9.78) as a new class of chiral \(C_2 \)-symmetric bis(oxazoline) ligands.\(^{158}\) These catalysts were used in various reactions such as enantioselective allylic substitution and cyclopropanation; it was also shown that these new catalysts could easily be tethered to a polymeric support, as shown in structure 259, allowing for facile recovery of the catalyst. There have been other examples of bis(oxazoline) ligands immobilized on solid supports and their use in catalysis.\(^{159–162}\) These methods have shown mixed results.

Another new use for chiral bis(oxazolines) is the Friedel–Crafts reaction of aromatic and heteroaromatic compounds. Jørgensen and co-workers found that the
use of bu-box 3 with copper(II) triflate catalyzed the condensation of various indoles 260 with ethyl trifluoropyruvate 261. This condensation afforded a chiral hydroxy-trifluoromethyl ester substituent in the 3-position of the indole ring in yields up to 94% with ee ranging from 83 to 94% (Table 9.40, Fig. 9.79).

Inda-box ent-9a has been used recently in the production of the natural product (−)-malyngolide 265. The key step of the synthesis by Ghosh and Shirai, as shown in Figure 9.80, is the hetero-Diels–Alder reaction of Danishefsky’s diene 112 and α-ketoester 263 to afford the pyranone derivative 264 in 77% yield and 47% ee that was converted into (−)-malyngolide in several additional steps. The preparation of different pyranones was investigated using different α-ketoesters.

The selected examples shown above, together with numerous others, represent an extension of the vast amount of information regarding chiral C2-symmetric bis(oxazolines) and their uses in asymmetric transformations. The utility and importance of this chemistry continues to be demonstrated as more applications for these complexes are discovered.

TABLE 9.40. BIS(OXAZOLINE)-MEDIATED FRIEDEL–CRAFTS REACTIONS OF INDOLES

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>% Yield</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>94</td>
<td>89</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>93</td>
<td>83</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>88</td>
<td>94</td>
</tr>
</tbody>
</table>

Data from Ref. 163.
REFERENCES

Author Index

The entries in this index refer to the chapter number (boldface) and the reference number.

<table>
<thead>
<tr>
<th>Author</th>
<th>Chapter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbady, M. S.</td>
<td>7</td>
<td>730</td>
</tr>
<tr>
<td>Abbas, I. M.</td>
<td>7</td>
<td>178</td>
</tr>
<tr>
<td>Abbati, G.</td>
<td>7</td>
<td>1029</td>
</tr>
<tr>
<td>Abbotto, A.</td>
<td>8</td>
<td>348, 349</td>
</tr>
<tr>
<td>Abd El-Fattah, B.</td>
<td>7</td>
<td>742</td>
</tr>
<tr>
<td>Abd El-Maged, M.</td>
<td>7</td>
<td>686</td>
</tr>
<tr>
<td>Abd El-Sami, Z. K.</td>
<td>7</td>
<td>806</td>
</tr>
<tr>
<td>Abdallah, M. A.</td>
<td>7</td>
<td>178, 648</td>
</tr>
<tr>
<td>Abd El-Fattah, B.</td>
<td>7</td>
<td>742</td>
</tr>
<tr>
<td>Abd El-Maged, M.</td>
<td>7</td>
<td>686</td>
</tr>
<tr>
<td>Abd El-Sami, Z. K.</td>
<td>7</td>
<td>806</td>
</tr>
<tr>
<td>Abdallah, M. A.</td>
<td>7</td>
<td>178, 648</td>
</tr>
<tr>
<td>Abdel-Gawad, N. M.</td>
<td>7</td>
<td>840</td>
</tr>
<tr>
<td>Abdel-Ghaffar, S. A.</td>
<td>7</td>
<td>67</td>
</tr>
<tr>
<td>Abdel-Halim, A. M.</td>
<td>7</td>
<td>470</td>
</tr>
<tr>
<td>Abdelhamid, A. O.</td>
<td>7</td>
<td>175</td>
</tr>
<tr>
<td>Abdelhamid, H. A.</td>
<td>7</td>
<td>648</td>
</tr>
<tr>
<td>Abdelhamid, K.</td>
<td>7</td>
<td>705</td>
</tr>
<tr>
<td>Abdel-Rahman, A. R. H.</td>
<td>7</td>
<td>550, 551</td>
</tr>
<tr>
<td>Abdel-Motaleb, R. M.</td>
<td>7</td>
<td>176</td>
</tr>
<tr>
<td>Abd-el-Rahman, A. H.</td>
<td>7</td>
<td>552</td>
</tr>
<tr>
<td>Abdel-Razik, E. A.</td>
<td>7</td>
<td>552</td>
</tr>
<tr>
<td>Abdou, S. B.</td>
<td>7</td>
<td>550</td>
</tr>
<tr>
<td>Abe, Y.</td>
<td>5</td>
<td>48, 49, 60, 61, 62, 82, 86</td>
</tr>
<tr>
<td>Abiko, A.</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Abou-El-Regal, M. M. K.</td>
<td>7</td>
<td>469</td>
</tr>
<tr>
<td>Abou-Gharbia, M.</td>
<td>6</td>
<td>16, 17</td>
</tr>
<tr>
<td>Aibech, T. D.</td>
<td>7</td>
<td>176</td>
</tr>
<tr>
<td>Aicher, T. D.</td>
<td>8</td>
<td>54</td>
</tr>
<tr>
<td>Ait-Haddou, H.</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>Aitken, D. J.</td>
<td>8</td>
<td>139</td>
</tr>
<tr>
<td>Ajo, D.</td>
<td>7</td>
<td>981, 991, 993</td>
</tr>
<tr>
<td>Akaji, K.</td>
<td>7</td>
<td>197</td>
</tr>
<tr>
<td>Akamatsu, M.</td>
<td>7</td>
<td>995b</td>
</tr>
<tr>
<td>Akiba, M.</td>
<td>7</td>
<td>16, 17, 19</td>
</tr>
<tr>
<td>Akita, M.</td>
<td>8</td>
<td>405</td>
</tr>
<tr>
<td>Akopyan, A. Z.</td>
<td>7</td>
<td>777, 778</td>
</tr>
<tr>
<td>Al-Ashmawi, M. I.</td>
<td>7</td>
<td>707</td>
</tr>
<tr>
<td>Albinati, A.</td>
<td>8</td>
<td>420, 421, 9, 25</td>
</tr>
<tr>
<td>Alcaraz, C.</td>
<td>7</td>
<td>644</td>
</tr>
<tr>
<td>Alekseeva, E. A.</td>
<td>8</td>
<td>249</td>
</tr>
<tr>
<td>Alekseeva, L. M.</td>
<td>7</td>
<td>495</td>
</tr>
<tr>
<td>Alexander, K.</td>
<td>8</td>
<td>88</td>
</tr>
<tr>
<td>Ali Harb, A. E.</td>
<td>7</td>
<td>847</td>
</tr>
<tr>
<td>Ali, M.</td>
<td>7</td>
<td>493, 899</td>
</tr>
<tr>
<td>Ali, M. B.</td>
<td>7</td>
<td>369</td>
</tr>
<tr>
<td>Aljan-Rozic, M.</td>
<td>7</td>
<td>162, 537</td>
</tr>
<tr>
<td>Alkaabi, S. S.</td>
<td>7</td>
<td>662</td>
</tr>
<tr>
<td>Alla, S. R.</td>
<td>6</td>
<td>188</td>
</tr>
<tr>
<td>Allemann, S.</td>
<td>8</td>
<td>311</td>
</tr>
<tr>
<td>Allen, J. V.</td>
<td>8</td>
<td>201, 202, 412</td>
</tr>
<tr>
<td>Aller, E.</td>
<td>7</td>
<td>502</td>
</tr>
<tr>
<td>Allimonty, H. A.</td>
<td>7</td>
<td>848</td>
</tr>
<tr>
<td>Almario, A.</td>
<td>8</td>
<td>283</td>
</tr>
<tr>
<td>Almirante, N.</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Al-Najjar, F. A.-R.</td>
<td>7</td>
<td>133</td>
</tr>
<tr>
<td>Alonso, D. A.</td>
<td>8</td>
<td>63</td>
</tr>
</tbody>
</table>

Aref, M. M. H. 7 747
Arikawa, Y. 8 367, 462, 477
Arison, B. H. 7 786
Ariza, X. 7 112, 114, 115
Arlandini, E. 7 15, 316
Armstrong, D. W. 6 62
Arnhold, F. S. 7 273
Artemov, V. N. 5 29
Asami, K. 6 172, 173
Asano, H. 9 21, 22
Asano, M. 7 453, 454
Asano, T. 8 321
Ascher, R. 6 1
Asgari, D. 8 47 9 132
Ashare, R. 7 155, 163, 651
Askin, D. 8 278
Aspinall, H. 9 102
Ataka, K. 5 12, 90, 91, 92
Attah, F. U. 7 475
Aubé, J. 8 137, 303, 319
Aubry, A. 7 286, 418, 936, 990
Audia, J. E. 7 667, 670, 671, 672, 673, 674
Aufderhaar, E. 8 4
Augier, C. 9 127
Augustin, M. 7 531, 535, 536, 562, 889
Austin, P. W. 7 458
Avenoza, A. 7 646, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 1025, 1026 8 273
Avetisyan, S. A. 7 468
Azimov, V. A. 7 495

Baba N. 7 925
Babievskii, K. K. 7 474
Babirad, S. A. 7 351, 371
Bachurina, I. B. 7 205
Bacon, F. 7 351
Badawy, M. A. 7 727
Badiang, J. G. 8 303
Badr, M. Z. 7 681, 682
Badr, M. Z. A. 7 688
Baek, H.-H. 8 41
Baeva, G. N. 7 768
Bagno, A. 7 198, 433
Bagnoli, L. 8 252, 253, 254
Baird, C. P. 9 129
Bajji, A. C. 6 188
Bakeer, H. M. 7 838
Baker, R. W. 8 397, 398
Bakhtiyar, V. I. 7 474
Bakos, J. 7 445, 567
Balaban, A. T. 7 300, 301, 302, 303, 304, 1001
Bevinakatti, H. S. 7 218, 220, 228
Bézard, D. 6 106
Bhalerao, U. T. 7 423, 911, 923, 924, 956, 957
Bhalla, M. 7 702
Bhalla, T. N. 7 702, 719
Bhargava, K. P. 7 801
Bhatt, J. J. 7 723
Bhatt, K. N. 7 699, 700
Bhatti, A. M. 7 314
Bhuniya, D. 8 92
Bhushan, K. R. 7 1020
Bhuyan, P. J. 7 324
Bianco, A. 7 427
Bien, S. 6 36
Bieri, J. H. 7 23, 44
Biggers, M. S. 8 360
Bigham, W. S. 7 371
Bigot, A. 8 30
Bihari, F. 7 445, 567
Bilegan, C. 7 569
Billedeau, R. 7 89
Bilodeau, M. T. 9 122, 123
Biradar, J. S. 7 739
Birchler, A. G. 8 323
Bischoff, C. 6 56
Bish, C. J. 7 514
Blanc, H. 7 514
Bittiev, Sh. G. 7 47, 48, 621
Black, D. St. C. 8 68
Black, L. 7 30
Blacker, A. J. 8 430, 434, 487
Blackmond, D. G. 8 359, 473
Blacque, O. 8 188
Bland, J. 7 289, 421, 922
Bland, J. M. 7 921
Blank, H. U. 6 20
Blankenstein, J. 8 458
Blasco, J. 7 641, 665
Blaser, H.-U. 8 456
Blum, H. M. 8 36
Blücher, C. 9 121
Bobo, S. 8 102
Boden, C. D. J. 8 148
Boeriu, C. 7 594
Boersma, J. 8 381
Boesten, W. H. J. 7 281, 282, 284, 285, 440
Bogdanova, L. I. 7 476
Bogen, S. L. 8 305
Bohdal, U. 7 111, 258, 260, 263
Böhlnann, F. 6 134
Böhme, F. 8 506
Böhme, M. 6 127
Bois-Choussy, M. 8 30, 59
Boisnard, S. 8 59
Bolm, C. 8 178, 179, 370, 372, 373, 374, 378, 469, 470, 471, 472, 500
Bolton, G. L. 7 230
Bonati, L. 7 326
Bonk, P. J. 8 58, 60
Bonse, G. 6 20
Boog-Wick, K. 8 173
Bor, B. C. 8 126
Boros, P. 7 567
Borotolu, A. 7 922
Borah, A. 7 488
Bosc, J. J. 8 520, 521, 522
Bosman, J. 8 308
Bosio, R. 7 505, 506, 507
Bosze, S. 7 1014
Bottari, P. 6 178
Bouchu, D. 8 31
Boulch, R. 8 119
Boullanger, P. 8 94
Boulton, A. J. 6 117
Bourzat, J-D. 6 106
Bour, J. F. 8 202, 203, 204, 412
Bowers, C. Y. 6 707
Boyce, R. J. 8 146, 147
Boyd, E. C. 8 224
Boyd, G. V. 6 5, 14 7 1
Boyko, N. 7 45
Bojko, P. M. 7 603
Brachaczek, A. 7 998
Brady, S. F. 7 786
Braemer, B. 7 443
Brand, G. 9 148
Brand, L. J. 8 54
Braun, N. A. 8 31, 134, 135
Braunstein, P. 8 461
Braunstein, P. 6 14 7 1
Braunstein, P. 8 461
Braunstein, P. 6 14 7 1
Braunstein, P. 8 461
Bratussek, U. 7 540, 542
Braun, N. A. 8 31, 134, 135
Braunstein, P. 8 461
Bray, D. D. 7 317
Bray, J. D. 8 31, 135
Bremberg, U. 8 210
Breuning, M. 7 215
Brieva, R. 7 220
Bringmann, G. 7 215 8 396
Brinkmann, A. 8 460
Author Index

Brittain, D. R. 6 147
Broady, S. D. 8 66
Broersma, R. J. 8 101
Broger, C. 7 258
Bromidge, S. 9 66
Brooks, C. F. 8 507
Brooks, D. A. 8 169
Brouillette, W. J. 6 101
Brown, B. R. 8 114
Brown, G. B. 6 164
Brown, J. M. 8 453 9 24
Brown, S. A. 7 999
Brown, S. M. 9 20
Brown, S. M. 9 20
Broxterman, Q. B. 7 283, 284, 285, 434, 437, 996
Burghard, H. 7 885
Burkhart, J. P. 8 101
Burns, C. T. 8 36
Burrell, G. 8 164
Bussetti, V. 7 991, 993
Busse, J. K. 8 126
Busson, R. 8 172
Cabrera, E. V. 8 45
Cabri, W. 8 125
Caddick, S. 7 211
Cadet, J. 7 56, 57, 58, 59, 60, 61
Cai, D. 9 39
Cai, Z. 7 126
Calderon, S. 7 789
Calenbergh, C. V. 8 172
Campbell, C. L. 6 94, 96
Campbell, M. 8 104
Campos, K. R. 9 28, 68, 83, 85
Canete, A. 7 328, 1002
Canella, R. 7 117
Cano, F. H. 7 644
Cantrel, B. C. C. 6 125
Cao, B.-X. 8 180
Caraculacu, A. A. 7 396
Cascieri, M. A. 6 107
Casiraghi, G. 7 95
Cassels, R. 6 84
Castelhano, A. L. 7 89
Catt, J. D. 8 338
Cawthorne, M. A. 6 125
Cecere, M. 6 100
Author Index

Cerny, M. 5 77
Cervantes-Lee, F. 5 98
Cesa, S. 6 154, 155, 156, 157
Cetenko, W. A. 6 65, 66
Chaimbault, C. 8 521, 522
Chalk, R. 8 48
Chambers, R. J. 8 360
Chan, A. S. C. 7 360
Chan, K. 6 67
Chan, R. 8 161
Chang, C.-W. T. 8 141
Chanteloup, L. 8 310, 313
Chao, J. 8 51
Chaplin, D. A. 7 215
Charbonneau, R. R. 7 344
Charbonnier, L. J. 9 148
Charette, A. B. 8 493
Chatten, L. G. 6 23
Chatterjee, R. K. 7 805
Chau, P. 8 396
Chaudhary, A. G. 8 85
Chaudhary, C. 7 704
Chauveyan, K. A. 7 777
Chauveaux, B. 8 310, 313
Chel’tsova, G. V. 7 758, 764, 766
Chel’icso, A. B. 8 493
Chaten, L. G. 6 23
Chatterjee, S. 8 493
Chen, C.-S. 8 84
Chen, F. M. F. 7 12, 13, 76, 203, 245, 248, 250, 414, 526
Chen, J. 7 109
Chen, J. J. 7 108
Chen, S.-H. 8 86, 87
Chen, Y. 7 27, 32, 41
Chen, Y-Q. 7 28
Cheng, H. 8 171
Cheng, X. 8 428
Cherry, P. C. 8 107
Chervinskii, A. Yu. 5 29
Chesney, A. 8 120
Chetry, A. B. 7 483
Chevalier, S. 7 379, 381
Chiara, J. L. 8 102
Chiba, J. 7 959
Chiba, T. 7 874, 879, 880
Chibber, S. S. 7 958
Chifflik, G. 8 287
Chien, K.-M. 8 260
Chifu, E. 7 456
Chimichi, S. 6 162
Chirva, U. Ya. 8 309
Chiyoda, T. 6 140
Cho, C.-W. 8 41, 366, 376
Cho, H. 9 48
Cho, Y.-I. 8 115
Choi, H.-w. 8 193, 233
Choi, S. 8 332
Choi, S.-K. 6 82
Choi, W-B. 7 236
Chomé, N. 7 538
Chorev, M. 7 129
Choshi, T. 5 79
Chou, T. T. 6 184
Chow, H.-F. 8 177
Chow, T. J. 5 25, 88
Chowdary, Y. R. 7 864
Christoffers, J. 8 28
Christopherson, R. I. 6 52
Chrestiuk, E. 7 202
Chu, I. K. 7 1005
Chuang, T.-H. 8 178
Chuaqui, C. A. 7 299, 311, 312
Chubb, R. W. J. 8 120
Chueca, J. 7 693
Chun, K. H. 7 964
Chung, H. 8 512
Chung, K.-G. 8 437, 438, 450
Chung, N. N. 7 623
Churakov, A. V. 8 380
Churchill, M. R. 9 19
Cianciosi, S. J. 8 278
Ciarkowski, J. 7 203
Ciortanescu, E. 7 302
Ciupfers, G. 7 251, 309
Cisařová, I. 8 122
Ciske, F. L. 8 39, 324
Ciufolini, M. A. 8 31, 134, 135
Ciugureanu, C. 7 232, 234
Clark, D. A. 6 83, 184
Clark, J. E. 8 205
Clark, J. S. 9 133
Clark, M. L. 8 434
Clarke, D. S. 8 199
Clarke, M. L. 8 430, 487
Clark-Lewis, J. W. 6 92
Clausnitzer, C. 8 506
Clerici, F. 7 117, 121, 238, 316, 319, 478, 518, 519, 882, 951, 1027, 1028, 1029 8 195
Cochran, D. W. 7 786
Coffen, D. L. 7 1013
Cohen, L. A. 5 10, 11 7 16, 17, 19, 307, 618
Davisson, V. J. 7 987
Davtyan, D. A. 7 791
Dawood, N. T. A. 7 837
Dawson, G. J. 8 201
De Angelis, M. 7 156
De Bruyn, A. 8 172
de Frutos, M. P. 7 643, 644
de Gracia, I. S. 8 102
De Heredia, I. P. 7 1012
De Jonghe, S. 8 172
De Keukeleire, D. 8 172
de Meijere, A. 8 185, 186
De Menego, E. 7 417
De Mesmaeker, A. 6 160
De Risi, C. 7 103, 104
De Schryver, F. C. 7 643
De Sousa, S. E. 8 156
Debitsudo, J. K. 7 659
DeCian, A. 9 29
Deems, R. 8 54
Degennaro, L. 8 347
Degnan, A. P. 8 46, 406
DeHaen, W. 8 308, 516
Degnan, A. P. 8 46, 406
DeHaen, W. 8 308, 516
Degnan, A. P. 8 46, 406
DeHaen, W. 8 308, 516
DeHaen, W. 8 308, 516
DeHaen, W. 8 308, 516
Dekker, J. J. 7 590
Deyrup, J. A. 5 65
Dhal, R. 8 310, 313
Dhouthadel, S. P. 7 566, 971
Di Blasio, B. 7 270, 271, 277, 290, 291, 294, 295, 436
Di Toro, V. 6 100
Diaz, P. 7 949
Diaz-de-Villegas, M. D. 7 253, 254, 430, 431, 432, 477, 512, 573, 574, 581, 641, 645, 646, 665, 916, 930, 931, 932, 933, 934, 935, 940, 952, 953, 955, 981, 982, 991, 993, 994, 1030
Diehl, R. E. 7 33
Dietrich, A. 6 150
Diksic, M. 6 139
Dillon, M. P. 7 1013
DiMaio, J. 7 905
DiMichele, L. M. 8 246, 247
Dimmerling, A. 7 504
Ding, L. 7 588
Ding, M.-F. 5 88
Dirat, O. 8 13, 14
Dirlam, J. P. 6 83
Dirlam, N. L. 7 131
Divanyan, N. M. 7 604
Dixit, K. S. 7 736
Dixneuf, P. H. 5 35, 94
Djarrah, H. 6 25
Djojo, F. 9 118
Dobnikar Tehovnik, M. 7 532
Dobnikar, M. 7 533
Dodd, J. H. 8 38
Doeblер, C. 7 629, 631, 632, 635, 636
Dochner, R. F., Jr. 7 233
Doi, K. 7 970
Dolmella, A. 8 215
Domínguez-Fernández, C. 8 326
Donde, Y. 8 435, 441
Dong, J. C. 7 350
Dong, L. 7 126
Dongi, M. 8 78
Dondhi, M. 8 78
Donghi, M. 8 78
Doria, S. G. 7 839
Dorofeyeva, O. V. 7 482
Doubleday, R. 6 67
Douglas, A. W. 8 247
Douglas, K. T. 7 788
Dow, R. L. 6 184
Downey, C. W. 9 149
Downing, S. V. 8 152
Doya, M. 6 146
Doyle, M. P. 8 489, 490 9 121
Doyle, T. W. 8 86
Drach, B. S. 7 168, 515, 520
Draghici, C. 7 1001
Drahoňovský, D. 8 122
Drofenik, I. 7 165
Droste, J. J. 7 667, 670, 671, 672, 673, 674
Drtina, G. J. 7 375
Drury, W. J., III 8 262
Du, M. 7 652, 896
Du, Z. 7 109
Du, Z. M. 7 108
Duan, J. J.-W. 8 43
Dubreuil, J. F. 8 296
Duerr, D. 7 30
Duff, P. T. 6 125
Dumas, F. 7 428
Dunina, V. V. 8 380
Durko, A. 7 445
Durko, M. 7 567
Dutt, S. K. 7 958
Dutzmann, S. 7 660
Dvorák, D. 8 122
Dvořáková, H. 8 122
Dwivedi, R. 7 857, 860
Dwyer, M. P. 8 352
Eastwood, F. W. 8 257
Ebinger, A. 9 41
Ecija, M. 7 502
Edwards, J. P. 8 121
Eggersdorfer, M. 7 49
Eggleston, D. S. 6 47
Eguchi, S. 6 31, 32
Ehrenfreund, J. 7 30
Eid, M. M. 7 727
Eifert, G. 7 445, 567
Eisentra¨ger, F. 8 421
Eng, K. K. 8 278
Engle, L. P. 7 360, 389
Englisch-Peters, S. 7 903
Erba, E. 7 15, 106, 122, 238, 305, 316
Erden, C. 7 36, 660
Eremenko, L. T. 8 312
Eriani, A. W. 7 179
Erlenmeyer, E., Jr. 7 463b, 463c
Erlenhoff, H. 7 592
Eslam, E. E. 7 195
El-Fattah, B. A. 7 808
El-Fedawy, M. 7 701
El-Feky, S. A. 7 806
Elfyn Jones, D. 9 52
El-Ghamry, I. A. 7 552
El-Hashash, M. A. 7 544, 546, 656, 694, 733, 832, 891, 912
El-Housseni, M. S. 7 841
El-Kady, S. S. 7 656, 891
El-Kassaby, M. A. 7 469
El-Kateb, A. A. 7 906
El-Khamry, A. A. 7 834
El-Kousy, S. 7 179
El-Nagdy, S. 7 549, 833, 834, 835
El-Naggar, G. M. 7 705
El-Nnaggar, G. M. 7 705
El-Sabagh, U. I. 7 707
El-Said Mustafa, M. 7 70
El-Sawy, A. A. 7 839
El-Sayed, Y. A. 7 973
El-Sharief, A. M. S. 7 545, 686, 725
El-Shenawy, A. I. 7 839
El-Sherief, H. A. A. 7 802
El-Sherief, H. A. H. 7 681, 682, 705
El-Tamary, E. H. 7 553
El-Zahab, M. M. A. 7 846
El-Zimity, M. T. 7 701
Endo, T. 7 267
Endo, K. 7 194
Endo, K. 7 194
Endom, M. A. A. 6 178
Eng, K. K. 8 278
Engle, L. P. 7 360, 389
Englisch-Peters, S. 7 903
Enna, M. 9 72
Erba, E. 7 15, 106, 122, 238, 305, 316
Erden, C. 7 36, 660
Eremenko, L. T. 8 312
Eriani, A. W. 7 179
Erlenhoff, H. 7 592
Escher, I. H. 8 486
Eslam, E. E. 7 195
Author Index

Esmaiel, A. A. 7 802
Essawy, S. A. 7 839
Es-Sayed, M. 8 185
Esswein, A. 6 189
Esumi, T. 8 239
Etschenberg, E. 7 772, 773, 774, 775
Ettorre, A. 7 294
Eury, R. P. 7 403
Evans, A. R. 8 772, 773, 774, 775
Evans, D. A. 9 4, 28, 45, 50, 53, 54, 55, 57, 67, 68, 81, 82, 83, 84, 85, 96, 97, 122, 123, 145, 149, 150, 151, 152
Evans, J. M. 8 164
Evans, P. A. 8 361
Everett, G. M. 6 121
Evrard, D. A. 7 667, 670, 671, 672, 673, 674
Eweiss N. F. 7 892
Ewenson, A. 7 129
Exsted, B. J. 7 370
Ezell, E. F. 5 7
Ezhova, G. I. 7 167
Ezquerra, J. 7 668, 669

Fabbro, D. 5 24
Faber, K. 7 212
Fabian, W. 6 43
Facchetti, A. 8 62
Fache, F. 8 415
Fadayan, M. 7 708
Fadda, A. A. 7 166
Fadhil, S. 7 776
Faggioli, R. 7 986
Fahmi, A. A. 7 178, 648
Fahmi, C. 9 78
Fahmi, C. J. 8 29
Fairchild, C. 8 86
Faita, G. 9 11, 77
Faiti, G. 9 46, 47
Falciani, M. 7 159
Faleeva, L. N. 6 6, 37
Falorni, A. 7 216
Fang, J.-M. 8 178
Fanta, P. E. 8 402
Farag, A. M. 7 192, 193, 854, 855
Farina, V. 8 86
Fascetti, E. 6 191
Fastrez, J. 7 201, 206, 207, 208
Fatma, N. 7 805
Faucher, A.-M. 8 121
Faul, M. M. 9 4, 122, 123
Fawzy, N. M. 7 657
Fayet, J. P. 7 982
Fazio, R. C. 7 352, 358, 384, 385
Feakin, S. P. 5 58, 59
Feinauer, R. 8 4
Feixas, J. 5 80
Felice, A. 7 812
Félix, C. P. 8 258
Feng, X. M. 8 501
Fernandez, J. 7 627, 633
Fernández, K. M. 8 370, 372, 373
Fernandez, M. D. 7 642, 643, 644
Fernandez, M. J. 7 633
Fernandez-Alvarez, E. 7 491, 643, 917, 918
Fernandez-Bolaños, J. 7 609
Feroci, M. 6 156
Ferraccioli, R. 7 326, 339
Ferraris, D. 8 262, 263
Feuillet, S. 8 295
Fiammengo, R. 7 996
Fiege, M. 8 286
Filler, R. 5 2 6 3 7 3, 976
Fillers, W. S. 8 54
Finkbeiner, H. 6 185
Finney, N. S. 9 124
Fiorini, M. 7 625
Fischer, C. 7 639
Fischer, J. 7 21, 53, 54 9 29
Fischer, P. M. 8 77
Fisher, S. L. 7 608
Fishwick, B. R. 7 458
Fitzgerald, M. E. H. 6 119
Planagan, M. E. 8 53
Fleisher, M. 9 101
Flemming, S. 7 220
Fletcher, F. A. 7 297
Flippen-Anderson, J. L. 7 427
Flores, J. M. 6 123
Florio, S. 8 345, 346, 347, 348, 349, 350, 351
Flubacher, D. 8 436
Fludzinski, P. 7 671, 673, 674
Foces-Foces, C. 7 644
Foley, J. E. 8 54
Folkers, K. 7 605, 607
Folpini, E. 7 882
Ford, A. P. D. W. 7 1013
Forfar, I. 8 518, 519, 520
Formaggio, F. 7 198, 282, 283, 284, 285, 286, 294, 295, 296, 418, 420, 427, 433, 434, 437, 438, 439, 440, 441, 1000, 1006
Formisano, R. 7 215
Fossati, N. 6 97
Foster, B. S. 8 247
Foti, F. 7 1003
Fradet, A. 7 390, 391, 392, 393, 394
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraile, J. M.</td>
<td>7 429 9 159, 160</td>
</tr>
<tr>
<td>Francis, A.</td>
<td>8 308, 516</td>
</tr>
<tr>
<td>Frank, C. W.</td>
<td>8 507</td>
</tr>
<tr>
<td>Fraser-Reid, B.</td>
<td>8 230</td>
</tr>
<tr>
<td>Fraternali, F.</td>
<td>7 279, 290, 417</td>
</tr>
<tr>
<td>Frechet, J. M.</td>
<td>7 378, 382</td>
</tr>
<tr>
<td>Frensenbrough, L. E.</td>
<td>8 246, 247</td>
</tr>
<tr>
<td>Freeman, J. P.</td>
<td>5 72</td>
</tr>
<tr>
<td>Freeze, S. S.</td>
<td>6 196</td>
</tr>
<tr>
<td>Fresneda, P. M.</td>
<td>7 500</td>
</tr>
<tr>
<td>Friends, G. D.</td>
<td>8 349</td>
</tr>
<tr>
<td>Friestad, G. K.</td>
<td>8 43</td>
</tr>
<tr>
<td>Fritsch, P. C.</td>
<td>8 149, 318</td>
</tr>
<tr>
<td>Fritsch, V.</td>
<td>6 160</td>
</tr>
<tr>
<td>Fritsch, S. P.</td>
<td>7 273</td>
</tr>
<tr>
<td>Fronczek, F. R.</td>
<td>7 601</td>
</tr>
<tr>
<td>Fronza, G.</td>
<td>5 17, 18</td>
</tr>
<tr>
<td>Frost, C. G.</td>
<td>8 201</td>
</tr>
<tr>
<td>Frump, J. A. S.</td>
<td>8 3</td>
</tr>
<tr>
<td>Fryczkowska, B.</td>
<td>7 310</td>
</tr>
<tr>
<td>Fu, G. C.</td>
<td>7 96, 97, 213, 214</td>
</tr>
<tr>
<td>Fu, Z.</td>
<td>8 98, 445, 446</td>
</tr>
<tr>
<td>Fuchikami, T.</td>
<td>7 617</td>
</tr>
<tr>
<td>Fuchs, P. L.</td>
<td>8 237</td>
</tr>
<tr>
<td>Fujieda, H.</td>
<td>8 334</td>
</tr>
<tr>
<td>Fujiki, K.</td>
<td>8 504</td>
</tr>
<tr>
<td>Fujimoto, H.</td>
<td>5 79</td>
</tr>
<tr>
<td>Fujimoto, K.</td>
<td>6 75</td>
</tr>
<tr>
<td>Fujinami, T.</td>
<td>5 13</td>
</tr>
<tr>
<td>Fujita, M.</td>
<td>7 617</td>
</tr>
<tr>
<td>Fujita, T.</td>
<td>6 128</td>
</tr>
<tr>
<td>Fujita, T.</td>
<td>8 81, 82</td>
</tr>
<tr>
<td>Fujiwara, Y.</td>
<td>8 496</td>
</tr>
<tr>
<td>Fukumura, T.</td>
<td>6 183</td>
</tr>
<tr>
<td>Fukunaga, H.</td>
<td>6 91</td>
</tr>
<tr>
<td>Fukuyama, H.</td>
<td>8 238</td>
</tr>
<tr>
<td>Fukuzaki, T.</td>
<td>9 56</td>
</tr>
<tr>
<td>Fuller, G. G.</td>
<td>8 507</td>
</tr>
<tr>
<td>Furch, J. A.</td>
<td>7 29, 33, 37</td>
</tr>
<tr>
<td>Furneaux, R. H.</td>
<td>8 129</td>
</tr>
<tr>
<td>Furuhata, K.</td>
<td>8 255, 256</td>
</tr>
<tr>
<td>Furuki, T.</td>
<td>8 131</td>
</tr>
<tr>
<td>Furukawa, I.</td>
<td>8 57 9 155</td>
</tr>
<tr>
<td>Furukawa, N.</td>
<td>8 399</td>
</tr>
<tr>
<td>Gaa, K.</td>
<td>7 90, 91, 92, 93, 94, 252</td>
</tr>
<tr>
<td>Gable, R. W.</td>
<td>8 395</td>
</tr>
<tr>
<td>Gaeta, F. C. A.</td>
<td>7 582</td>
</tr>
<tr>
<td>Gagneux, A. R.</td>
<td>5 19</td>
</tr>
<tr>
<td>Gagnon, D. R.</td>
<td>7 368</td>
</tr>
<tr>
<td>Gainsford, G. J.</td>
<td>8 129</td>
</tr>
<tr>
<td>Gainza, M. P.</td>
<td>7 645</td>
</tr>
<tr>
<td>Gajare, A. S.</td>
<td>8 37</td>
</tr>
<tr>
<td>Gal, Y-S.</td>
<td>6 82</td>
</tr>
<tr>
<td>Galambos, T.</td>
<td>7 595</td>
</tr>
<tr>
<td>Galan, E.</td>
<td>7 396</td>
</tr>
<tr>
<td>Galdiero, S.</td>
<td>7 296</td>
</tr>
<tr>
<td>Galina, T. P.</td>
<td>7 71</td>
</tr>
<tr>
<td>Galiyan, L. Kh.</td>
<td>7 604</td>
</tr>
<tr>
<td>Galvez, E.</td>
<td>6 130, 131, 132</td>
</tr>
<tr>
<td>Gálvez, J.</td>
<td>8 197</td>
</tr>
<tr>
<td>Galvez, J. A.</td>
<td>7 431, 994</td>
</tr>
<tr>
<td>Gambini, A.</td>
<td>7 951, 1027, 1028, 1029 8 195</td>
</tr>
<tr>
<td>Gange, D. M.</td>
<td>7 233</td>
</tr>
<tr>
<td>Gant, T. G.</td>
<td>8 9, 58 9 8</td>
</tr>
<tr>
<td>Ganz, K. T.</td>
<td>9 7</td>
</tr>
<tr>
<td>Garavaglia, C.</td>
<td>6 100</td>
</tr>
<tr>
<td>García Paredes, C.</td>
<td>8 250</td>
</tr>
<tr>
<td>García Ruano, J. L.</td>
<td>8 250</td>
</tr>
<tr>
<td>Garcia, J. I.</td>
<td>7 429, 573, 664, 665, 693, 931, 952, 981, 982 9 159, 160</td>
</tr>
<tr>
<td>Garcia, M. V.</td>
<td>6 149</td>
</tr>
<tr>
<td>García-Verdugo, E.</td>
<td>9 159</td>
</tr>
<tr>
<td>Garg, S. P.</td>
<td>7 712</td>
</tr>
<tr>
<td>Garrett, C. E.</td>
<td>7 214</td>
</tr>
<tr>
<td>Gaset, A.</td>
<td>7 486</td>
</tr>
<tr>
<td>Gathergood, N.</td>
<td>9 163</td>
</tr>
<tr>
<td>Gatos, M.</td>
<td>7 296</td>
</tr>
<tr>
<td>Gaucher, A.</td>
<td>7 1000</td>
</tr>
<tr>
<td>Gaud, R. S.</td>
<td>7 511</td>
</tr>
<tr>
<td>Gebhardt, I.</td>
<td>7 567</td>
</tr>
<tr>
<td>Geffken, D.</td>
<td>6 94, 95, 96, 98, 110, 111, 112, 113, 114, 115</td>
</tr>
<tr>
<td>Gehrmann, K.</td>
<td>7 592</td>
</tr>
<tr>
<td>Geith, K.</td>
<td>7 90, 91, 92, 93, 94</td>
</tr>
<tr>
<td>Gelmi, M. L.</td>
<td>7 107, 117, 121, 122, 238, 305, 319, 327, 478, 518, 519, 878, 882, 883, 951, 1027, 1028, 1029 8 195</td>
</tr>
<tr>
<td>Genarini, C.</td>
<td>8 78, 314</td>
</tr>
<tr>
<td>Genov, D. G.</td>
<td>8 117</td>
</tr>
<tr>
<td>Gentilucci, L.</td>
<td>8 189, 190, 191, 259, 264, 265, 266, 267, 268, 269</td>
</tr>
<tr>
<td>George, C.</td>
<td>7 427</td>
</tr>
<tr>
<td>George, M. V.</td>
<td>7 315</td>
</tr>
<tr>
<td>Gerena, L.</td>
<td>9 30, 39</td>
</tr>
<tr>
<td>Germain, G.</td>
<td>7 23, 44, 320</td>
</tr>
<tr>
<td>German, A. B.</td>
<td>7 595</td>
</tr>
<tr>
<td>Gerus, I.</td>
<td>7 613, 614</td>
</tr>
<tr>
<td>Gerwick, W. H.</td>
<td>8 321</td>
</tr>
<tr>
<td>Gheorghiu, M. D.</td>
<td>7 300, 303, 304</td>
</tr>
<tr>
<td>Ghiviriga, I.</td>
<td>6 178</td>
</tr>
<tr>
<td>Ghoneim, K. M.</td>
<td>7 742</td>
</tr>
<tr>
<td>Ghoneim, M. K.</td>
<td>7 808</td>
</tr>
<tr>
<td>Ghosez, L.</td>
<td>9 69</td>
</tr>
<tr>
<td>Ghosh, A. K.</td>
<td>8 19 9 16, 48, 64, 70, 164</td>
</tr>
<tr>
<td>Ghosh, C. K.</td>
<td>7 655</td>
</tr>
<tr>
<td>Author Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ghosh, G.</td>
<td>464</td>
</tr>
<tr>
<td>Ghosh, S.</td>
<td>650</td>
</tr>
<tr>
<td>Giacomelli, G.</td>
<td>216</td>
</tr>
<tr>
<td>Gianotti, M.</td>
<td>267, 268, 269</td>
</tr>
<tr>
<td>Gibson, C. L.</td>
<td>88</td>
</tr>
<tr>
<td>Gieren, A. M.</td>
<td>51</td>
</tr>
<tr>
<td>Gilbertsen, R. B.</td>
<td>67</td>
</tr>
<tr>
<td>Gilbertson, S. R.</td>
<td>98, 117, 141, 431, 445, 446</td>
</tr>
<tr>
<td>Giles, R.</td>
<td>52</td>
</tr>
<tr>
<td>Gill, A.</td>
<td>383</td>
</tr>
<tr>
<td>Gil, A. M.</td>
<td>1030</td>
</tr>
<tr>
<td>Gilbertson, S. R.</td>
<td>98, 117, 141, 431, 445, 446</td>
</tr>
<tr>
<td>Gigen, R.</td>
<td>52</td>
</tr>
<tr>
<td>Gilon, C.</td>
<td>129</td>
</tr>
<tr>
<td>Ginak, A. I.</td>
<td>76, 78, 80, 182</td>
</tr>
<tr>
<td>Ginanneschi, M.</td>
<td>13, 162</td>
</tr>
<tr>
<td>Gingrich, H. L.</td>
<td>65, 79, 307</td>
</tr>
<tr>
<td>Ginis, J. Z.</td>
<td>136, 138</td>
</tr>
<tr>
<td>Giomi, D.</td>
<td>298, 299, 300</td>
</tr>
<tr>
<td>Giongo, M.</td>
<td>625</td>
</tr>
<tr>
<td>Giralt, E.</td>
<td>223</td>
</tr>
<tr>
<td>Girges, M. M.</td>
<td>696, 846</td>
</tr>
<tr>
<td>Giuliano, R. M.</td>
<td>235</td>
</tr>
<tr>
<td>Gladiali, S.</td>
<td>123, 212, 495</td>
</tr>
<tr>
<td>Glender, R.</td>
<td>223</td>
</tr>
<tr>
<td>Godessart, N.</td>
<td>80</td>
</tr>
<tr>
<td>Godin, J. R. P.</td>
<td>466, 782</td>
</tr>
<tr>
<td>Godreau, P. V.</td>
<td>663</td>
</tr>
<tr>
<td>Godunova, L. F.</td>
<td>244, 411, 614, 750, 752, 753, 754, 755, 756, 760, 763, 768, 769</td>
</tr>
<tr>
<td>Goedeweeck, R.</td>
<td>624</td>
</tr>
<tr>
<td>Goeth, H.</td>
<td>356</td>
</tr>
<tr>
<td>Gogas, K. R.</td>
<td>1013</td>
</tr>
<tr>
<td>Goguadze, T.</td>
<td>405</td>
</tr>
<tr>
<td>Gohar, A. K. M. N.</td>
<td>654</td>
</tr>
<tr>
<td>Gokhale, A. S.</td>
<td>131</td>
</tr>
<tr>
<td>Gol'dberg, M. L.</td>
<td>448</td>
</tr>
<tr>
<td>Gold, M.</td>
<td>51</td>
</tr>
<tr>
<td>Goossen, L. J.</td>
<td>686, 750, 752, 753, 754, 755, 756, 760, 763, 768, 769</td>
</tr>
<tr>
<td>Goedeweeck, R.</td>
<td>624</td>
</tr>
<tr>
<td>Gornackova, M. O.</td>
<td>37</td>
</tr>
<tr>
<td>Gorenc, A.</td>
<td>50</td>
</tr>
<tr>
<td>GoriczTRA, T. E.</td>
<td>190</td>
</tr>
<tr>
<td>Gormanns, M.</td>
<td>95</td>
</tr>
<tr>
<td>Gorrichon, J. P.</td>
<td>486</td>
</tr>
<tr>
<td>Göschke, R.</td>
<td>19</td>
</tr>
<tr>
<td>Goshave, M.</td>
<td>401</td>
</tr>
<tr>
<td>Gothen, K. V.</td>
<td>73, 74, 75</td>
</tr>
<tr>
<td>Gottwald, K.</td>
<td>215, 216</td>
</tr>
<tr>
<td>Gras, H.</td>
<td>619</td>
</tr>
<tr>
<td>Grasshoff, J. M.</td>
<td>785</td>
</tr>
<tr>
<td>Grassi, G.</td>
<td>1003</td>
</tr>
<tr>
<td>Graumann, J.</td>
<td>84</td>
</tr>
<tr>
<td>Graven, A.</td>
<td>62</td>
</tr>
<tr>
<td>Greeff, D. F.</td>
<td>590</td>
</tr>
<tr>
<td>Greene, T. W.</td>
<td>6</td>
</tr>
<tr>
<td>Greeves, N.</td>
<td>102</td>
</tr>
<tr>
<td>Grenier, L.</td>
<td>79</td>
</tr>
<tr>
<td>Grenz, A.</td>
<td>374</td>
</tr>
<tr>
<td>Grieder, A.</td>
<td>763</td>
</tr>
<tr>
<td>Griehl, C.</td>
<td>75, 80</td>
</tr>
<tr>
<td>Griesbeck, A. G.</td>
<td>286</td>
</tr>
<tr>
<td>Grimaldi, P.</td>
<td>281</td>
</tr>
<tr>
<td>Grimes, W.</td>
<td>84</td>
</tr>
<tr>
<td>Gronowitz, S.</td>
<td>634, 826</td>
</tr>
<tr>
<td>Gross, P.H.</td>
<td>100</td>
</tr>
<tr>
<td>Groves, D.</td>
<td>106</td>
</tr>
<tr>
<td>Groves, D. R.</td>
<td>103</td>
</tr>
<tr>
<td>Gruber, F.</td>
<td>506</td>
</tr>
<tr>
<td>Gruetzmacher, H.</td>
<td>25</td>
</tr>
<tr>
<td>Grunewald, G. L.</td>
<td>6164</td>
</tr>
<tr>
<td>Grymel, M.</td>
<td>172, 517</td>
</tr>
<tr>
<td>Gschwend, H. W.</td>
<td>356</td>
</tr>
<tr>
<td>Gu, Q. M.</td>
<td>229</td>
</tr>
<tr>
<td>Gu, R. L.</td>
<td>219, 220</td>
</tr>
<tr>
<td>Guan, J.</td>
<td>38</td>
</tr>
<tr>
<td>Guant, G.</td>
<td>97</td>
</tr>
<tr>
<td>Guella, G.</td>
<td>33</td>
</tr>
<tr>
<td>Guenot, P.</td>
<td>165</td>
</tr>
<tr>
<td>Guerpin, V.</td>
<td>217</td>
</tr>
<tr>
<td>Guerry, D.</td>
<td>380</td>
</tr>
<tr>
<td>Guglia, A.</td>
<td>67</td>
</tr>
<tr>
<td>Guichard, B.</td>
<td>379, 381</td>
</tr>
<tr>
<td>Guillhem, J.</td>
<td>1000</td>
</tr>
<tr>
<td>Guirado, A.</td>
<td>197</td>
</tr>
<tr>
<td>Guiry, P. J.</td>
<td>24</td>
</tr>
</tbody>
</table>
Gulden, K.-P. 8 396
Gum, A. G. 5 58, 59
Gunaga, P. 7 1009
Gunatilaka, A. A. L. 8 85
Gunst, J. 8 172
Günther, K. 8 370, 373
Gupta, A. A. 7 683, 695, 716
Gupta, A. K. S. 7 695
Gupta, A. D. 8 92
Gupta, G. P. 7 472
Gupta, K. B. 7 703
Gupta, M. M. 7 716
Gupta, N. 8 325
Gupta, T. K. 7 472, 720
Gürther, S. 8 89
Gutiérrez, E. 8 326
Guziec, F. S., Jr. 5 26, 27
Haagenson, D. C. 8 380
Haasbroek, P. P. 7 992
Habashy, M. M. 7 834, 973
Haber, M. T. 6 136
Habib, O. M. O. 7 841
Haddou, H. A. 9 107
Hafez, E. A. 7 887
Hagiwara, M. 5 12
Hagiwara, K. 7 34, 38
Haidukewych, D. 8 69
Haigh, D. 6 125
Hall, J. 9 29
Hall, S. E. 8 112, 114
Halldin, C. 7 144, 610
Hallman, K. 8 225 9 162
Halterman, R. L. 8 454
Haltiwanger, R. C. 6 47
Halve, A. 7 467
Ham, W. H. 8 279, 280
Hamana, M. 7 164
Hambley, T. 6 52
Hamdan, A. 8 356
Hamed, M. M. 7 912
Hamelin, J. 8 200, 293, 294, 295
Hamid, A. M. 6 117
Hamilton, D. N. 6 105
Hammad, N. I. S. 7 686
Han, W.-C. 8 112, 114
Hanessian, S. 7 106
Hanna, M. A. 7 696, 846
Hannout, I. B. 7 678
Hanse, J.-G. 8 281
Hansen, D. 9 7
Hansen, K. B. 9 124
Hansen, W. 6 77
Hansson, U. 8 26
Hanumanthu, P. 7 828, 843, 849, 1021, 1022
Hara, K. 7 995b
Hara, K.-j. 8 162
Hara, K.-z. 8 162
Harada, M. 6 135
Haratake, M. 5 50, 66
Harb, A. A. 7 545, 686, 725, 734
Harb, A. F. A. 7 842
Harb, N. M. S. 7 469
Hardy, P. M. 7 14, 275, 276, 277, 278, 279
Hardy, R. A., Jr. 6 79
Harhash, A. H. 7 180
Harigel, K. 7 885
Harm, A. M. 8 168 9 37, 125
Harmer, M. A. 9 160
Harnden, M. R. 6 54
Harris, D. N. 8 112, 114
Harris, F. W. 7 403
Harris, N. 7 649
Hartke, K. 6 44, 45
Hartmann, W. 5 64
Hartner, F. W., Jr. 6 4 7 2
Hartwig, A. C. 8 161
Hasain, M. I. 7 706
Hashimoto, N. 5 68
Hashimoto, Y 5 31, 32, 33 8 449
Hashizume, T. 8 130, 423, 424, 450
Hassan, A. A. 7 961
Hassan, H. M. 7 701, 841
Hassan, M. A. 7 469, 549
Hassaneen, H. M. 7 648
Hassanein, H. H. 7 707, 840
Hassila, H. 9 36
Hasuoka, A. 6 197
Hatakeyama, H. 7 626
Hatakeyama, S. 8 238, 239
Hatano, M. 8 497
Haubrich, J. E. 7 374
Haudrechy, A. 8 13
Hauser, E. 8 301
Hayashi, M. 8 442, 444, 449
Hayashi, T. 8 116, 448, 479 9 14, 143
Hazell, R. G. 9 63, 71, 73, 75, 76, 126, 163
Heard, P. J. 9 27
Heck, R. F. 8 439
Hecker, S. J. 6 83
Heil, B. 7 567
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heinemann, C.</td>
<td>7 114</td>
</tr>
<tr>
<td>Heinz, T.</td>
<td>9 41</td>
</tr>
<tr>
<td>Hell, W.</td>
<td>6 21</td>
</tr>
<tr>
<td>Hellmann, H.</td>
<td>8 4</td>
</tr>
<tr>
<td>Helmchen, G.</td>
<td>8 21, 385, 436 9 7</td>
</tr>
<tr>
<td>Hembre, J. I.</td>
<td>7 359</td>
</tr>
<tr>
<td>Heminger, E.</td>
<td>8 101</td>
</tr>
<tr>
<td>Hendrix, C.</td>
<td>8 172</td>
</tr>
<tr>
<td>Henry, S. S.</td>
<td>8 42</td>
</tr>
<tr>
<td>Her, G.-R.</td>
<td>8 260</td>
</tr>
<tr>
<td>Herbert, R. H.</td>
<td>6 107</td>
</tr>
<tr>
<td>Herdeis, C.</td>
<td>7 504, 577</td>
</tr>
<tr>
<td>Heredia, A.</td>
<td>5 80</td>
</tr>
<tr>
<td>Hermans, N.</td>
<td>8 179, 374, 378, 469, 471</td>
</tr>
<tr>
<td>Herrera, C. I.</td>
<td>9 160</td>
</tr>
<tr>
<td>Herrmann, W. A.</td>
<td>8 221</td>
</tr>
<tr>
<td>Hershenson, F. M.</td>
<td>7 318</td>
</tr>
<tr>
<td>Hewage, S.</td>
<td>9 148</td>
</tr>
<tr>
<td>Hibbs, D. E.</td>
<td>8 175</td>
</tr>
<tr>
<td>Hibino, S.</td>
<td>8 79</td>
</tr>
<tr>
<td>Hida, M.</td>
<td>7 626, 796</td>
</tr>
<tr>
<td>Hidai, M.</td>
<td>8 367, 462, 467, 477, 478</td>
</tr>
<tr>
<td>Hidaka, K.</td>
<td>6 135</td>
</tr>
<tr>
<td>Hidasi, G.</td>
<td>7 595</td>
</tr>
<tr>
<td>Higashi, K.</td>
<td>7 246, 247</td>
</tr>
<tr>
<td>Higuchi, C.</td>
<td>7 560, 596</td>
</tr>
<tr>
<td>Higuchi, N.</td>
<td>8 285</td>
</tr>
<tr>
<td>Higuchi, R.</td>
<td>7 459, 460</td>
</tr>
<tr>
<td>Higuchi, T.</td>
<td>5 41, 60, 61, 62, 63, 82, 84</td>
</tr>
<tr>
<td>Hildebrand, J. P.</td>
<td>8 179, 374, 378, 469, 471, 472, 500</td>
</tr>
<tr>
<td>Higashiyama, Y.</td>
<td>8 248</td>
</tr>
<tr>
<td>Higashiyama, T.</td>
<td>7 359</td>
</tr>
<tr>
<td>Hirose, Y.</td>
<td>7 83</td>
</tr>
<tr>
<td>Hirai, K.</td>
<td>6 99</td>
</tr>
<tr>
<td>Hirai, A.</td>
<td>9 105</td>
</tr>
<tr>
<td>Hirotsu, Y.</td>
<td>8 334</td>
</tr>
<tr>
<td>Hirsch, A.</td>
<td>9 118</td>
</tr>
<tr>
<td>Hitotsuyanagi, Y.</td>
<td>6 177</td>
</tr>
<tr>
<td>Hoarau, O.</td>
<td>9 40</td>
</tr>
<tr>
<td>Hoberg, H.</td>
<td>6 102</td>
</tr>
<tr>
<td>Höberg, T.</td>
<td>8 283</td>
</tr>
<tr>
<td>Hoemann, M. Z.</td>
<td>8 137, 319</td>
</tr>
<tr>
<td>Hoerstermann, P.</td>
<td>7 592</td>
</tr>
<tr>
<td>Hoess, E.</td>
<td>7 252</td>
</tr>
<tr>
<td>Hoffman, R. V.</td>
<td>5 95, 96, 98</td>
</tr>
<tr>
<td>Hofmann, M.</td>
<td>7 380</td>
</tr>
<tr>
<td>Hoge, R.</td>
<td>6 21</td>
</tr>
<tr>
<td>Holerca, M. N.</td>
<td>8 71</td>
</tr>
<tr>
<td>Holland, G. F.</td>
<td>6 129, 159</td>
</tr>
<tr>
<td>Hollenstein, R.</td>
<td>6 193</td>
</tr>
<tr>
<td>Holly, F. W.</td>
<td>7 786</td>
</tr>
<tr>
<td>Holmes, G. L.</td>
<td>7 369</td>
</tr>
<tr>
<td>Holt, E. M.</td>
<td>7 289, 421, 422</td>
</tr>
<tr>
<td>Holubek, J.</td>
<td>6 68</td>
</tr>
<tr>
<td>Homami, S.</td>
<td>7 865</td>
</tr>
<tr>
<td>Homami, S. S.</td>
<td>7 142, 525, 528, 863, 895</td>
</tr>
<tr>
<td>Honda, H.</td>
<td>8 304</td>
</tr>
<tr>
<td>Honda, T.</td>
<td>7 330, 335</td>
</tr>
<tr>
<td>Honda, Y.</td>
<td>9 51</td>
</tr>
<tr>
<td>Hong, W.</td>
<td>7 126</td>
</tr>
<tr>
<td>Honma, T.</td>
<td>5 90, 91, 92</td>
</tr>
<tr>
<td>Honold, K.</td>
<td>6 189</td>
</tr>
<tr>
<td>Hoogsteen, K.</td>
<td>6 107</td>
</tr>
<tr>
<td>Hook, W. H.</td>
<td>6 118, 119</td>
</tr>
<tr>
<td>Hoornaert, G.</td>
<td>7 83</td>
</tr>
<tr>
<td>Hopkinson, A. C.</td>
<td>7 1005</td>
</tr>
<tr>
<td>Hori, K.</td>
<td>8 57, 261 9 155</td>
</tr>
<tr>
<td>Hori, M.</td>
<td>5 31, 32, 33 6 99</td>
</tr>
<tr>
<td>Horie, S.</td>
<td>7 450</td>
</tr>
<tr>
<td>Horie, Y.</td>
<td>8 449</td>
</tr>
<tr>
<td>Horihata, M.</td>
<td>9 1</td>
</tr>
<tr>
<td>Horii, K.</td>
<td>7 199, 200</td>
</tr>
<tr>
<td>Horn, G. W.</td>
<td>7 601</td>
</tr>
<tr>
<td>Hornback, W. J.</td>
<td>7 1011</td>
</tr>
<tr>
<td>Horne, D. A.</td>
<td>8 271</td>
</tr>
<tr>
<td>Horne, S.</td>
<td>7 89</td>
</tr>
<tr>
<td>Horwell, D. C.</td>
<td>7 230</td>
</tr>
<tr>
<td>Hoshi, H.</td>
<td>7 173, 174</td>
</tr>
<tr>
<td>Hoshikawa, K.</td>
<td>7 241</td>
</tr>
<tr>
<td>Hoshino, O.</td>
<td>7 6, 591</td>
</tr>
<tr>
<td>Hosni, A. A.</td>
<td>7 892</td>
</tr>
<tr>
<td>Hosogai, A.</td>
<td>7 82</td>
</tr>
<tr>
<td>Hosomi, A.</td>
<td>8 290</td>
</tr>
<tr>
<td>Hosoya, M.</td>
<td>7 880</td>
</tr>
<tr>
<td>Hou, D.-R.</td>
<td>8 118, 419, 457, 459</td>
</tr>
<tr>
<td>Hou, X.-L.</td>
<td>8 180, 371, 447</td>
</tr>
<tr>
<td>Howard, J. A. K.</td>
<td>8 120</td>
</tr>
<tr>
<td>Howell, C. F.</td>
<td>6 79</td>
</tr>
<tr>
<td>Howes, P. D.</td>
<td>8 107</td>
</tr>
</tbody>
</table>
Hoyng, C. F. 7 73, 74
Hsi, J. D. 8 383
Hu, H. 7 109
Hu, H. W. 7 108
Hu, J. 8 142
Hua, W. 7 217
Huang, A. 6 61
Huang, H. 7 109
Huang, H. W. 7 108
Huang, J. 8 142
Hua, W. 7 217
Huang, A. 6 61
Huang, H. 7 109
Huang, S. 8 87
Huang, S.-L. 8 260
Huang, Y. 8 223
Huber, C. P. 7 466
Huber, T. 8 506
Hudecz, F. 7 524, 526, 1014
Hudlicky, T. 5 58, 59
Hudlický, T. 6 178
Huebner, T. 7 51
Huerta, J. M. 5 80
Hugener, M. 7 50, 240
Hulin, B. 6 184
Hull, K. G. 8 43
Hulme, A. N. 8 42, 404
Humphries, M. E. 8 430
Hünenberger, P. 8 311
Hursthouse, M. B. 7 175
Hursthouse, M. B. 9 24
Hurtado, F. 7 500
Husain, M. I. A. 7 182, 886
Husain, M. K. A. 7 545
Husain, M. M. 7 808
Iacovino, R. 7 283, 294, 296
Ibarzó, J. 5 50 7 428, 954 8 276
Ibata, T. 8 297, 334, 335
Ibrahim, H. K. 7 553
Ibrahim, M. K. A. 7 182, 886
Ibrahim, M. N. 7 561, 776
Ibrahim, S. S. 7 470
Ichihara, M. 6 135
Ichihara, Y. 6 177
Ichinose, I. 7 181, 188
Ichinose, K. 7 39
Icil, H. 7 974
Icli, S. 7 974
Ide, T. 8 35
Iida, K. 6 140
Itakura, Y. 5 49
Itakura, R. 7 347
Ikai, K. 8 335
Ikeda, I. 8 144, 377, 429 9 12, 38, 137, 154
Ikeda, K. 8 304
Ikeda, S. 7 796
Imai, E. 5 31, 32, 33
Imai, N. 9 6
Imai, Y. 8 144, 377, 429 9 38, 137, 154
Imberge, P. R. 7 779
Imperiali, B. 8 240
Imperiali, B. 7 608
Inaba, T. 8 323
Inata, H. 7 387
Inesi, A. 6 154, 155, 156
Ingrosso, G. 8 346
Inman, C. G. 8 288
Inomata, K. 9 114
Inoue, Y. 8 40
Invernozzi, A. G. 9 47
Iovel, I. 9 101
Irie, H. 8 238, 239
Isagawa, K. 9 18
Iserloh, U. 8 167
Ishibashi, K. 8 55
Ishibashi, Y. 8 97
Ishibuchi, S. 5 40, 42, 43, 44, 50 8 76
Ishihara, H. 5 47
Ishihara, J. 9 56
Ishihara, K. 8 74 9 17
Ishihara, M. 6 91
Ishii, K. 7 347
Ishii, Y. 8 478
Ishikawa, K. 7 267
Ishikawa, N. 7 70
Ishizuka, T. 5 40, 41, 42, 43, 44, 45, 47, 50, 51, 52, 66, 67, 68, 69, 70, 71, 73, 74, 75, 85 8 35, 76
Islam, A. M. 7 545, 678
Islam, I. E. 7 837
Isloor, A. M. 7 1009
Ismail, I. M. 7 545
Ismail, M. F. 7 831
Ismail, M. M. 7 808
Isobe, T. 7 82
Isono, H. 6 49
Isono, T. 7 26
Istrati, D. 7 1001
Ito, J. 8 57 9 155
Ito, K. 9 93
Ito, T. 6 28
Ito, Y. 8 285
Itoh, K. 8 475 9 1, 31, 32, 134, 135, 136, 147
Itoh, Y. 7 199, 200 9 31, 32
Itokawa, H. 6 177
Ivanova, G. 7 150
Author Index

Ivas, E. 7 65
Iwabuchi, Y. 8 239
Iwashara, T. 8 405
Iwasa, S. 8 67
Iwashima, M. 8 43
Iwashita, J. 5 75
Iwata, A. 6 140
Iyengar, D. S. 6 24 7 423, 911, 923, 924, 956, 957, 968
Izquierdo M. L. 7 917
Izzo, P. T. 6 2
Jacobi, H. 7 773
Jacobine, A. F. 7 98, 99
Jacobsen, E. N. 8 362 9 124
Jacobsen, N. W. 6 15
Jacobson, L. 7 1013
Jacquault, P. 8 200
Jacquot, S. 8 188
Jaegers, E. 7 592
Jaenschke, G. 7 215
Jaime, C. 7 665
Jain, A. 7 140
Jain, C. B. 8 325
Jain, J. K. 7 888
Jamali, M. R. 7 706
James, B. 8 403
Jamnický, M. 8 207
Jančík, F. 6 68
Jancso, G. 7 595
Janda, K. D. 7 297, 904
Janey, J. M. 9 152
Jansen, A. A. 7 590
Jarocho, S. 7 280 8 333
Jarry, C. 8 518, 519, 520, 521, 522
Jarvinen, K. 8 509, 510
Jarup, C. P. 9 94
Jaworzynski, T. 6 165
Jendrzejewski, S. 7 306
Jenkins, K. 7 211
Jensen, K. B. 9 76
Jeong, J. H. 8 511
Jeong, S. Y. 8 512
Jeschkeit, H. 7 80, 443
Ji, J. 9 89, 90, 95
Jiang, Q. 9 140, 141
Jiang, Y. 9 140, 141, 146
Jiang, Y. Z. 8 501
Jimenez, A. I. 7 413, 916, 930, 931, 932, 933, 934, 936, 994, 1023, 1024
Jiménez, H. A. 5 16
Jiménez, J. M. 5 80
Jimenez-Vázquez, H. A. 5 97
Jin, B. 8 105
Jin, S. 7 771
Jnaneshwara, G. K. 8 37, 198
Jnoff, E. 9 69
Jacobs, R. 8 321
Joergensen, K. A. 9 74
Johannsen, M. 9 58, 59, 60, 61, 62, 65, 71
Johnson, D. S. 9 145
Johnson, J. S. 9 28, 53, 67, 68, 151
Johnson, K. W. 7 675
Johnson, M. C. 5 95, 96
Johnsson, S. Y. 8 63
Johnston, J. N. 9 96
Joiner, A. 7 373
Jolly, V. S. 7 467
Jones, D. S. 7 264, 265
Jones, G. 8 170, 181, 422
Jones, G. E. 8 164
Jones, J. B. 8 56
Jones, J. H. 7 514
Jones, W. D. 5 78
Jones, W. D. Jr. 7 548 8 39, 324
Jordan, D. B. 6 96
Jørgensen, K. A. 9 58, 59, 60, 61, 62, 63, 65, 71, 73, 75, 76, 126, 163
Joseph, K. 7 666, 818, 863, 864, 865, 894, 895
Joshi, D. G. 7 824
Joshi, H. D. 7 810
Joshi, H. S. 7 741
Joshi, N. 7 807, 823
Joshi, P. C. 7 58, 61
Joshi, S. N. 7 729
Joumier, J. M. 5 94
Judas, D. 7 393
Jugé, S. 8 322
Juhl, K. 9 126
Jun, C.-H. 9 138
Jun, H.-S. 8 234, 236
Jung, B. 7 68, 492, 963
Jung, G. 8 218
Jurjevica, I. 6 48
Jusoh, A. 7 202
Kabra, V. 8 325
Kabuto, C. 8 40
Kaddah, A. M. 7 891
Kadun, A. L. 8 309
Kagan, H. B. 7 792, 795 8 474, 499 9 44
Kagara, K. 7 462
Kagathara, P. 7 713
Kagiwara, K. 7 39
Kai, T. 8 255
Kepe, V. 7 120, 541, 825, 853, 884
Kercher, M. A. 8 338
Kerić, M. 6 50
Kesselgruber, M. 8 179, 374, 378
Kessler, M. 9 20
Ketcha, D. M. 6 16, 17
Keuseman, K. J. 8 380
Khachvankyan, G. Y. 7 1008
Khachvankyan, G. Yu. 7 484, 496
Khalafallah, A. K. 7 819, 854, 855
Khalifa, M. A. E. 7 176
Khan, M. A. 8 33
Khan, N. H. 7 493, 803, 890, 899
Kharadze, D. 7 405
Kharadze, D. P. 7 397, 398, 404
Khatimi, N. 8 258
Khatskevich, I. E. 7 243, 621, 759
Khodeir, M. N. 7 551
Khodeir, M. N. H. 7 550
Khodeir, M. N. M. 7 734
Khoshdel, E. 7 373
Khosruashvili, T. A. 7 404
Khrabrova, E. S. 6 78, 80, 81, 182
Kida, T. 8 377, 429 9 38, 137
Kidwai, M. 7 489, 490, 1020
Kidwai, M. M. 7 803
Kiguchi, T. 8 307
Kidwai, M. M. 7 452
Kilpert, C. 7 84
Kim, C. M. 8 192
Kim, D. C. 7 69
Kim, G. T. 8 231, 232
Kim, H. 7 68, 492, 963 8 65
Kim, I. O. 6 108 9 138
Kim, J. S. 8 233
Kim, M. 7 558
Kim, S. 7 558
Kim, Y.-H. 8 279, 280
Kimmel, T. 5 36
Kimura, K. J. 8 380
Kiyooka, S. 7 241
Kjaer, A. 7 317
Klabunovskii, E. I. 7 47, 48, 242, 243, 244, 411, 621, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769
Klaic, B. 8 99
Klaic, B. 7 281
Klebanov, B. M. 7 613
Klebanov, B. M. 7 623
Klein, H. 8 93
Klein, U. 7 21
Klepel, M. 7 443
Kliegel, W. 7 84
Klingstedt, T. 8 26
Kliukiene, R. 7 611, 612
Kmetic, M. 7 508, 653
Knapp, P. W., Jr. 7 7
Knight, J. G. 8 168 9 37, 125
Knoll, W. 8 507
Knorr, D. C. 8 54
Knyaz’kova, N. E. 7 123
Kobayakawa, M. 8 13
Kobayashi, M. 6 151, 166
Kobayashi, S. 8 508
Kobayashi, T. 6 163
Kobayashi, Y. 7 455
Kobgaokab, S. 7 715
Kobori, Y. 7 130
Koc, H. 7 974
Koevevar, M. 7 120, 533, 541, 825, 853, 884
Koch, G. 8 358
Koch, K. 8 360
Koch, K. N. 7 273, 274, 997
Kocy, O. 8 114
Koczan, G. 7 1014
Kodama, H. 8 57 9 155
Kogure, T. 7 793, 794
Kohmura, Y. 8 32
Kohra, S. 8 289, 290
Kohrt, J. T. 6 40
Kojima, M. 6 183
Kok, G. B. 8 103, 104, 106
Kolasa, T. 6 116
Kolb, M. 7 125, 128
Kolbe, A. 7 75
Koleva, V. 7 479, 983

Author Index
Kolla, V. É. 6 63, 64
Kolodziejczyk, A. M. 7 415
Kolotuchin, S. V. 6 61, 409
Koreshkov, Y. D. 7 415
Kolycheva, M. T. 7 613, 614, 754, 757
Komine, N. 9 115
Kondo, M. 9 1, 134
Kondratenko, M. A. 8 64
Konwar, D. 7 335
Kopecky, J. 5 76, 77
Kora, F. A. 7 67
Körl, J. 6 68
Korolev, A. M. 8 312
Koroleva, E. 7 767
Korotkikh, N. I. 5 29
Koski, N. I. 7 359
Kosutskii, P. A. 7 71
Kostlan, C. R. 6 66
Kourou, V. G. 7 448
Kraatz, U. 7 570
Kraemer, W. 7 660
Kralj, L. 7 578
Krantz, A. M. 7 449
Krasovitskii, B. M. 7 446, 447, 448, 476, 972
Krasovitsky, B. M. 7 449
Krasovitsky, B. M. 7 972
Kraus, G. A. 7 948
Krause, H. 6 361
Krause, H. W. 7 629, 632, 635, 636
Krauthäuser, S. 8 34
Kremer, K. A. M. 7 31
Krempel, J. 7 629, 631, 632, 635, 636
Kreuzfeld, H.-J. 7 629, 631, 632, 635, 636
Krikov, V. V. 7 448
Krielikiewicz, K. 8 27
Krotz, A. 9 7
Kruiswijk, E. 8 110, 111, 410
Krubov, M. 8 188
Kubota, Y. 7 181, 188
Kuczma, A. S., Jr. 7 351
Kudo, K. 7 267
Kudo, N. 5 3
Kuh, D. G. 7 29, 31, 33, 37, 463, 658
Kukhar, V. P. 7 613
Kul’nevich, V. G. 6 6, 34, 35, 36
Kuleš, M. 6 50
Kulikova, L. B. 7 123
Kulkarni, Y. D. 7 687, 748
Kumada, M. 8 405
Kumar, A. 7 745
Kumar, B. 7 748
Kumar, K. 7 102
Kumar, P. 7 132, 134, 135, 489, 677, 826, 827
Kumar, R. 7 489, 490
Kumar, S. 5 30 7 920
Kumar, V. 7 804, 822
Kumari, A. S. 7 881
Kump, S. 7 790
Kunisch, N. 8 339
Kunieda, T. 5 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 60, 61, 62, 63, 66, 67, 68, 69, 70, 71, 73, 74, 75, 81, 82, 84, 85, 86, 87
8 35, 76
Kunzer, J. F. 7 349
Kupe, É. 6 48
Kuribayashi, T. 8 73, 75
Kurimoto, N. 7 55
Kurita, K. 8 131
Kuriyama, N. 7 197
Kuroda, A. 8 162
Kuroda, K. 7 245
Kuronya, I. 7 445
Kurosawa, H. 6 21, 22
Kurtev, B. 7 479, 983, 985
Kurumisawa, H. 7 313
Kurz, T. 6 98
Kuwata, S. 7 46, 246, 247
Kuz’mina, L. G. 8 380
Kuznetsov, V. V. 8 249
Kuznetsova, T. I. 7 621
Kwan, T. A. 8 89
Kwon, I. C. 8 512
Kwon, O. S. 7 366
Kyoto, H. 9 14
L'abbé, G. 6 88, 89 8 308, 516
La Londe, M. R. 7 372
La Rosa, C. 7 339
Laangstroem, B. 7 144, 610
Labahn, T. 8 185
Labuche, N. 7 877
Lad, S. 7 1018
Ladva, K. 7 731
Lafargue, P. 8 165
Lafont, D. 8 94
Laguerre, M. 8 518
Lahoz, F. 7 930
Lai, Y. C. 7 364
Laidoudi, A. 7 320
Lal, G. S. 8 171
Lalitha, K. 7 923
Lalitha, N. 7 423, 554, 924, 956, 957, 968
Lalithambika, M. 8 198
Lamar, J. E. 8 352
Lamas, C. 7 668, 669
Lamy, A. 8 310, 313
Lancetta, T. 7 812
Landry, K. 5 38
Lang, F. 6 41
Langer, K. 9 120
Langlois, N. 8 90, 353, 354
Langlois, R. 7 57
Langlois, Y. 8 12, 13, 14, 306
Lange, J. E. 8 90, 353, 354
Langran-Goldsmith, A. 7 14, 278, 279
Lankiewicz, L. 7 1016
Lao, X.-F. 7 40, 329
Lapeña, Y. 7 434
Larock, R. C. 9 116, 142
Larsen, R. D. 8 246, 248 9 10, 30, 39, 117
Lata, A. 7 801
Latham, H. A. 8 127, 365, 368
Laube, B. 8 188
Laukaitis, V. 7 611
Laurent, A. J. 8 258
Lautens, M. 8 417
Lawrenz, D. 7 965
Lawson, A. 7 133
Lawson, J. P. 8 143
Laxmi Y. S. 6 24
Lazzari, V. 9 127
Le Bail, M. 8 139
Le Guen, S. 8 310, 313
Leban, I. 7 770, 988
Lebel, H. 8 493
Leblanc, Y. 5 38
Lebreton, J. 6 160
Lechner, U. 7 852
Lectka, T. 8 262, 263
Author Index

Leze, A. 8 310, 313
Li, A-H. 7 913
Li, C. 5 38 8 237
Li, X-G. 8 428
Li, Z. 7 1013
Liang, J. 7 213
Libscher, J. 7 771
Licic, G. 7 996
Lidgren, G. 7 4, 5
Lidon, M. J. 7 501
Liepina, I. 7 780
Lightfoot, A. 8 359
Lim, C. W. 9 138
Lim, D.W. 8 511
Lim, H-J. 9 119
Lim, S. 8 18, 140
Lin, H. C. 7 640
Lin, S. C. 7 969
Lin, T-I. 8 260
Linden, A. 7 272, 273, 274, 997
Lindsey, J. 7 783
Lindstedt, E-L. 6 127
Lingham, I. 7 275, 276, 277
Link, J. T. 8 242
Lipinsky, E. S. 8 288
Lipsbergs, I. U. 7 781
Lisichkina, I. N. 7 791
Lister, C. A. 6 125
Litmanovich, A. D. 7 768, 769
Little, D. L. 7 233
Liu, J. 8 246, 247
Liu, M. 9 94
Liu, T-Y. 8 260
Liu, Y. 6 62
Liu, Y-C. 8 84
Livingston, R. S. 6 96
Ljung, B. 6 127
Ljungvist, A. 7 607
Lloyd-Jones, G. C. 8 358 9 79
Lloyd-Williams, P. 7 223
Lobensommer, M. 6 59
Lock, C. J. L. 7 986
Locock, R. A. 6 23
Loesevitz, B. 6 181
Löffler, J. 5 37
Loff, M. S. 8 430, 434, 487
Lohani, H. C. 7 698
Lohmar, R. 7 105
Lohray, B. B. 6 188
Lohray, V. B. 6 188
Loim, N. M. 8 64
Loiseleur, O. 8 358, 433, 442, 443, 444
Long, B. H. 8 86
Longmire, J. M. 9 146
López, M. 5 80
Lopez, P. 7 429, 434, 1023
Lopez-Arbelo, F. 7 624
Lorenzo, A. 7 502
Lorusso, S. 6 100
Loupy, A. 8 200
Lowen, G. T. 7 33
Lowenthal, R. E. 9 3, 5
Lu, Y. 8 339
Lu, Z. 7 487
Lubuzh, E. D. 7 242, 244, 411, 752, 755, 763, 767, 768
Lücking, U. 8 498
Luger, P. 8 302
Luh, T-Y. 8 260
Lui, N. 7 36
Luis, S. V. 9 159
Luisi, R. 8 345, 347, 348, 349, 350, 351
Lukacs, L. 7 567
Lukevics, E. 7 110, 251, 781 9 101
Luo, Y. 7 27, 32, 41, 42
Luo, Y-R. 7 28
Lupsa, I. 7 569
Luthy, C. L. 6 53
Lutsenko, A. I. 7 752, 755, 756, 767
Lutsenko, M. R. 7 48, 755, 756
Luukas, T. O. 8 474
Lydon, K. M. 8 492
Lynch, G. P. 8 129
Lynch, J. E. 7 236
Lysova, I. V. 7 410, 446, 447, 448, 449, 476, 972
Lyubarskaya, A. E. 7 447, 448
Lyubeznova, M. R. 7 752, 765, 767, 768
Ma, B. 8 494
Ma, J-A. 8 428
Maassarani, F. 8 381
MacDonald, J. G. 7 16, 17
Macedo, E. 8 225
Mackey, B. 8 104
Macko, L. 9 79
Macleod, A. M. 6 107
MacMillan, D. W. C. 9 83, 84
Macomber, D. W. 7 369
Madalengoitia, J. 9 153
Makdour, H. M. F. 7 546
Maeda, M. 6 183
Magirius, J. E. F. 7 273
Magnus, P. 5 9
Mahapatra, G. N. 6 51
Mahgoub, S. A. S. 7 688
Mahmoud, A. M. 7 802
AUTHOR INDEX

M
Mahmoudian, M. 8 107
Mahon, M. F. 8 430, 487
Maia, H. L. S. 7 279
Maier, G. V. 7 410
Maier, R. 7 852
Maior, O. 7 301
Majo, V. J. 7 989
Mak, A. L. C. 6 23
Mak, C. C. 8 177
Makihara, N. 9 26
Malarva, L. 9 127
Malhiac, C. 8 217
Maligres, P. E. 8 278
Malin, M. 8 509, 510
Malini, P. 8 122
Mamai, A. 9 153
Mammi, S. 7 282, 285
Man, H.-W. 9 144
Marchand, A. 8 176
Marchand-Geneste, N. 8 521
Marcincal, P. 7 619
Marco, J. L. 7 642, 643, 644
Marcotullio, M. C. 8 125
Mardanova, L. G. 6 63
Marastoni, M. 7 878
Maraschin, A. 7 875
Marcaccini, S. 7 505, 506, 507
Marchand, A. 8 176
Marchand-Geneste, N. 8 521
Marcincal, P. 7 619
Marsuo, A. 7 727
Mantellet, A. 7 321
Mansour, A. K. 7 852
Mao, K. 7 235
Mappelli, C. 7 288
Mauk, P. W. 7 321
Mann, A. 8 28
Mann, J. L. 6 11
Marcos, V. J. 8 204
Marquart, P. 7 619
Marmouze, M. 8 315, 526
Maryanoff, B. E. 8 7
Marpoul, J. 8 176
Mathias, L. J. 7 353, 356
Mathivanan, P. 8 19
Mathivanan, P. 9 9, 16, 64, 70
Mathur, K. C. 7 697
Matoba, K. 8 462
Matsuda, K. 7 215, 995b
Matsukawa, C. 5 85
Matsukawa, T. 6 99
Matsumoto, H. 8 238 9 31, 32
Matsumiura, A. 6 26
Matsumiura, S. 7 387
Matsuzaki, K. 8 229
Matta, M. S. 7 78
Matta, J. 9 120
Mauduit, M. 8 14
Mauldin, S. C. 8 1011
Mavrodin, A. 7 820
Maxwell, A. 8 176
Mazaleyrat, J-P. 7 1000
Mazurkiewicz, R. 7 169, 171, 172, 310, 517, 998

M
Martin, R. 8 56
Martin, R. L. 8 395
Martinez, M. 6 130, 131
Martinez, R. 5 16, 97
Martinez-Santos, E. 8 315, 326, 327
Martin-Ortega, M. D. 8 102
Martre, A.-M. 5 23
Martson, A. 5 76
Maruyama, N. 5 73
Marvanyos, E. 7 53, 54
Maryanoff, B. E. 8 7
Marzola, G. 7 787
Marzolph, G. 6 20
Masamune, S. 9 3, 5
Masch, L. W. 6 77
Maselli, C. 5 1
Massa, W. 6 44, 45
Masse, C. E. 8 228
Matela, L. 7 800
Mathé, D. 8 200
Mathias, L. J. 7 353, 356
Mathivanan, P. 8 19
Mathivanan, P. 9 9, 16, 64, 70
Mathur, K. C. 7 697
Matoba, K. 8 462
Matsuda, K. 7 215, 995b
Matsukawa, C. 5 85
Matsukawa, T. 6 99
Matsumoto, H. 8 238 9 31, 32
Matsumura, A. 6 26
Matsumura, S. 7 387
Matsumura, Y. 5 6
Matsunaga, H. 5 45, 46, 51, 52, 66, 73, 74, 75 8 35
Matsuno, M. 7 130
Matsuo, S. 8 144 9 154
Matsuo, T. 8 304
Matsuoka, K. 8 131
Matsuoka, R. T. 8 333
Matsutani, E. 6 153
Matsuura, H. 6 163
Matsuzaki, K. 8 229
Matta, M. S. 7 78
Matta, J. 9 120
Mauduit, M. 8 14
Mauldin, S. C. 7 1011
Mavrodi, A. 7 820
Maxwell, A. 8 176
Mazaleyrat, J-P. 7 1000
Mazurkiewicz, R. 7 169, 171, 172, 310, 517, 998
Author Index

Moberg, W. K. 6 94, 96
Mochizuki, S. 7 880
Mocz, A. 7 619
Modena, G. 7 996
Moderhack, D. 6 39
Mohamed, N. K. 7 961
Mohamed, N. R. 7 177
Mohamed, Y. A. 7 67
Moderhack, D. 6 39
Mohamed, N. K. 7 961
Mohamed, N. R. 7 177
Mohamed, Y. A. 7 67
Moham, R. S. 7 1007b
Moharram, H. H. 7 444, 728, 749
Mohi, I. 7 833, 835
Mohlebach, A. 7 380
Mohr, S. 7 950, 965
Mokashi, A. A. 7 221
Molina, P. 7 500, 501, 502, 503
Molinski, T. F. 7 676, 8 514, 515
Moller, B. 7 380
Momose, Y. 6 152, 153
Moneer, A. A. 7 808
Mongelli, N. 8 78, 314
Montanari, F. 5 28
Moore, B. S. 7 131
Moore, J. A. 7 987
Moorlag, H. 8 391, 392
Mootoo, B. 8 176
Moracci, F. M. 6 154, 156
Moretti, V. 7 295, 439
Mori, H. 7 584, 8 40
Mori, K. 8 130, 423, 450
Mori, T. 5 63
Morin, B. 7 60, 61
Morita, H. 7 584
Morita, T. 5 46, 52
Moritani, I. 8 496
Moriyama, H. 7 914, 915
Morro, G. 7 326
Morooka, K. 5 44
Mörsdorf, K. 6 21
Morse, D. I. 8 515
Morton, H. E. 9 95
Mortoni, A. 7 77
Morville, M. 6 145
Moskalyk, R. E. 6 23
Mossel, E. 7 434
Mossel, P. 8 119
Mostafa, F. H. 7 847
Mostert, H. F. 7 590
Mosti, L. 7 159
Motherwell, W. B. 8 24
Motoyama, Y. 9 26, 99
Mouset, G. 5 23
Mozzon, M. 8 215
Mucciante, V. 6 157
Muehlebach, A. 7 376
Mueller, B. 7 376
Mueller, G. 7 93
Mueller, K. 7 111, 257, 258, 259, 260, 261, 262, 263,
Mukaiyama, T. 6 73, 74, 75
Mukerjee, A. K. 7 132, 134, 135, 137, 138, 139,
140, 141, 142, 155, 156, 163, 498, 523, 525,
528, 559, 651, 666, 677, 684, 784, 799, 818,
826, 827, 844, 845, 862, 863, 864, 865, 893,
894, 895, 897
Mukerji, D. D. 7 679, 680
Mukhopadhyay, P. K. 7 464
Mukhopadhyay, S. 7 600
Mukugi, Y. 8 238
Mueller, D. 9 33
Mueller, G. 8 20
Mueller, K. 8 196
Mukherjee, A. K. 7 132, 134, 135, 137, 138, 139,
140, 141, 142, 155, 156, 163, 498, 523, 525,
528, 559, 651, 666, 677, 684, 784, 799, 818,
826, 827, 844, 845, 862, 863, 864, 865, 893,
894, 895, 897
Mukerji, D. D. 7 679, 680
Mukhopadhyay, P. K. 7 464
Mukhopadhyay, S. 7 600
Mukugi, Y. 8 238
Mueller, D. 9 33
Mueller, G. 8 20
Mueller, K. 8 196
Mulqueen, G. C. 8 146, 147
Mucianite, V. 6 157
Mulzer, J. 8 302
Muneer, M. 7 315
Munir, K. 8 469, 470, 471, 472, 500
Munoz, L. 7 328
Munroe, J. E. 7 1011
Murai, A. 9 56
Murai, A. 9 56
Murakami, M. 8 285
Murakami, N. 6 163
Murakami, T. 8 109, 113
Murakata, M. 7 6, 591
Murata, K. 5 67
Murata, M. 5 13
Murray, T. F. 8 321
Murayama, S. 8 131
Murdock, G. L. 7 667, 671, 673, 674
Murphy, B. L. 8 205
Murray, J. A. 9 50, 82, 85
Murty, A. K. 7 829, 830
Murthy, N. N. 8 263
Muschen, I. 8 187
Mustafa, O. E. A. 7 838
Muthiah, J. 7 353, 356
Muxworthy, J. P. 8 277
Myoung, Y. C. 7 558
N'Diaye, I. 6 33
Author Index

Nabeya, A. 8 261
Nada, A. 7 177
Nadelson, J. 8 54
Nagahara, K. 7 557
Nagamatsu, A. 7 521, 522
Nagamatsu, T. 5 84, 87
Nagami, K. 8 131
Nagamitsu, T. 8 227, 229, 336a
Nagaoka, Y. 8 484
Nagase, H. 7 330
Nagase, Y. 7 461
Nagata, M. 7 395, 450
Nagatani, T. 5 43
Nagato, S. 6 99
Nagatsu, A. 6 163
Nagayama, K. 8 55
Nakagawa, R. 9 157
Nakahashi, K. 7 617
Nakai, T. 9 115
Nakajima, K. 8 55
Nakajima, N. 8 121 9 103
Nakamura, E. 9 105, 113
Nakamura, H. 8 67
Nakamura, K. 8 124
Nakamura, M. 8 256 9 105, 113
Nakamura, S. 9 157
Nakamura, T. 7 365 9 1, 134
Nakamura, Y. 7 26 8 155
Nakamichi, K. 8 162
Nakano, J. 7 450
Nakano, Y. 6 198
Nakao, M. 6 57, 198
Nakatsuji, Y. 8 144, 377, 429 9 38, 137, 154
Nakatsuka, Y. 9 86
Nakayama, Y. 6 86, 197
Nakos, S. T. 7 98, 99
Nalapa, K. 7 797, 798, 800, 814, 815, 816, 817
Nalimov, A. M. 7 595
Narita, M. 7 267
Narusawa, H. 9 99
Nasef, A. M. 7 654
Nastopoulos, V. 7 23
Natale, N. 8 36
Nath, C. 7 736
Nath, J. P. 6 51
Naud, F. 8 461
Naumann, C. A. 8 507
Nautiyal, S. R. 7 679, 680, 712
Nava, H. 8 70
Navarrete, P. 7 322, 323, 325
Neary, A. P. 7 746
Negm, A. M. 7 179, 854, 855
Negro, L. 9 139
Nehring, R. 8 4
Neil, B. 7 445
Neises, B. 7 125, 128
Nekrasov, D. D. 6 7, 63, 64
Nelson, D. L. 7 671, 673, 674
Nelson, D. L. G. 7 675
Nelson, J. D. 8 361
Nemoto, H. 6 171, 176
Nesi, R. 8 298, 299, 300
Nesper, R. 9 25
Nesunts, N. S. 7 204, 571, 572, 777
Neuburger, M. 7 424 9 79
Neuhauser, H. 7 49
Neumann, B. 8 213
Neumann, K. 7 790
Neuville, L. 8 59
Newadkar, R. V. 7 218, 221, 228
Newton, M. G. 7 288
Nguyen, Thi Diem, T. 7 623
Nicaise, O. J-C. 8 121 9 103, 104
Nicholas, E. S. 7 663
Nicholas, K. M. 8 33
Nicotra, A. 7 996
Nie, J.-y. 7 616
Niewoehner, U. 7 11, 20
Niki, H. 7 455
Nikulina, S. N. 6 64
Ninomiya, I. 8 307
Nishi, N. 8 131
Nishi, T. 8 55
Nishibayashi, Y. 8 364, 367, 375, 462, 467, 477, 478 9 128, 129
Nishide, K. 8 81, 82
Nishigaki, J. 6 187
Nishiguchi, T. 8 261
Nishimura, S.-I. 8 131
Nishio, T. 7 1010
Nishiyama, H. 8 67, 475, 476 9 1, 2, 26, 31, 32, 99, 134, 135, 136, 147
Nishiyama, K. 8 291
Nishiyama, S. 8 97
Nishizawa, M. 8 239
Nissen, J. S. 7 667
Nitz, T. J. 7 783
Noble, D. 8 107
Node, M. 8 81, 82
Noe, M. C. 9 8
Author Index

Noel, C. 7 379, 381
Nogle, L. M. 8 321
Noguchi, M. 7 851, 914, 915
Noltemeyer, M. 6 25 8 185
Nomura, M. 9 72
Norcross, R. D. 9 50
Nordén, B. 6 127
Nordström, K. 8 225
Northuis, J. M. 8 89
Nötzol, M. W. 8 185
Novachek, K. A. 8 226, 329
Novak, K. 7 73
Novelli, R. 7 602
Novikova, M. I. 7 851, 914, 915
Novo, M. 5 10, 11 7 16, 17, 18, 19, 307
Novikova, M. I. 7 71
Novi, R. 7 602
Nutt, R. F. 7 786
Nuzillard, J. M. 7 795
O’Brien, P. 8 156
O’Hanlon, P. J. 6 47, 84
O’Hagan, S. 8 281
O’Reilly, N. J. 7 640
Oae, S. 8 399, 400
Obara, D. 7 594
Oba, M. 8 291
Obi, K. B. 9 52
Obrecht, D. 7 85, 111, 237, 255, 256, 257, 258, 259, 260, 261, 262, 263 8 196
Ochoa, T. 7 223
Oda, M. 8 357 9 130
Oda, H. 6 152
Odero-toshi, Y. 9 15, 49
Oganesyan, E. T. 7 471
Ogasawara, M. 8 116, 448
Ogata, K. 8 290
Ogletree, M. L. 8 114
Ogura, H. 8 256
Oh, C. M. 7 964
Oh, C.-Y. 8 280
Oh, E. 7 497
Oh, T. 9 43
Ohba, S. 8 97
Ohe, K. 8 130, 357, 367, 375, 413, 414, 423, 424, 450 9 128, 129, 130
Ohkuma, T. 8 452, 455
Ohta, H. 5 51
Ohta, T. 8 57 9 155
Oishi, T. 9 109, 110, 111
Ojima, I. 7 617, 793, 794 8 363
Okada, M. 7 55 8 502
Okamato, H. 6 103
Okazaki, M. 6 91
Okino, T. 8 321
Okin, J. F. 5 95, 96
Okubo, K. 7 521, 522
Okumoto, H. 8 162
Okumura, K. 8 155
Okuro, K. 9 72
Okuyama, H. 6 163
Olivieri, R. 6 191
Olivo, H. F. 8 161
Ollier, M. 5 24
Olson, D. B. 7 366
Omote, Y. 6 101
Onimura, S. 8 227, 229, 336a
Onishi, M. 9 18
Oonishi, K. 7 455
Opitz, W. 7 772, 773, 774, 775, 779
Ori, M. 7 1010
Orioli, P. 9 98
Oro, L. A. 7 627, 633, 637, 638
Orr, G. F. 7 919
Ortaño, R. M. 7 428, 954
Ortúñó, R. M. 8 276
Osaki, M. 5 47 6 74
Osman, A. 7 553
Osman, A. N. 7 808
Otero, D. A. 8 54
Otome, T. 7 246, 247
Trotshchenko, O. S. 8 401
Otsubo, T. 5 85
Otsuka, K. 5 67, 69
Ouellet, R. 7 57
Ousmer, M. 8 31
Overman, L. E. 8 333, 435, 441
Overmeire, I. V. 8 172
Oyama, A. 8 357
Oza, H. B. 7 824
Padeiskaya, E. N. 6 71
Padhye, A. M. 7 143
Padia, J. K. 7 230
Padwa, A. 5 10, 11 7 16, 17, 18, 19, 307
Pak, C. S. 7 902
Pal, D. R. 7 856
Palacios, F. 7 1012
Palacios, J. M. 5 80
Palamareva M. 7 984, 985
Palensky, F. J. 7 100, 341, 342
Paleveda, W. J. 7 786
Palković, A. 6 161
Palmer, D. C. 8 336b
Pan, Y. 6 60
Panda, H. 7 493
Pande, K. 7 719
Pandey, V. K. 7 698, 738
Pandita, S. 7 958
Pandya, A. 7 821
Panek, J. S. 6 42 8 228
Pannecoucke, X. 8 355
Pansare, S. V. 5 39
Pantano, M. 7 282, 285, 418, 438, 441
Panza, L. 8 132
Paoli, P. 7 505, 507
Papaleo, S. 8 298
Papini, A. M. 8 322
Papino, S. 7 505, 507
Parrkh, H. 7 715
Parthasarathi, V. 7 989, 1032
Pascu, M. 7 300
Pastor, A. 7 668, 669
Patel, H. 7 723
Patel, J. 7 1018
Patel, M. M. 8 114
Patel, P. 7 715
Patel, P. H. 7 714
Paterno, E. 8 287
Pathak, A. K. 7 690
Pathre, S. V. 7 101, 102, 239, 362, 388, 402
Patil, R. 7 739
Patonay, B. K. 6 51
Pavez, H. 7 322, 323, 325
Pavia, M. R. 7 318
Pavlov, P. A. 7 866
Pavlov, P. P. 7 866
Pavone, V. 7 270, 271, 277, 290, 291, 436
Pearce, N. J. 7 602
Pedersen, C. 8 93
Pedone, C. 7 270, 271, 277, 290, 291, 294, 295, 296, 436
Pedregal, C. 7 669
Peet, N. P. 8 101
Peggion, C. 7 434
Peggion, E. 7 282, 285
Pegoraro, S. 7 284
Pei, T. 8 482, 483
Pelli, B. 7 412
Pelzer, A. 8 176
Penades, S. 7 917, 918
Peng, S. 7 575
Peng, Y. G. 8 501
Pengo, B. 7 283
Penso, M. 7 117
Penton, H. R. 8 133
Pepino, R. 7 505, 506, 507
Perakorpi, K. 8 510
Percec, V. 8 70, 71
Perch, N. S. 8 480, 481
Peregrina, J. M. 7 935, 936, 937, 938, 940, 941, 942, 943, 944, 945, 946, 947, 1025, 1026 8 273
Peres, E. R. 5 23, 24
Perina, I. 6 161
Perlmutter, P. 8 257
Perni, R. B. 7 661
Perry, M. C. 8 459
Pershin, G. N. 6 71
Petel, S. S. 8 309
Perumal, P. T. 7 989
Pesaressi, R. J. 8 171
Peter, A. 7 623
Peters, E.-M. 8 31, 134
Peters, K. 8 31, 134
Peterson, G. S. 9 28
Peterson, M. J. 6 144
Peterson, S. L. 8 284
Petit, A. 8 200
Petric, A. 7 532, 884
Petrov, N. A. 7 595
Petersson, I. 8 283
Pez, G. P. 8 171
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfiffner, P.</td>
<td>7 263</td>
</tr>
<tr>
<td>Pharisa, C.</td>
<td>7 380</td>
</tr>
<tr>
<td>Phoebs, L. A.</td>
<td>7 675</td>
</tr>
<tr>
<td>Phelps, D. J.</td>
<td>7 466, 582, 663, 782</td>
</tr>
<tr>
<td>Philippé, J.</td>
<td>8 172</td>
</tr>
<tr>
<td>Philippides, A.</td>
<td>6 15</td>
</tr>
<tr>
<td>Phillips, A. J.</td>
<td>8 166</td>
</tr>
<tr>
<td>Pickardt, J.</td>
<td>8 28</td>
</tr>
<tr>
<td>Pickett, T. E.</td>
<td>8 369</td>
</tr>
<tr>
<td>Pieper, S.</td>
<td>8 213</td>
</tr>
<tr>
<td>Pierwocha, A. W.</td>
<td>7 169, 171, 310, 998</td>
</tr>
<tr>
<td>Pietra, F.</td>
<td>6 33</td>
</tr>
<tr>
<td>Pihko, P. M.</td>
<td>8 50, 136</td>
</tr>
<tr>
<td>Pilati, T.</td>
<td>7 1029</td>
</tr>
<tr>
<td>Piniella, J. F.</td>
<td>7 428, 954 8 276</td>
</tr>
<tr>
<td>Pinillos, M. T.</td>
<td>7 627, 637, 638</td>
</tr>
<tr>
<td>Pinna, G. A.</td>
<td>8 206, 427</td>
</tr>
<tr>
<td>Pippel, D. J.</td>
<td>8 348</td>
</tr>
<tr>
<td>Piquer, J. A.</td>
<td>7 113</td>
</tr>
<tr>
<td>Pires, E.</td>
<td>7 429</td>
</tr>
<tr>
<td>Pirring, M. C.</td>
<td>8 128</td>
</tr>
<tr>
<td>Pittalis, A.</td>
<td>8 95</td>
</tr>
<tr>
<td>Plamondon, L.</td>
<td>8 79</td>
</tr>
<tr>
<td>Plate, N. A.</td>
<td>7 768, 769</td>
</tr>
<tr>
<td>Pocar, D.</td>
<td>7 15, 106, 107, 117, 121, 122, 238, 305, 327, 518, 878, 882, 883</td>
</tr>
<tr>
<td>Pociene, D.</td>
<td>7 611</td>
</tr>
<tr>
<td>Pocock, G. R.</td>
<td>8 397</td>
</tr>
<tr>
<td>Pocsfalvi, G.</td>
<td>7 980</td>
</tr>
<tr>
<td>Pohjolainen, S.</td>
<td>8 509</td>
</tr>
<tr>
<td>Poindexter, G. S.</td>
<td>8 338</td>
</tr>
<tr>
<td>Poisson, J. E.</td>
<td>8 339</td>
</tr>
<tr>
<td>Poje, M.</td>
<td>6 161</td>
</tr>
<tr>
<td>Polanc, S.</td>
<td>7 120, 533, 541, 825, 853, 884</td>
</tr>
<tr>
<td>Polborn, K.</td>
<td>7 406, 407, 408, 409</td>
</tr>
<tr>
<td>Polinelli, S.</td>
<td>7 281, 284, 440</td>
</tr>
<tr>
<td>Pollini, G. P.</td>
<td>7 103, 104</td>
</tr>
<tr>
<td>Polo, C.</td>
<td>7 505</td>
</tr>
<tr>
<td>Polowyka, R.</td>
<td>7 373</td>
</tr>
<tr>
<td>Ponikwar, W.</td>
<td>7 1004, 1031</td>
</tr>
<tr>
<td>Ponndorf, W.</td>
<td>8 464</td>
</tr>
<tr>
<td>Popelis, J.</td>
<td>7 251, 780</td>
</tr>
<tr>
<td>Popelis, Y.</td>
<td>9 101</td>
</tr>
<tr>
<td>Popovic, D.</td>
<td>7 301</td>
</tr>
<tr>
<td>Porte, A. M.</td>
<td>8 119</td>
</tr>
<tr>
<td>Porter, N. A.</td>
<td>8 87, 88, 89</td>
</tr>
<tr>
<td>Poschenrieder, H.</td>
<td>7 885</td>
</tr>
<tr>
<td>Pöstages, R.</td>
<td>6 94, 96</td>
</tr>
<tr>
<td>Postle, S. R.</td>
<td>7 442</td>
</tr>
<tr>
<td>Poszavac, L.</td>
<td>8 91</td>
</tr>
<tr>
<td>Potschke, P.</td>
<td>8 506</td>
</tr>
<tr>
<td>Potts, K. T.</td>
<td>6 10, 11</td>
</tr>
<tr>
<td>Pouilhès, A.</td>
<td>8 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulin, J. C.</td>
<td>7 792, 795</td>
</tr>
<tr>
<td>Pouzar, V.</td>
<td>6 68</td>
</tr>
<tr>
<td>Powell, M. T.</td>
<td>8 459</td>
</tr>
<tr>
<td>Powles, K.</td>
<td>6 97</td>
</tr>
<tr>
<td>Pozgan, F.</td>
<td>7 825</td>
</tr>
<tr>
<td>Pradhan, S. D.</td>
<td>7 566</td>
</tr>
<tr>
<td>Prain, H. D.</td>
<td>7 602</td>
</tr>
<tr>
<td>Prajapati, D.</td>
<td>7 81, 330, 335</td>
</tr>
<tr>
<td>Prameela, B.</td>
<td>7 829</td>
</tr>
<tr>
<td>Pranis, R. A.</td>
<td>7 375</td>
</tr>
<tr>
<td>Prasad, C. R.</td>
<td>7 679, 680</td>
</tr>
<tr>
<td>Precigoux, G.</td>
<td>7 286</td>
</tr>
<tr>
<td>Pregosin, P.</td>
<td>9 25</td>
</tr>
<tr>
<td>Pregosin, P. S.</td>
<td>8 173, 420, 421 9 79</td>
</tr>
<tr>
<td>Prem, M.</td>
<td>7 406, 407, 408</td>
</tr>
<tr>
<td>Preobrazhenskaya, M. N.</td>
<td>6 71</td>
</tr>
<tr>
<td>Preston, J.</td>
<td>7 265, 266</td>
</tr>
<tr>
<td>Prétot, R.</td>
<td>8 358</td>
</tr>
<tr>
<td>Preussler, C.</td>
<td>7 907, 908, 909</td>
</tr>
<tr>
<td>Prewo, R.</td>
<td>7 23, 44</td>
</tr>
<tr>
<td>Price, D. A.</td>
<td>8 352</td>
</tr>
<tr>
<td>Price, D. W.</td>
<td>9 24</td>
</tr>
<tr>
<td>Prins, T. J.</td>
<td>7 608</td>
</tr>
<tr>
<td>Procter, G.</td>
<td>8 277</td>
</tr>
<tr>
<td>Prokopiev, E. P.</td>
<td>7 978</td>
</tr>
<tr>
<td>Protopopova, M. N.</td>
<td>8 489</td>
</tr>
<tr>
<td>Provent, C.</td>
<td>9 148</td>
</tr>
<tr>
<td>Prowse, W. G.</td>
<td>7 668</td>
</tr>
<tr>
<td>Prozonic, F. M.</td>
<td>8 171</td>
</tr>
<tr>
<td>Prudhomme, M.</td>
<td>5 23, 24</td>
</tr>
<tr>
<td>Puff, H.</td>
<td>7 419</td>
</tr>
<tr>
<td>Puig, C.</td>
<td>5 80</td>
</tr>
<tr>
<td>Puig, J.</td>
<td>5 80</td>
</tr>
<tr>
<td>Pummerer, R.</td>
<td>6 18</td>
</tr>
<tr>
<td>Püntener, K.</td>
<td>9 25</td>
</tr>
<tr>
<td>Purick, R. M.</td>
<td>8 278</td>
</tr>
<tr>
<td>Purohit, D. M.</td>
<td>7 724</td>
</tr>
<tr>
<td>Pushkareva, K. S.</td>
<td>6 36</td>
</tr>
<tr>
<td>Puts, R. D.</td>
<td>8 51</td>
</tr>
<tr>
<td>Qiu, Y.</td>
<td>8 43</td>
</tr>
<tr>
<td>Quinones, N. Q.</td>
<td>6 79</td>
</tr>
<tr>
<td>Quirion, J.-C.</td>
<td>8 355</td>
</tr>
<tr>
<td>Quiroga, M. L.</td>
<td>8 315, 316, 326, 327</td>
</tr>
<tr>
<td>Raabe, G.</td>
<td>8 370, 372, 373, 378</td>
</tr>
<tr>
<td>Raddatz, S.</td>
<td>7 772, 774, 775, 779</td>
</tr>
<tr>
<td>Radinov, R.</td>
<td>9 87</td>
</tr>
<tr>
<td>Radvany, B.</td>
<td>7 567</td>
</tr>
<tr>
<td>Radwan, A. M.</td>
<td>7 195</td>
</tr>
<tr>
<td>Raghavan, S.</td>
<td>8 242</td>
</tr>
<tr>
<td>Raghunathan, R.</td>
<td>7 154, 926</td>
</tr>
<tr>
<td>Rahm, F.</td>
<td>8 210</td>
</tr>
</tbody>
</table>
Author Index

Rai, M. 7 494
Rajanarendar, E. 7 829, 830
Rajaram, S. 7 968
Rajecas, F. J. 6 159
Rakhshinda 7 494
Ram, S. R. 7 956
Ramamurthi, K. 7 1032
Ramanujam, R. 8 386
Ramirez, D. 8 316
Ramirez-de-Arellano, C. 7 503
Ramiz, M. M. M. 7 886
Ramsh, S. M. 6 76, 78, 80, 81, 182
Rao, B. V. 8 230
Rao, C. C. 7 554
Rao, C. V. C. 7 732, 850
Rao, E. T. 7 830
Rao, G. 7 575
Rao, L. 7 141, 894, 895
Rao, P. S. 7 377, 481
Rao, R. B. 7 293
Rao, Y. S. 5 98
Rasgoti, A. 7 710
Rasparini, M. 6 97
Rasslan, A. M. 7 855
Rasslan, M. A. M. 7 854
Rassu, G. 7 95
Ratnam, C. V. 7 828
Ravenat, J. L. 7 56, 57, 58
Ravindranathan, T. 8 37, 198
Rawat, N. S. 7 813
Rawson, D. J. 8 166
Rayle, H. L. 8 517
Reau, R. A. 8 278
Rebek, J., Jr. 8 138
Rechavi, D. 9 161
Reddy, M. M. 5 98
Reddy, M. S. 7 828
Reddy, R. R. 7 732, 850
Reddy, V. M. 7 735, 740, 743, 744, 1019
Reed, A. D. 9 88
Rees, C. W. 7 321
Reibenspies, J. 8 457
Reibenspies, J. H. 8 419
Reichel, F. 9 63
Reid, A. 8 176
Reider, P. J. 7 236 8 246, 247, 248, 278 9 10, 30, 39, 117
Reilly, M. 9 43
Reinemuth, A. 9 112
Reiser, O. 8 243 9 158
Reissig, H. U. 9 35
Ren, Y. 7 599
Reno, M. J. 8 166
Reuman, M. 8 8
Reuter, H. 7 419
Reuter, W. 7 852
Reuxhausin, J. E. 8 66
Reyes-Rivera, H. M. 8 52
Rex, D. 7 379, 381
Rheingold, A.L. 8 117
Rehman, O. 9 44
Richards, C. J. 8 170, 174, 175, 181, 369, 382, 422
Richter, H. 6 192
Richter, W. F. 6 44, 45
Rickborn, B. 5 89
Ricker, C. B. 8 186
Ricquier, P. 5 22
Righetti, P. 9 47, 77
Righetti, P. P. 9 46
Ringold, C. E. 7 288
Ricci, M. 7 625
Riordan, J. M. 7 422
Riou, J. F. 5 24
Ripper, A.J. 8 419
Rissa, F. 7 1003
Risse, W. 9 112
Ritter, A. R. 8 281
Ritter, H. 8 95
Ritter, J. J. 8 244, 245
Riva, R. 7 327
Rizzacasa, M. A. 8 222, 393, 394, 395, 396
Roberson, M. 9 63
Robert, F. E. 8 246, 247
Robin, J.-P. 8 310, 313
Rocamora, M. 8 20
Rodena, R. 7 121
Rodriguez, F. 7 937, 1026
Rodriguez, H. 7 311, 312, 322, 323, 325, 328
Rodriguez-Parada, J. M. 8 70
Rodriguez, C. F. 7 1005
Roed, D. 6 137
Roemer, R. C. 8 517
Roelsky, H. W. 6 25 7 25
Rogozhin, S. V. 7 474
Roh, E. J. 6 108
Rojas, C. M. 8 305
Rumanenko, E. A. 7 168, 520
Romeo, G. 7 812
Author Index

Saso, H. 7 39
Sasse, P. A. 8 338
Satake, N. 5 12, 90, 91, 92
Sato, H. 7 55, 450
Sato, K. 5 3, 20
Sato, M. 7 959
Sato, T. 8 40
Satoh, T. 7 130
Satusrallya, S. C. 6 51
Satsangi, R. K. 7 717, 801
Saviano, M. 7 283, 294, 295, 296
Savineau, J. P. 5 24
Sawada, A. 7 585
Saxena, A. K. 7 472, 702, 720, 745
Sayed, G. H. 7 733
Sayed, M. A. 8 833, 835
Sbrana, G. 6 12
Schaad, D. R. 8 365
Schach von Wittenau, M. 6 70
Schafer, M. 8 396
Schaefner, S. 8 358, 426
Schaus, J. V. 6 42
Schenone, P. 7 159
Scheurer, A. 8 119
Schickfluss, R. 7 457
Schaffner, S. 8 358, 359
Schoenknecht, K. 7 628, 631
Schlanger, J. 6 68
Schmees, N. 8 442, 444
Schmidpeter, A. 7 910 8 325
Schmidt, R. 8 463
Schmidt, U. 7 790
Schmidt, W. 8 10, 341
Schmit, J. L. 6 60
Schmitt, G. 8 188
Schnepp, K. 7 909
Scholz, K. H. 7 78
Schneider, P. 8 358, 359
Schur, R. C. 6 141, 142, 143, 144, 145
Schobert, R. 5 37
Schou, L. 7 281, 282, 284, 285, 348, 440
Schoenenberger, A. 7 62, 63
Schoenholzer, P. 7 257, 258, 259, 260, 261, 262
Scholz, K. H. 5 64
Schönholzer, P. 8 196
Schreiner, B. 7 406
Schrijer, D. J. 6 65, 66, 67
Schröder, E. 6 56
Schuermann, G. S. 7 168
Schulte, K. E. 6 181
Schulz, E. 8 415
Schulz, G. 7 118
Schumacher, D. P. 8 205
Schumacher, R. 9 35
Schumacher, W. A. 8 114
Schwab, J. M. 7 987
Schwarz, G. 6 115
Schwarz, T. 7 280
Schwendener, C. F. 8 38
Schwieritz, M. 7 779
Schlaefani, J. A. 9 132
Scolastico, C. 6 97 9 91
Scortanu, E. 7 396
Scrimin, P. 7 996
See, R. F. 9 19
Seebach, D. 7 215, 216 8 331
Seeliger, W. 8 4
Seewald, I. 7 443
Segarra, V. 5 80
Segawa, K. 8 367, 375
Segre, A. 8 370, 372, 373
Segl’a, P. 8 207
Seifertling, B. 7 380
Sekacis, I. 7 309
Sekar, G. 8 488
Seketar, S. 5 76, 77
Kel, Z. 7 129
Selke, R. 7 639
Selva, M. 5 28
Selvakumar, K. 8 420, 421
Sen, A. K. 7 600
Sen, N. 7 292, 426, 650
Senanayake, C. H. 8 246, 247, 248 9 10, 30, 117
Senet, J. P. 7 379, 381
Sengupta, A. K. 7 683, 710, 716
Seppala, J. 8 509, 510
Sera, H. 7 347
Sercel, A. D. 6 67
Serelis, A. K. 8 219, 340
Sergheraert, C. 7 619
Severe, D. 5 24
Sewald, N. 7 93
Shaaban, M. A. 7 834
Shabana, R. 7 906
Shafer, C. M. 8 514, 515
Shafi, P. M. 7 692
Shah, A. 7 922
Shah, B. R. 7 723
Shah, M. 7 715
Shah, N. S. 7 713
Shah, V. H. 6 38 7 711, 724
Shah, V. P. 7 602
Shaikh, N. S. 8 37
Shalaby, A. M. 7 1017
Shamina, L. P. 6 76, 81
Shanker, K. 7 702, 720, 745
Shanker, P. S. 8 282, 284
Shapiro, R. 8 184
Sharma, M. K. 7 811
Sharma, R. 7 811
Sharma, R. C. 7 149
Sharma, S. 7 805, 871
Sharma, S. N. 7 108
Sharma, S. P. 8 282, 284
Shay, J. J. 9 94
Shchepinov, M. S. 8 48
Sheehan, J. C. 5 26, 27 62
Sheinker, V. N. 6 37
Sheldrik, G. M. 6 25
Shen, X. 8 575
Shen, Y.-Y. 8 494
Shen, Z. 7 606
Shenberg, N. A. 6 182
Sheppard, R. C. 7 264, 265, 266
Shepard, R. C. 7 264, 265, 266
Shi, D. 7 487
Shi, X. 8 344
Shi, Y. 7 109
Shi, Y. Z. 7 108
Shiba, S. A. 7 469
Shirasaki, M. 8 440, 485 9 42
Shibata, K. 8 81, 82
Shibata, T. 8 468
Shibuya, S. 5 8, 53, 54, 55, 56, 57 6 168, 169, 170, 171, 172, 173, 175, 176
Shida, T. 7 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 194
Shigeta, S. 7 880
Shimada, O. 7 461
Shimano, M. 8 317, 330, 379, 407, 408
Shimizu, H. 5 31, 32, 33
Shimizu, M. 5 5
Shimizu, T. 8 109
Shin, C.-g. 8 155
Shin, K. J. 7 69
Shingu, K. 8 81
Shinkawa, H. 7 183, 184, 185, 186, 187, 188, 189
Shioiri, T. 8 321
Shirai, M. 9 164
Shirali, S. S. 6 164
Shiu, L.-L. 8 260
Shoda, T. 6 128
Shoeb, T. 7 1005
Shoja, M. 7 317
Shono, T. 5 6
Showell, G. A. 7 602
Shpiro, E. S. 7 768
Shrimali, M. 7 736, 737
Shu, L.-H. 7 329
Shu, Y. 7 597
Shue, Y.-K. 6 85
Shukla, S. 7 873
Shukla, S. N. 7 857
Shvala, O. P. 5 29
Sibi, M. P. 9 89, 90, 94
Sidky, M. M. 7 906
Sih, C. J. 7 219, 220, 224, 227, 229
Sile, D. 7 309, 780
Sile, D. E. 7 110, 251, 781
Simig, G. 8 91
Simmerl, R. 7 51
Simonic, I. 7 161
Simova, E. 7 479
Simpson, G. W. 8 219, 340
Simpson, R. 8 54
Sin, N. 8 343
Sinbandhit, S. 8 294
Singh, A. 7 690
Singh, C. 7 721
Singh, E. 7 709
Singh, G. P. 8 30
Singh, H. 5 30 7 857, 860, 867, 868
Singh, I. S. 5 15
Singh, K. K. 7 509, 510, 534, 539, 975
Singh, M. K. 7 510, 539, 975
Singh, P. 5 30
Singh, R. 7 738
Singh, R. M. 7 509, 510, 534, 539, 975, 1015, 1032
Singh, R. P. 9 23
Singh, R. S. 7 534, 539, 1015
Singh, S. 5 30 7 722
Singh, S. K. 7 805
Singh, S. N. 7 805
Singh, S. P. 7 81, 336, 337, 485
Singh, V. K. 8 92, 488
Sinn, E. 9 20
Sircar, J. D. 6 65, 66
Sisido, M. 7 624
Sitachitta, N. 8 321
Siu, K. W. M. 7 1005
Škarić, V. 8 99
Slavinska, V. 7 309, 780
Slavinskaya, V. A. 7 110, 251, 781
Slawin, A. M. Z. 8 204
Slebioda, M. 7 13, 76, 415
Author Index

Sleim, M. A. 7 887
Slouka, J. 7 568, 586, 587
Smirnov, V. A. 5 4, 93
Smirnov, Yu. D. 7 960
Smith, A. B., III. 6 196 8 43, 227, 229, 336a
Smith, F. X. 6 17
Smith, G. R. 8 235
Smith, H. K., II 7 100, 341, 342, 343, 345, 346, 355, 357, 375, 386, 399, 400, 401, 402
Smith, L. R. 6 29, 30
Smith, P. M. 9 102
Smith, P. W. 8 107
Smith, S. A. 6 125
Smith, T. P. 7 369, 377
Smoliakova, I. P. 8 380
Soai, K. 8 468
Sobha, T. D. 7 692
Soca, L. 5 80
Sodeoka, M. 9 42
Södergren, M. J. 8 63
Sogah, D.Y. 8 51
Sohar, P. 7 1014
Sohda, T. 6 152, 153
Sokolov, V. I. 8 64
Solankee, A. 7 1018
Soliman, A. Y. 7 733, 832
Soliman, F. M. 7 906
Soliman, F. M. A. 7 837
Söllhuber, M. M. 6 133, 149
Sollis, S. L. 8 107
Soloshonok, V. A. 7 170
Solyom, S. 7 146, 147, 148
Somogyi, A. 7 980
Song, C. E. 6 108 9 138
Song, S. 7 68
Song, S. H. 8 511
Song, Y. 6 67
Soni, V. C. 7 691
Sorenson, R. J. 6 65, 66, 67
Sorotskaya, L. N. 6 35
Sosa, A. C. B. 8 271
Sotomayor, N. 6 174
Souc, F. 8 79
Soufiaoui, M. 7 925
Souhassou, M. 7 990
Souka, I. M. 7 837
Souka, L. M. 7 678
Southern, E. M. 8 48
Spalluto, G. 7 103, 104
Sparey, T. J. 9 129
Spassky, A. 7 64
Spek, A. L. 8 381
Spessely, V. 5 23
Speybroeck, D. 8 217
Spezialet, A. J. 6 29, 30
Spiegler, C. 7 257, 258, 259
Spiegler, M. 8 221
Spielman, M. A. 6 121, 122
Spindler, F. 8 456
Spoors, P.G. 8 43
Sprengeler, P. A. 8 227, 336a
Spyvee, M. R. 7 620
Srimal, R. C. 7 738
Srivastava, A. 7 1032
Srivastava, M. 7 689
Srivastava, R. P. 7 805
Srivastava, V. K. 7 720, 801
St. Amand, M. A. 7 13
Stabile, M. R. 5 58, 59
Stachel, H. D. 7 885
Stadlbauer, W. 6 158
Stamford, A. W. 8 160
Stammer, C. H. 7 288, 289, 421, 422, 783, 785, 919, 920, 921, 922
Stammler, H.-G. 8 213
Stanley, A. L. 8 361
Stanovnik, B. 7 157, 158, 160, 161, 162, 165, 508, 537, 540, 542, 578, 653, 770, 988
Stanssens, D. A. W. 8 214
Staples, R. J. 9 85
Stark, M. A. 8 181
Starkey, I. D. 8 107
Staudinger, H. 8 301
Stauffer, D. M. 7 354, 357, 359
Stecher, H. 7 212
Stefely, J. S. 7 372
Steglich, W. 7 11, 20, 21, 52, 53, 54, 105, 118, 119, 280, 306, 408
Steinauer, R. 7 249
Stella, L. 7 949
Stemp, G. 8 164, 168 9 37, 125
Stepinski, J. 7 605
Štěpnička, P. 8 122
Stepanova, M. A. 8 562
Sternberg, C. G. 6 94, 96
Sternberg, J. A. 6 94, 96
Stevens, A. M. 8 382
Stevens, J. 7 101
Stevenson, R. W. 6 184
Stierli, F. 7 256, 257
Stille, J. R. 7 876
Stoianova, D. 8 60
Störkoc, R. 8 220
Storr, R. C. 7 321
Stoughton, R. 6 120
Strah, S. 7 537
Streitwieser, A. 8 62
Strohauer, K. 6 114
Strohschein, R. J. 8 54
Strube, M. 7 443, 513, 531, 535, 536, 562, 563, 889
Stryukov, M. B. 7 447, 448
Stumbreviciute, Z. 7 611
Suarez, L. J. 6 60
Subhashini N. J. P. 7 843, 849, 1021, 1022
Suda, K. 7 298
Sudhanand, 7 293
Sudo, A. 8 384
Suenkel, K. 7 408
Suga, H. 8 297, 334, 335
Sugai, S. 5 20
Sugawara, S. 8 387, 388
Sugawara, Y. 9 32
Sugawara, Y . 7 255
Sugiyama, E. 5 52
Sugiyama, Y. 6 128 7 26
Suh, J. 7 497, 558
Sukumar, M. 7 292, 293, 426
Sulikowski, G. A. 9 119
Sümmermann, K. 6 102
Sun, C. 7 597
Sun, J. 8 180
Sun, W.-Q. 7 329
Sun, X.-L. 8 255
Sun, Y. 6 61
Sun, Z. 6 61
Sunagawa, K. 7 173, 174
Sunakawa, T. 8 227, 229, 336a
Sunel, V. 7 65, 232, 234
Suresh, B. 7 740
Surov, Yu. N. 7 446, 476, 972
Suryakumari, A. 7 919, 920
Suzuki, A. 8 387, 388
Suzuki, M. 7 919, 920
Tada, M. 6 198
Tadros, M. E. 7 681, 682
Takada, H. 8 357, 413, 414 9 128, 129, 130
Takada, S. 7 538
Takahashi, K. 7 618
Takahashi, M. 7 459, 460
Takahashi, T. 7 874, 879
Takaoka, A. 7 70
Takayanagi, H. 8 255
Takeda, T. 6 73, 74, 75
Takehara, T. 8 328
Takei, I. 8 467, 477, 478
Takeuchi, K. J. 9 19
Takeuchi, S. 9 114
Takewa, K. 6 177
Talbi, B. 7 320
Talley, J. J. 7 127
Tamao, K. 8 251, 405
Tamariz, J. 5 16, 97
Tamas, V. 7 456
Tamam, C. 7 424
Tamam, M. 8 185, 186
Tamam, G. H. 7 176
Tamura, M. 7 289, 421
Tamura, T. 6 135
Tamura, Y. 7 313
Tanaka, A. 7 453, 454, 970
Tanaka, H. 8 227, 229, 336a
Tanaka, J. 9 15, 49
Tanaka, K. 5 31, 32, 33
Tanaka, T. 7 793, 794
Tandon, P. 7 719
Tan, K. 7 313
Taniguchi, M. 5 3
Tanner, D. 7 823
Tararov, V. I. 7 205
Tarraga, A. 8 501, 503
Tartar, A. 7 619
Tarvainen, T. 8 509, 510
Author Index

629

Tatsuki, Y. 6 183
Taudien, S. 7 628
Tavares, F. 8 143
Tavernier, D. 5 22
Tawada, H. 6 57, 128
Taylor, E. A. 8 133
Taylor, G. A. 7 87
Taylor, G. J. 7 89
Taylor, L. D. 7 352, 358, 384, 385
Taylor, M. 9 133
Taylor, P. C. 9 129
Taylor, S. J. C. 7 222
Tchertanov, L. 7 1000
Tedenborg, L. 8 283
Tedrow, J. 9 149
Tedrow, J. S. 9 81, 97
Teheovnik, A. 8 252, 253, 254, 275
Temperini, A. 8 252, 253, 254, 275
Temple, D. L. 8 69
Tenmaru, K. 6 163
Terada, M. 8 497
Ter-Zakharyan, Yu. Z. 7 777, 778
Testaferri, L. 8 252, 253, 254, 274, 275
Texier, F. 7 320
Texier-Boulet, F. 8 200
Thakar, K. A. 7 143
Thakrar, V. H. 7 713
Theissen, R. J. 6 180
Thessalonikeos, E. 7 647, 927, 929
Thier, W. 8 4
Thomas, E. J. 8 66
Thomas, J. 8 518
Thomas, M. 7 381
Thondorf, I. 7 513, 531, 535, 536, 562, 563, 889
Thurlby, P. L. 6 125
Thutewohl, M. 8 186
Thyagarajan, G. 7 331
Tian, W. 7 27, 32, 35, 41, 42
Tian, W-S. 7 28
Tiecco, M. 8 252, 253, 254, 274, 275
Tikare, R. K. 7 315
Tikdari, A. M. 7 523, 666, 799, 818, 844, 845, 862, 863
Tilbury, R. S. 6 136
Tingoli, M. 8 274, 275
Tiripicchio, A. 8 461
Tirosh, N. 5 36
Tisler, M. 7 120, 157, 158, 160, 161, 165, 533, 537, 770, 988
Tittas, R. 7 126
Tiwari, D. C. 7 690
Tiwari, S. S. 7 717
Tocher, D. A. 9 27
Togo, H. 8 292
Toh, M. 7 194
Tokunaga, M. 7 209
Tokunoh, R. 9 42
Tokura, S. 8 131
Toldy, L. 7 146, 147, 148
Tolhurst, K. F. 9 133
Tolomelli, A. 8 189, 190, 191, 259, 264, 265, 266, 267, 268, 269
Tomasoni, C. 8 189, 190, 191, 259, 270
Tomatis, R. 7 787
Tomilov, A. P. 7 960
Tomina, G. Y. 8 289, 290
Tomokura, A. 7 521, 522
Tomiyama, H. 9 42
Tommaso, M. L. 8 415
Tommasini, C. 8 252, 253, 254, 274, 275
Tomei, A. 7 252, 253, 254, 274, 275
Tonnard, F. 7 320
Toppet, S. 6 89 8 516
Tosello, O. 7 204, 484, 496, 571, 572, 777, 778, 1008
Tores, S. 7 445
Tori, T. 6 31, 32 9 157
Toshimitsu, A. 8 251
Toth, G. 7 623
Toupet, L. 8 294
Tourwe, D. 7 623
Towers, T. D. 8 156
Toyoda, Y. 7 198
Toyota, A. 7 959
Trabesinger, G. 8 173
Traldi, P. 7 412, 413, 980, 981
Trahube, W. 6 1
Tregay, S. W. 9 57, 150
Tredathi, G. K. 8 25
Trigo, G. G. 6 130, 131, 132
Trimarco, P. 7 15, 319
Tripathi, R. K. 7 857
Tripathy, P. K. 7 137, 138, 139, 156, 498, 559, 579, 684, 862, 893, 897
Trivedi, B. 7 711
Trivedi, B. K. 7 230
Trivedi, P. 7 511
Trivedi, P. B. 7 699, 700, 723
Trkovnik, M. 6 50
Trofimkin, Yu. I. 7 495
Troisi, L. 8 346
Trost, B. M. 7 112, 113, 114, 115, 116 8 96, 416, 418
Trujillo, G. 5 16
Tsaklidakis, C. 6 189
Tsitlanadze, G. 7 405
Tsou, N. 5 38
Tsubokawa, N. 8 503
Tsuboniwa, N. 6 26, 27
Tsuge, O. 7 851, 914, 915
Tsukada, N. 8 40
Tsukamoto, S-i. 6 135
Tsutsui, H. 9 109, 110, 111
Tumey, M. L. 7 344
Troilo, P. 5 28
Tuominen, J. 8 509, 510
Turberg, A. 7 36, 570
Turchi, S. 8 298, 299, 300
Turchin, K. F. 6 71
Turek, T. C. 7 375
Turkovsky, I. V. 7 781
Turner, N. 7 226
Turner, N. J. 7 222, 999
Turney, L. N. 8 128
Tuskaev, V. A. 7 471
Tyagi, O. D. 7 603
Tzichinovsky, S. 7 325
Uchida, I. 8 323
Uchida, Y. 8 400
Uchino, N. 6 91, 187
Ueda, H. 8 290
Ueki, M. 5 83
Uemura, S. 8 80, 130, 357, 364, 367, 375, 413, 414, 423, 424, 437, 438, 450, 462, 467, 477, 478 9 128, 129, 130
Ueoka, M. 8 462
Uflyand, I. E. 6 37
Ugai, S. 6 99
Ugboaja, C. I. 7 511
Uhr, H. 7 36
Ukaji, Y. 9 114
Ulbricht, H. 6 55
Ulrey, S. S. 6 60
Umani-Ronchi, A. 9 98, 139, 156
Umbricht, G. 9 33, 41, 78
Unangst, P. C. 6 65, 66, 67
Undavia, N. K. 7 699, 700, 723
Underwood, A. H. 7 602
Ungureanu, M. 7 234
Uozumi, Y. 8 116 9 14, 143
Upadhyay, P. 7 821
Upadhyay, P. S. 7 729, 810
Upadhyay, V. 8 278
Urano, K. 7 521, 522
Urano, S. 6 26, 27
Urban, F. J. 7 131
Usada, S. 6 135
Ushenko, N. K. 6 190
Uson, R. 7 627, 633, 637, 638
Uto, Y. 8 166
Uvarova, N. V. 6 71
Uyama, H. 8 508
Uziel, J. 8 322
Vaish, A. 7 869, 870
Val’ter, N. I. 6 35
Valente, E. 7 427
Valenti, R. 8 206, 208, 427
Valentini, M. 8 420, 421
Valk, J.-M. 8 381
Van Damme, S. 5 22
Van der Plas, H. C. 6 69
van der Sluis, P. 8 381
Van Haverbeke, Y. 7 877
van Koten, G. 8 381
Van Lier, E. J. 7 56, 57
Van Meervelt, L. 7 168
Van Vranken, D. L. 8 416
Vanden Eynde, J. J. 7 875, 877
Vanderstichele, S. 7 623
Vanotti, E. 8 78, 314
Vaquero, J. J. 7 668, 669
Vargeese, C. 8 241
Varughese, K. I. 7 921
Vashi, B. S. 6 38
Vasil’eva, T. Yu. 7 791
Vasiljev, A. 7 300
Vassilev, V. P. 8 81
Vasuki, G. 7 1032
Vaughn-Settle, A. 8 241
Veber, D. F. 7 786
Vecchione, A. 8 270
Vedenyapin, A. A. 7 621
Vederas, J. C. 5 39
Vekemans, J. 7 83
Vela, M. A. 7 601
Venkataratnam, R. V. 7 481, 977
Venkatraman, S. 8 151, 154, 318, 336b
Venter, D. P. S. 7 590
Verbruggen, A. 6 89
Author Index

Vercek, B. 7 120, 529, 530, 532, 533, 543, 861, 884
Verček, B. 8 187
Vergne, F. 8 139
Verhoeven, T. R. 8 246, 248 9 10, 30, 39, 117
Verley, 8 465, 466
Verma, M. 7 745
Verschave, P. 7 83
Vertut, M. C. 7 982
Vicković, I. 6 161
Videnov, G. 8 218
Vijayan, M. 7 435
Vilkovic, I. 6 161
Vikramadithyan, R. K. 6 188
Villa, M-J. 6 174
Villacampa, M. 6 133, 149
Villeneuve, G. 7 905
Vinetskaya, Yu. M. 7 449
Vinogradova, T. K. 7 515
Vite, G. D. 8 230
Viziano, M. 7 878
Vlasenko, E. V. 7 777, 778
Vogel, P. 8 311
Vogl, E. M. 8 440
Vogt, J. 7 383
Voit, B. 8 506
Vojkovsky, T. 9 57, 150
Volante, R. P. 7 236 8 278
Vollerthum, R. 8 230
Volonterio, A. 5 18
von Itzstein, M. 8 103, 104, 105, 106
von Matt, P. 8 358, 433
Von Matt, P. 9 50, 78, 79
Von Weissborn, V. 6 181
Vorbrüggen, H. 8 27
Vuayalakshmi, L. 7 989
Vuilhorgne, M. 6 106
Vulpetti, A. 8 78, 314
Vyazovkina, T. 8 72, 75
Vyazovskaya, O. 8 208
Vyazovskiy, V. I. 8 208
Vygostky, L. S. 6 38
Vysotskii, V. I. 8 208
Wada, E. 8 44 9 15, 49
Wada, N. 5 13
Wada, T. 7 460
Wade, M. J. 8 68
Waegell, B. 9 127
Wagner, K. 6 195
Wagner, M. I. 9 107, 108
Waldner, A. 6 160
Walker, G. 6 47, 84
Walker, M. M. 7 354, 357, 359, 363, 367
Walters, D. L. 7 74
Wang, D. 7 597
Wang, H.-S. 8 90, 353
Wang, J. 7 79, 235
Wang, P.-C. 5 21
Wang, X. 8 100
Wang, Y. 7 487
Wang, Z. 9 100
Wanibuchi, F. 6 135
Wantanabe, Y. 9 157
Ward, D. L. 7 876
Ward, R. S. 7 210
Ward, T. J. 7 231
Warkentin, J. 6 19
Watanabe, M. 8 292
Watanabe, T. 7 173, 174, 183, 184, 185, 186, 189,
190, 191, 194 8 72, 75
Watson, W. 8 156
Webb, M. L. 8 112, 114
Weber, B. 9 33
Weber, G. 7 51
Webster, F. X. 8 344
Weerts, P. A. 8 214
Wegmann, H. 7 118, 119
Weigand, S. 7 114
Weigel, M. 7 565
Weinfeld, M. 7 59, 60, 61
Weir, N. G. 8 108
Weiss, D. 6 195
Weiss, S. 6 59
Weissman, S. A. 8 278
Wellmann, M. 8 380
Wendel, M. 7 965
Wepplo, P. J. 7 233
Westwell, A. D. 8 411
Wetmore, S. I., Jr. 7 18
Wetzel, B. 7 852
White, A. J. P. 8 115
Whitney, R. C. 7 620
Whiting, A. 9 66
Whitney, S. E. 5 89
Wick, L. 7 424
Wiczk, W. 7 1016
Widdowson, D. A. 8 115
Widenhoefer, R. A. 8 480, 481, 482, 483
Wiese, B. 8 385
Wilk, W. F. 7 631, 632
Wild, H. 7 52
Wiley, R. H. 8 2
Wilkinson, J. A. 8 277
Willemsen, J. J. 8 49
Williams, A. 7 202
Williams, A. F. 9 148
Williams, D. J. 8 115
Williams, D. R. 8 166, 169, 305
Williams, J. M. J. 8 201, 202, 203, 204, 411, 412, 430, 434, 487
Williams, T. J. 7 1013
Williamson, R. T. 8 321
Willis, M. C. 9 96
Willock, D. J. 8 410
Wilson, P. C. 9 66
Wilson, R. M. 5 25
Winterman, J. R. 7 222, 226
Wipf, P. 7 22, 23, 43, 44, 268, 269 8 17, 18, 140, 149, 150, 151, 154, 163, 166, 168, 318, 320
Withrow, C. D. 6 93
Wittenberger, S. J. 9 95
Witty, D. R. 6 47, 84
Włodzimierowski, M. 6 165
Wodeck, Z. 7 415
Woerpel, K. A. 9 4, 28
Woitun, E. 7 852
Wolf, R. M. 6 160
Wong, C.-H. 8 81, 82
Wong, H. N. C. 7 564, 589
Wong, H.-M. 7 40, 329
Wong, J. H. 8 321
Wood, R. 6 147 8 199
Woodward, S. 9 20
Wörle, M. 8 420 9 25
Wozniak, J. 8 24
Wright, C. D. 6 65, 66
Wrobel, J. 6 150
Wu, F.-H. 7 40
Wu, H.-M. 7 40, 329
Wu, J. H. 9 87, 88, 89
Wu, M. 8 321
Wu, M. Y. 5 88
Wu, S.-H. 7 40, 329
Wu, W.-Y. 8 105
Wu, X.-H. 7 180
Wu, X.-Y. 8 451, 494
Wuts, P. G. M. 8 6, 89
Xie, D. 8 98, 431, 445
Xie, L. 7 217
Xie, S. 7 378, 382
Xu, H.-D. 8 451
Xu, J.-F. 7 40, 329
Xu, W. 8 320
Xu, Z.-L. 7 564, 589
Xue, F. 7 588
Yadav D. S. 7 859, 872
Yadav L. D. S. 7 856, 857, 858, 859, 867, 868, 869, 870, 871, 872, 873
Yadav, R. 7 859, 869
Yagupol’skii, Y. L. 7 754, 757
Yamabe, K. 7 585
Yamada, A. 7 55
Yamada, A. F. 9 148
Yamada, D. J. 8 115
Yamada, D. R. 8 166, 169, 305
Yamada, K. 8 277
Yamagishi, K. 8 271
Yamaguchi, A. 7 596
Yamaguchi, M. 7 796
Yamaguchi, S. 9 136
Yamaguchi, T. 7 560
Yamamoto, H. 8 44, 72, 73, 74, 75, 362 9 15, 49, 86
Yamamoto, T. 5 50 8 304
Yamamoto, Y. 8 257
Yamamoto, Y. 9 106
Yano, T. 6 99
Yao, S. 9 61, 62, 63, 65, 71
Yatabe, M. 8 323
Yatabe, M. 8 793, 794
Yata, M. 7 626
Yazawa, H. 7 462
Yebdri, O. 7 320
Yijima, C. 7 298
Yoko, T. 6 99
Yoko, T. 7 793, 794
Yoko, T. 5 33
Yoko, T. 7 323
Yoko, T. 8 323
Yoko, T. 8 323
Author Index

Zaalishvili, M. M. 7 397, 398
Zabrocki, J. 7 151
Zacharias, D. E. 6 16
Zagal, L. 7 311
Zai, Y-H. 7 28
Zaitsev, L. M. 7 613
Zaks, A. S. 6 64
Zalinyan, M. G. 7 583
Zanda, M. 5 17, 18
Zanirato, V. 7 103, 104
Zankowska-Jasinska, W. 6 22
Zanocco, A. L. 7 1002
Zard, S. Z. 8 24
Zask, A. 6 186
Zav’yalov, S. I. 7 123, 124, 167
Zavyalov, S. I. 7 482
Zayed, S. E. 7 842
Zehnder, M. 7 424 9 79
Zenner, J. M. 9 116, 142
Zerner, M. C. 6 8
Zhai, Y. 8 241
Zhang, D.-W. 7 329
Zhang, G. 9 88
Zhang, H.-Y. 9 6
Zhang, J. 7 79, 235 9 95
Zhang, W. 8 144, 377, 429
 9 12, 38, 137, 154
Zhang, X. 7 383 9 140, 141, 146
Zhang, Y. 7 599, 606
Zheltonog, N. G. 6 76
Zhou, P. 8 36
Zhou, Q.-L. 8 211, 428, 451, 494
Zhu, G. 9 140
Zhu, J. 8 60, 59
Zhuang, W. 9 163
Zhidkov, A. K. 7 595
Ziemann, K. 7 908
Zimmermann, N. 8 359, 426
Zistler, P. 7 280
Zook, S. E. 8 126
Zor, L. 7 161
Zottola, M. A. 8 230
Zsako, J. 7 456
Zubareva, N. D. 7 621
Zurbano, M. M. 7 1025
Zyuz, K. V. 7 515, 520

Yokota, Y. 7 38
Yokoyama, M. 8 292
Yokozawa, T. 8 328
Yon, G. H. 7 902
Yonehara, K. 8 130, 423, 424, 450
Yoo, Y. S. 8 232
Yoon, J. 8 124
Yoon, S. S. 7 497
Yorke, S. C. 8 129
Yoshida, J. 8 405
Yoshida, K. 8 116, 448
Yoshida, M. 8 239
Yoshinaga, H. 8 377
Yoshikawa, S. 8 503
Yoshimo, S. 7 557
Yoshinaga, H. 8 377
Yoshioka, H. 5 5
You, A. 7 41
Yu, F. X. 7 948
Yu, X-D. 7 40
Yuan, Y. 7 598, 599
Yuasa, H. 7 130
Yuasa, Y. 5 8, 53, 54, 55, 56, 57 6 167, 168, 169, 170, 172, 173, 175
Yunta, M. J. R. 7 145
Yuumoto, Y. 8 307
Subject Index

General oxazolone and oxazoline substitution patterns are described in the text although entries in an associated table may be more specific in accordance to the examples from the original literature. For instance, a table of 4,5-diphenyl-2(3H)-oxazolones can be referred to in the text as 4,5-disubstituted 2(3H)-oxazolones. Tables of oxazolones and oxazolines that incorporate multiple substitution patterns or functional groups are titled with a general designation as 2(3H)-oxazolones, 5(2H)-oxazolones, saturated 5(4H)-oxazolones, unsaturated 5(4H)-oxazolones, and oxazolines. The individual entries in a table are not included in the index. *Italicized* page numbers refer to tables.

Alphabetized lists of the general classes and exact names of oxazolones, oxazolines and bis(oxazolines) follow the subject index. The list of general classes of oxazolones, oxazolines and bis(oxazolines) includes all classes described in the text or tables as either starting materials or products. The entries in these lists are sorted and arranged in accordance with the sort order rules defined in Microsoft Word. The subject index is cross-referenced wherever possible to facilitate locating a general substitution pattern, a synthetic method or a reaction.

For example, using a ketone as a starting material, the general classes of compounds that can be prepared include 2(3H)-oxazolones, 3-ary1-5-tert-butyl-2(3H)-oxazolones, 3-ary1-5-phenyl-2(3H)-oxazolones, 4-(alkylthio)-5(2H)-oxazolones, 4-(ary1thio)-5(2H)-oxazolones, 4-alkoxy-5(2H)-oxazolones, 4,5-diphenyl-2(3H)-oxazolones, 4,5-diphenyl-2(3H)-oxazol-2-thiones, and 5(2H)-oxazolone N-oxides, which are identified as bolded entries.

Additionally, all of these bolded entries are included alphabetically in the list of general classes of compounds that follows the subject index. Here, for example, the entry for 2(3H)-oxazolones lists all pages that discuss 2(3H)-oxazolones and will direct one not only to the pages that use ketones as a starting material but to other synthetic methods or reactions as well.

A table index follows the subject index.

Acaricides, 143, 210
ACE inhibitor, 367
Acetophenone, 578
Acetylation of 2-amino-4(5H)-oxazolones, 82–83
β-N-Acetylglycosamine inhibitor, 360
N-Acetyleneuraminic acid, 390
(R)-Actinidolidide, 560, 561
Actinoidic acid, 340, 343, 462
Activating agents, 187
Acyclic carbamates or urethanes, 3–7, 47
Acyl cyanides, 59
5-acloxy-4(5H)-oxazolonium salts, 59
Acyl donors, 183
Acyl isocyanates, 120
2-alkyl-4(5H)-oxazolones, 120
2-alkyl-4-oxazole triflates, 120
N-Acyl α-lactams, 56
Acylacetamides, 12, 14, 13, 14
Acylacetimidides, 12, 14, 13, 14
3-ary1-5-substituted-2(3H)-oxazolones, 12
5-alkyl-3-ary1-2(3H)-oxazolones, 12, 13
5-alkyl-3-ary1-4-halo-2(3H)-oxazolones, 12, 14
N-ary1-N-(hydroxy), 12, 13
N-ary1-N-(hydroxy)-α-halo, 12, 14
α-lactam intermediates, 12

635
Acylation, synthesis of saturated 5(4H)-oxazolines, 191–192, 194
bisoxazoles, 191
2,5-diaryloxoazoles, 191, 194
2,5-disubstituted oxazoles, 192
preparation of α-acylamino ketones, 192
preparation of amino ketones, 191

Acylating reagents, 32
chemoselective, 32
regioselective, 32

Acylation, 82, 109

-N-aryloxy 2,4-oxazolidinediones, 109
-N-sulfonyloxy 2,4-oxazolidinediones, 109
of 2-amino-4(5H)-oxazolones, 82
of 5-alkyl-2,4-oxazolidinediones, 109
of 5-phenyl-2,4-oxazolidinedione, 109
of 5,5-disubstituted-2,4-oxazolidinediones, 109

Acylation, synthesis of saturated 5(4H)-oxazolines, 168–171, 170, 287
2-phenyl-4-propionyl 5(4H)-oxazolone, 168
4-acyl-2,4-diaryl 5(4H)-oxazolones, 287
4-acyl-2,4-disubstituted 5(4H)-oxazolones, 170
4-acyl-5(4H)-oxazolones, 169–170
5-acyloxyoxazoles, 168–169
from O-acylation, 168
rearrangement to 4-acyl-5(4H)-oxazolones, 168
C-4 vs. O-acylation, 168–169
ketomethylene pseudodipeptides, 169
ketomethylene pseudopeptides, 170
of 2-aryl-5(4H)-oxazolones, 171
of 2-phenyl-5(4H)-oxazoline, 169
of 2,4-disubstituted 5(4H)-oxazolones, 170
of 4-alkyl(aralkyl)-2-phenyl-5(4H)-oxazolones, 169
of 4-monosubstituted 5(4H)-oxazolones, 169
of 4-unsubstituted 5(4H)-oxazolones, 169
synthesis of
α-amino ketones, 169
difluoroketones, 169
trifluoroketones, 169

N-Acylaziridines, oxazoline synthesis, 398–402
2,4-disubstituted oxazolines, 398, 400
2,5-disubstituted oxazolines, 398
2-carboximides, 401–402
rearrangement to oxadizidinones, 402
rearrangement to oxazolines, 401–402
mechanistic studies, 400
mechanistic studies, 400
molecular orbital calculations, 400
(R)-oxytriphine, 401
rearrangement to oxazolines using, 398

nucleophiles, 398–399
Lewis acids, 400–401
N-Acyliminium ions, 109
2,4-oxadizolidinediones as precursors to α-hydroxy lactams, 109
Acylisothiocyontates, oxazoline synthesis, 417

spirocyclic oxazolines, 417
Acyl nitirennes, oxazoline synthesis, 415
lankacidin antibiotics, 415
5-Acylxyoxazoles, 159, 168–169, 170

2-phenyl-4-propionyl 5(4H)-oxazolone, 168
4-acyl-2,4-disubstituted 5(4H)-oxazolones, 170
4-acyl-5(4H)-oxazolones, 159
quaternary stereocenters, 159
rearrangement to 4-acyl-5(4H)-oxazolones, 168
N-Acyl sulfilimines, 56–57
5,5-diphenyl-2-substituted 4(5H)-oxazolones, 56, 57
N-acyl α-lactam, 56
Agrochemicals, 171, 176, 236
AHMHA, 24
AHPBA, 24
Alanine(s), see amino acids and derivatives
Alatamide, 235

Aldehydes, 63–64, 64, 210, 292
2-[(α-heteroaryl)ethenyl]-4(5H)-oxazoloniium perchlorates, 64
Erlenmeyer synthesis of unsaturated 5(4H)-oxazolones, 210, 292
reaction with oxazoloniium salts, 63–64, 64
Aldol condensation/reaction, 162, 211, 437
(6R)-lactacystin, 437
clasto-lactacystin β-lactone, 437
Aldol reaction, Mukaiyama, see Mukaiyama Aldol reaction
Aldose reductase inhibitors, 99, 102, 113
Alkenes, synthesis of oxazolines, 398
2-Alkoxo-5(4H)-oxazolones, 177–178
2-[(9-fluorenymethyl)oxy]-5(4H)-oxazolones, 177
2-benzylxy-5(4H)-oxazolones, 177
4,4-dimethyl-2-[(9-fluorenymethyl)oxy]-5(4H)-oxazoline, 178
amino acid chlorides, 177
carbodiimides, 177
enantiomerization, 177, 178
(-)-mirbazole C, 178
mixed anhydrides, 177
ring-opening polymerization, 178
Toac, 178
5-Alkoxyoxazoles, 138, 155–160, 160
2-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-5(2H)-oxazolones, 158
5-(2H)-oxazolones, 138
sigmatropic rearrangement, 137
4-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-5(4H)-oxazolones, 158
4-benzyl-2-phenyl-4-(trifluoromethyl)-5(4H)-oxazolone, 158
5(4H)-oxazolones, 155–160
saturated 5(4H)-oxazolones, 160
allylic alcohols, 156
Claisen rearrangement, 155–160
propargylic alcohols, 157
Alkylation of 2(3H)-oxazolones, 42
5-ethoxyoxazoles, 42
Meerwein’s salt, 42
Alkylation of 4(5H)-oxazolones and 2,4-oxazolidinediones, 94, 108, 110–111
of 2-amino-4(5H)-oxazolones, 82
of 2,4-oxazolidinediones, 94, 108, 111
3-alkyl-2,4-oxazolidinediones, 108, 109
5-benzyl-2,4-oxazolidinediones, 111
5,5-disubstituted 2,4-oxazolidinediones, 111
at C-5, 110–111
Mitsunobu reaction, 108–109
N- vs O-, 94, 108
preparation of N-acyliminium ion precursors, 108
5(2H)-oxazolones, 135
alkylation at C-2, 135
C-2 vs. C-4, 134–136, 160
α-diketones, 134
4.4-(diaryl methyl)-2-phenyl-5(4H)-oxazolones, 163
4.4-dialkyl-5(4H)-oxazolones, 162, 163
α,α-dialkyl-5(4H)-oxazolones, 160
saturated 2,4,4-trisubstituted-5(4H)-oxazolones, 165
asymmetric, 163
C-2 vs. C-4, 134–136, 160
intramolecular, 171
sorbinil, 171
spiroalkylation, 171
of 2-substituted 5(4H)-oxazolones, 162
dialkylation, 163
α,α-disubstituted amino acids, 162
of 2-unsubstituted 5(4H)-oxazolones, 162
aldo reactions, 162
formyl anion equivalent, 162
Michael adducts, 162
of 2,4-disubstituted-5(4H)-oxazolones, 163–164
asymmetric, 163, 164
chimeras, 163
α-halo ketones, 164
palladium catalyzed, 163
phase transfer catalysis, 163, 164
quaternary amino acids, 163
sphingosine analogs, 164
Alkylation of imines and oximes, 570–572, 571, 587
aldehydes, 587
diethylzinc, 587
imines, 570–572
allylzinc reagents, 570, 571
asymmetric addition, 571
bu-box, 570
cyclic, 570, 571
enantioselective, 571
i-pr-box, 570
oximes, 572
alkylzinc reagent, 572
Alkylation of oxazolines, 433–435
oxazolinium salts, 433–435
Allene annulation, 574–575
inda-box, 575
Allyl N-acylphenylglycinates, 137
2-allyl-4-phenyl-5(2H)-oxazolones, 137
sigmatropic rearrangement, 137
Allyl amides (enamides), oxazoline synthesis, 402–406
trans-5-vinyl substituted oxazolines, 404
cis-1,2-amincyclopentenol derivative, 404
5-vinlyloxazolidinones, 404
balanol, 406
Indinavir, 404
Allylation and cyanohydrin formation, 569–570, 587
Allylic alcohols, 381, 389, 390
precursors to β-amino alcohols, 389, 390
precursors to β-halo amides, 381
reaction with trichloroacetonitrile, 381, 389
Allylic oxidation, 577, 577
inda-box, 577
Allylic substitutions, 487–493, 489, 490, 491, 562–564, 563, 564, 588
allylic imidate rearrangements, 491–492
ferrocenoxazolines, 491
asymmetric allylic acetates, 563
(E)-cinnamyl methyl carbonate, 564
diethylmalonate, 562–564, 563, 564
Allylic substitutions (Continued)
1,3-diphenylallyl acetate, 562–564, 563, 564
enantioselective substitution, 563, 564, 588
ferrocene-box, 564
hard nucleophiles, 492
intramolecular allylic amination, enantioselective, 492
nickel (0) catalyzed substitutions, 492
palladium-catalyzed alkylation with, 488–493, 489, 490, 491
3-acetoxycyclohexene, 490, 491
3-acetoxycyclopentene, 490
dimethylallyl acetate, 490, 490
dimethylallyl tert-butylcarbonate, 490, 490
diphenylallyl acetate, 487–489, 489
PhosOx ligands, 490, 491, 492, 493
platinum-catalyzed alkylation, 491
soft nucleophiles, 487–493
acetylacetone, 489
arylboronic acids, 493
benzyl amines, 489
dimethyl malonate, 487–489, 489, 490, 491
dimethyl methylmalonate, 489
silyl enolates, 489
x-ray crystal structure, 489, 491
2-Allyloxyoxazoles, 7
3-allyl-4,5-diphenyl-2(3H)-oxazolones, 7
2(5H)-oxazolones, 7
[3,3]-sigmatropic rearrangement, 7
aza-Claisen rearrangement, 7
photolysis, 7
Allylzincation, enantioselective, 573
Almazole D, 62
Amidines, reaction with carbon dioxide, 142, 142
4-(dialkylamino)-5(2H)-oxazolones, 142
4-(N,N-dialkylamino)-5(2H)-oxazolones, 142
Amination, of enolides, 581
bu-box, 581
cis-1-Amino-2-indanol, 395
2’-Amino-2’-deoxycytidine, 393
2’-Amino-2’-doxyuridine, 393
α-Amino acid esters, 7, 9, 43, 45
5-alkoxy-2(3H)-oxazolones, 7, 9
N-chloroacrylation of amino acid esters, 7
5,5-dialkoxo-2-oxazolidinones, 43, 44, 45
from 5-alkoxy-2(3H)-oxazolones, 43, 45
Amino acid hydroxylases, 72
Amino acids and derivatives, 7, 23, 24, 25, 28, 33,
131–134, 133, 146, 148, 150, 151–155,
156, 158, 162, 163, 165, 171, 174, 177,
178, 179, 180, 181, 181, 182, 184, 185–
189, 189, 189–191, 195, 202, 206, 207,
208, 210, 213–217, 214, 217, 224, 226,
227, 228, 229, 229, 230, 231–233, 234,
235, 237, 237, 240, 241–243, 244, 244,
247, 256, 257, 258, 262–265, 270,
271–274, 276, 282, 287, 289, 291, 292,
294, 295, 436, 471, 475, 536
2’,1’,2;1”, 2”, 2”’, 3’,3,4-dibenzocyclohepta-1,3-
diene-6-amino-6-carboxylic acid (BIP), 289
N-acetyl, 134, 179
N-acetyl, 132, 151–153, 155, 178, 180, 181, 185,
191 207, 210, 212, 213–215, 217, 227–
228, 231, 241, 294
N-acrylphenylglycinate, 137
alanyl(s), 132, 133, 146, 156, 158, 171, 180,
187, 231, 233, 289
2-(aminomethyl), 187
2-selenienyl, 233
3-(fur-2-yl), 231
3-pyridyl, 233
3-selenienyl, 233
3,3-difluoro, 133
3,3,3-trifluoro, 156
4-pyridyl, 231
β-α-C-allosyl, 158
β-(benzofuranyl), 231
N-benzoyl, 158, 289
N-benzoyl, butyl ester, 180
furyl, 233
β-(pyrid-3-yl), 231
β-(quinol-3-yl), 231
thienyl, 233
N-alkoxy carbonyl, 177, 178
α-alkyl, 436
α-alkyl-α-methyl, 287
α-allenyl, 156
β-amino acid, 471
d-amino acid, 475
β-amino-α,β-dehydro-α-amino acid, 174, 224
equivalents, 174
precursors, 224
2-aminoisobutyric acid, 190, 207, 208
N-2-(4-bromobenzoyl), 207
α-(aryl methyl)-α-(trifluoromethyl), 158
aspartic acids and derivatives, 148, 149, 156,
186, 187, 188, 279, 293
3-alkyl, 148, 149
N-acetyl dehydro, 293
N-benzuxacybonyl, 186
conformationally constrained, 279
dehydro, 293
α-isobutyl, 187
α-methyl, 187
Subject Index

α-(trifluoromethyl)-β-substituted, 156
azabicyclo[2.2.1]heptane, 274, 299
N-benzoyl, 134, 156, 181, 182, 187, 191, 289
N-benzyloxycarbonyl, 134, 177, 186, 287, 291, 292
(Aib)₄-OH, 291, 292
chlorides, 177
bicyclo[2.2.1]heptane, 274, 276
bis(amino acids), 202
bromotyrosine, 132
choline esters, 179
conformationally constrained (restricted), 232, 265, 271, 272, 274, 278, 297, 299
cyclohexane, 271–272, 274, 280
cyclohexene, 277
cyclononane, 190
cyclopropane (cyclopropyl), 190, 235, 260–261, 262–265, 266, 270, 292
2-(3,4-dihydroxyphenyl), 263
2-chloro, 263
cyclohexane, 271–272, 274, 280
cyclopropane, 190
dehydro(didehydro), 174, 213, 214, 216, 224, 226, 228, 229, 229, 230–235, 237, 237, 238, 240, 242, 243, 244, 247, 256, 292
N-acyl, 229, 237
α,α-dialkyl, 178, 187–189, 189–190
β,β-difluoro, 133
α,α-disubstituted, 162, 186, 187, 289
esters, 295
ferrocenoyl, 206
β-fluoro, 23, 282
N-formyl, 153
glutamic acid(s), 187, 188
α-methyl, 187
glycine(s), 133, 135, 152, 157, 162, 179, 187, 190, 207, 212, 210, 211, 212, 213, 214, 220, 226, 228, 235, 243, 249, 287, 292, 294, 536
1-naphthoyl, 294
2-(1-adamantyl), 152
α-(2-heteroaryl), 157
N-2-(4-bromobenzoyl)-diphenyl, 207
N-acetyl, 210
N-acyl, 179, 190, 212, 226, 228, 235, 287, 292
N-acyl-α-(triphenylphosphonio), 220
aryl, 133
N-benzoyl, 210, 211, 249
α-(heteroaryl), 249
α,α-dialkyl, 135, 162
dibenzy1, 135, 190
diphenyl, 207
α,α-di(isopropylthio), 190
dimethyl, 190
dipropyl, 190
α-methylphenyl, 187
(S)-phenyl, 536
α-(trifluoromethyl)-α-(2-heteroaryl), 157
β-(heteroarylaminic), 240
hippuric acid, 162, 173, 191, 221, 225, 256, 276, 292
histidine(s), 180, 231
β-hydroxy, 28, 287
γ-hydroxy, 172
hydroxy, 24
isovaline, 207, 208
N-2-(4-bromobenzoyl), 207
leucine, 187, 208
2-(aminomethyl), 187
α-methyl, 208
tert-leucine, N-benzoyl, 182
2,3-methanomethionine, 263
α-methyl, 190
norbornane, 273, 297
(2,6-difluoro-3,4-dihydroxy), 231
[3-11C], 231
3,4-dihydroxy (DOPA), 231, 263
[3-11C], 231
cyclopropyl, 263
L-4-(borono) (BPA), 233
4-(polyfluoromethyl), 231
N-acetyl, 257, 282
N-acetyl-2-fluoro, 231
N-acetyl-4-fluoro, 231
aryl, 231
N-benzoyl, 181, 213
α,β-dehydro, 213
α-benzyl, 163
constrained, 232, 271, 272–274, 297
fluorine containing, 233
metallocene, 231
α-methyl, 163, 186, 187, 190, 208
β-methyl, 232
proline(s), 146, 243, 273, 274, 299
constrained, 274, 299
serine(s), 152, 171, 172, 188, 214, 297
2-methyl-3-phenyl, erythro-, 172
α-alkyl, 188
Amino acids and derivatives (Continued)
b-aryl, 214
constrained, 297
N-substituted, 179, 195
d-substituted, conformationally restricted, 274
threonine(s), 182, 292
N-acyl, 292
allo, 182
a-(trifluoromethyl), 187
tryptophan, 132, 152, 183, 222, 233
a-methyl, 183
tyrosine(s), 132, 187, 231, 263
bromo, 132
cyclopropyl, 263
\(\alpha,\alpha\)-disubstituted, 187
g,d-unsaturated, 155
valine, 146, 187, 190, 231, 257, 289
4-(trifluoromethyl), 231
N-benzoyl, 289
g-hydroxy, 257
\(\alpha\)-methyl, 187, 190

Amino acids, synthesis of bis(oxazolines), 534, 536
bis(oxazoline) ligands, 534–536
bu-box, 535–536
phe-box, 536
i-pr-box, 535
py-box, 534
py-box-ip, 534
(S)-tert-leucine, 535
(S)-phenylglycine, 536

\(\alpha\)-Amino aldehydes, 25
\(\beta\)-Amino-\(\alpha\)-hydroxy acids, 379–380
\(\alpha\)-Amino-\(\beta\)-hydroxy ketones, 407

3-Amino-\(\beta\)-lactams, 172
from imines and monosubstituted 5(4H)-oxazolones, 172

Amino nitrile cyclizations, 133, 133, 153
5(2H)-oxazolones, 133, 133
5(4H)-oxazolones, 153
N-acylated, 153

Amino phenols, 38
cis-1,2-Aminocyclopentenol derivative, 404
Aminoisobutyric acid (Aib), 154, 190, 207, 208, 291, 292
incorporation into peptides, 154, 190
5(2H)-oxazolones, 145, 146
amines and chiral amines, 145–146
amino acid esters, 146
saturated 5(4H)-oxazolones, 183–190, 189
as activating agents for dicarboxylic acid
amino acids, 186
as glycine synthons, 186
incorporation of α,α-dialkylamino acids into peptides, 185–186, 189–190
Obrecht’s methodology, 187–188, 189
resolution of racemic α,α-dialkylamino acids, 187
preparation of
5-pyrazolones, 184
amino acid bornyl amides, 185
benzothiazoles, 184
chiral glycine enolate equivalents, 184
α,α-dialkyl amino acids, 186–189
lactones, 184
peptides, 185–186, 189–190
ring opening with amines, 183–185
1-amino-2-indanol, 183
2-aminothiophenol, 184
2H-azirines, 185
aminopiperidines, 183
chiral amines, 185
bis-(2-chloroethyl)amine, 183
dimethylamine, 184
ring opening with amino acid derivatives, 185–186, 189–190, 189
Obrecht’s methodology, 187–188, 189
substituted amino acid amides, 189
synthesis of peptides, 185–186, 189–190
ring opening with hydrazonoyl halides, 184
ring opening with thiosemicarbazides, 183
ring opening with p-toluenesulfonamide, 183
arylacetaldehyde equivalents, 237
kinetics, 237
mechanism, 237, 295
microwave assisted reaction, 295
Pictet-Spengler reaction, 237
preparation of
N-acylamino acid amides/acylamino amides, 236, 240–241, 241
N-acyl dehydroamino acid amides, 237, 237
amino acids, 240
bastadin-5, 237
benzodiazepines, 296
α,β-dehydropeptides, 241–242, 295
C-terminal or internal amino acid, 242
N-terminal amino acid, 241
imidazolinones, 239
imidazolines, 238, 239, 240, 296
isoquinolines, 238
macrolactams, 237
quinazolines, 296
quinazolinones, 296
tetrahydro-β-carbolines, 237
reaction with
amines, 235–237, 237, 240, 295
amino acids or amino acid esters, 240, 241–242, 295
α,β-dehydropeptides, 241–242, 295
o-aminobenzamide, 296
aminobenzoic acids, 240
anilines/aromatic amines/heterocyclic amines, 238, 239, 240, 295, 296
chiral amines, 241–242
diamines, 237, 239
tryptamine, 237–238
reductive aminolysis, 240, 241
N-acylamino acid amides, 240–241, 241
asymmetric synthesis of non-proteinogenic amino acids, 240
chiral amines, 240
stereospecific ring opening, 238
tandem Erlenmeyer condensation-macrolactamation (TECM), 237
2-Aminopyrimidinones, 77, 78
2-amino-5-(carboxyalkyl)-4($5H$)-oxazolones, 77, 78
oxidative ring contraction, 77, 78
Amphiphilic copolymer membranes, 508
Angiotensin converting enzyme inhibitors, 242
Analgesic(s), 75, 274
Anilines, 142, 248, 249
4-(alkylamino)-5($2H$)-oxazolones, 142
reaction with ethylimino(ethylthio) acetate fluoroborate, 142
ring opening of unsaturated 5(4H)-oxazolones, 248, 249
Anodic oxidation, 4, 14
Antibacterial agents (antibiotics), 54, 68, 78, 84, 120, 209, 239, 246, 265, 292, 295, 367
Anticapsin, 367
Anticonvulsant agents, 246
Antidepressants, 54, 348
Antidiabetic agents, 54, 95, 103, 115, 116
Antiepileptic agents, 90
Antifertility agents, 227
Antifungal agents, 70, 239, 246, 295
Anti-Heliobacter pylori ($H. pylori$) agents, 74, 120
Antihelmintic agents, 239, 246
Antihyperglycemic agents, 94
Antihyperglycemic agents, 94
Antihypertensives, 221
Antihypoxic agents, 75
Anti-inflammatory agent(s), 54, 75, 109, 210, 227, 292, 334
Antimalarial(s) agents, 54, 71
Antimicrobial activity (agents), 65, 75, 248, 251, 295
Antineoplastic and antitumor agents, 183, 239
Anti-Parkinsonian agents, 239
Antispasmodic agents, 75
Antitubercular agents, 65, 246
Antitumor agents, 103, 120, 561
Antiulcer agents, 54, 103, 120, 448–449
Antiviral agents, 54, 72, 239, 246
(−)-Aphanorphine, 340, 469
Acquired immune deficiency syndrome (AIDS), 432
Arabinitol, 389
Arenes, metalation by EVL-HMPA, 458, 459
\(N\)-Aryl ureas, 70
2-(arylimino)-4(5\(H\))-oxazolones, 70
Arylation, 167, 167, 260, 289
2,4-diaryl-4-[2,4-dinitroaryl]-5(4\(H\))-oxazolones, 167
2,4,4-trisubstituted 5(4\(H\))-oxazolones, 167
Friedel-Crafts reaction, 289
heteroarylation, 167
of saturated 5(4\(H\))-oxazolones, 167, 289
of unsaturated 5(4\(H\))-oxazolones, 260
Aspartic acid(s), see amino acids and derivatives
Asymmetric polymerization, see Polymerization, asymmetric
Atropisomer selectivity, 464
Attention deficit hyperactivity disorder (ADHD), 68
Axially-chiral biphenyls (biaryls), 462–468, 462, 466
(+)-dioncophylline C, 463
(S)-gossypol, 466–468
(−)-mastigophorene A, 465–468
(−)-O-methylancistrocladine, 463
(+)-O-methylancistrocladine, 463
Aza-bis(oxazolines), 588
allylic substitution, 588
cyclopropanation, 588
polymer-supported, 588
Aza-Claisen rearrangement, 7, 45, 581
2-allyloxyoxazoles, 7
allylic imidates, 581
Azabicyclohexene, 148
Aza-Diels-Alder reaction, 558
1-Azadienes, 198, 199, 199, 200
Azadirachtin, 554
Azido alcohols, oxazoline synthesis, 413
Azido esters, oxazoline synthesis, 412
Staudinger-aza-Wittig reaction, 412–413
Azine \(N\)-oxides, reaction with 5(4\(H\))-oxazolones, 174
4-(isoquinolin-1-yl)-2-substituted 5(4\(H\))-oxazolones, 174
4-(quinolin-2-yl)-2-substituted 5(4\(H\))-oxazolones, 174
dihydropyridines, 174
isoquinoline \(N\)-oxide, 174
pyridine \(N\)-oxides, 174
pyridinium salts, 174
quinoline \(N\)-oxides, 174
Aziridination and epoxidation, 575–576, 575
aziridines, 575
epoxides, 575
of cinnamate esters, 575, 575
of \(\alpha\)-imino esters, 575
of styrene, 575
phe-box, 575
Aziridines, 575
2H-Azirines, 117–119, 119, 147, 148, 154, 185, 194, 287
2,2-dimethyl-3-(dimethylamino), 154, 185
3-(dimethylamino), 147, 148, 185
5-(dimethylamino)-3,6-dihydropyrazin-2(1\(H\))-ones, 147, 148, 185
from flash vacuum pyrolysis of a 5(4\(H\))-oxazolone, 194
Heimgartner, 287
preparation of imidazolones, 117–119, 119
reaction with 5(2\(H\))-oxazolones, 147
reaction with 5(4\(H\))-oxazolones, 185
reaction with 5,5-dimethyl-2,4-oxazolidinedione, 117–119, 119
reaction with carboxylic acids, 154
Azithromycin, 441
Azodicarboxylates, 33–34, 34
diastereoselective \([4+2]\) cycloaddition, 33, 34
3-acyl-2(3\(H\))-oxazolones, 33, 34
preparation of
2-oxazolidinone auxiliaries, 35
\(\alpha\)-amino acids, 35
Azomethine ylides, 408–410
2-aminooxazolines, 408
2-iminooxazolines, 410
cis-2-oxazolines, 408
\textit{trans}-2-oxazoline-4-carboxylates, 410
\textit{trans}-2-oxazolines, 408
addition to carbonyl compounds, 408–410
Baccatin III, 346
Balanol, 406
Barbituric acids, oxidative ring contraction, 105–106
5-aryl-2,4-oxazolidinediones, 105–106
5-heteroaryl-2,4-oxazolidinediones, 105–106
Subject Index

Bastadin-5, 237
Benzimidazol[1,2-c]quinazolines, 296
Benzimidazole(s), 223, 240, 248, 249, 251, 296
1,3-Benzodiazepines, 197
1,4-Benzodiazepine-2,5-diones, 296
Benzoin, 8, 9

3,4,5-triaryl-2(3H)-oxazolones, 8
cyclization with phenyl isocyanate, 8
Benzopyran-2,5(6H)-diones, 173
Benzothiazoles, 184, 248, 249
Benzotriazoles, 223, 292
Benzoazin-4-ones, 247
Benzyl bis(oxazoline), 533, 541
cyclopropanation, 541
x-ray crystal structure, 533
Berinanamycin A, 367
(BINOL)-box, 587
1,3-dipolar cycloaddition of nitrones, 587
Bioisosteres, 97

Bis(oxazoline)ylation of homoallylic alcohols, 573
Bis(oxazoline) ligands, 530–532, 582–585
aza-bis(oxazolines), 588
benzyl bis(oxazoline), 533, 541
(BINOL)-box, 587
bis(oxazolynyl)pyridine, see py-box
dbf-box, 534, 550, 551
inda-box, 534, 537, 549, 549, 557, 559, 567, 574–575, 577, 589
phe-box, 530, 532, 534, 536, 546, 548, 549, 555, 557, 561, 567, 575, 581
i-pr-box, 534, 535, 548, 561, 570, 572
py-box, 530, 534, 551, 565–566
py-box-ip, 534, 540–541, 578
syntheses, 534–537
bu-box, 535–536
Desimoni’s protocol, 536
from amino acids, 534, 536
from amino acids, 534, 535, 536
from (S)-l-tert-leucine, 535
from (S)-phenylglycine, 536
from malononitrile, 537
from (S)-valinol, 534, 535
inda-box, 537
Masamune’s protocol, 536
phe-box, 536
i-pr-box, 535
py-box-ip, 534
Bis(oxazoline)-metal complexes, 532–534, 546, 552, 554, 561, 565, 567, 568, 575
geometry, 532
x-ray crystal structures, 533
Bis(oxazolines), chiral, 333, 347, 361, 384, 394, 396, 417, 457, 465, 466, 481, 504, 530–594, 582–585
allylic oxidation, 577, 577
axially chiral bis(oxazolines), 361
aza-bis(oxazolines), 394
aziridination and epoxidation, 575–576, 575
bis(oxazoline) ligands, 530–532
bis(oxazoline)-metal complexes, 532–534
C2-symmetric bis(oxazolines), 396
carbon-carbon bond forming reactions, 538–
alkylation of imines and oximes, 570–572, 571, 587
allylation and cyanohydrin formation, 569–
570, 587
allylic substitutions, 562–564, 563, 564, 588
conjugate additions, 567–569, 567, 568, 569
cyclopropanations, 504, 530, 532, 538–545, 539, 542, 543, 544, 585, 586
Diels-Alder reactions, 545–554, 546, 547, 548, 549, 550, 551, 552, 553
1,3-dipolar cycloadditions, 561–562, 561, 562, 586
Friedel-Crafts reactions, 588–589, 589
hetero-Diels-Alder and ene reactions, 554–
560, 556, 557, 558, 559, 560, 589–590
miscellaneous carbon-carbon bond forming
reactions, 573–575
Mukaiyama aldol reaction, 565–566, 565, 566
polymerization, asymmetric, 572
dilithiation of bis(oxazolyl)ferrocene, 457
miscellaneous reactions, 580–581
reductions, 577–579, 578, 579, 587
hydroxylation, 577–579, 578
transfer hydrogenation, 579, 579
sulfimidation, 576
synthesis, 534–537
4,4′-Bis(oxazolones), 193, 195
Bistratamide D, 364
Bleomycins, 28
Boc-Ox, 40
Bohlman bands, 97
Boulton-Katritzky rearrangement, 92, 93
α-Bromo amidines, 92–93
2-alkoxy-4(5H)-oxazolones, 92
2-ethoxy-4(5H)-oxazolones, 93
thermolysis, 92–93
Bu-box, 530, 532, 535–536, 539, 540, 541, 548, 552, 555, 557, 559, 561, 565, 566, 570, 581, 585, 588–589
alkylation of imines, 570
amination of enolsilanes, 581
Cu(I), 540
Cu(II), 532, 552, 566
cyclopropanation, 530, 539, 540, 541
Diels-Alder reaction, 548, 552
1,3-dipolar cycloaddition, 561
Friedel-Crafts reaction, 588–589
geometry, 532
hetero Diels-Alder reaction, 555, 557
Mukiayama aldol reaction, 565, 566
Mukiayama Michael addition, 585
synthesis, 535–536
Burgess reagent, 361–365, 361–363, 366
axially chiral bis(oxazolines), 361
cyclodehydration of β-hydroxy amides, 361–365
inversion, 363–364
PEG-supported, 364, 366
preparation of bistratamide D, 364
preparation of lissochinamide 4, 363
preparation of lissochinamide 7, 363
preparation of thiangazole, 363
C-2 vs. C-4 alkylation of oxazolones, 134–136, 135
4,4-dialkyl-5(4H)-oxazolones, 135
5(2H)-oxazolones, 135
of 5(2H)-oxazolones, 134–136
of 5(4H)-oxazolones, 134–136
C-H insertion reactions, 575
C-Substitution of 2(3H)-oxazolones, 36, 39
4-(3-indolyl)-2(3H)-oxazolones, 36
5-(3-indolyl)-2(3H)-oxazolones, 36
5-acyl-4-methyl-2(3H)-oxazolones, 36
5-methyl-2(3H)-oxazolone sulfonamides, 36
stannyl oxazolones, 36
3-(trimethylsilyltheloxymethyl)-2(3H)-oxazolone, 36
cross-coupling reactions, 36
stannylxazolones, 36
Stille coupling, 36
4-methyl-2(3H)-oxazolone, 36
Friedel-Crafts acylation, 36
(−)-Calyculin B, 339
(+) Calyculin A, 339
Calyculin C, 361
Calyculins, 342
Capillary zone electrophoresis (CZE), 75
Carbamates (Urethanes), 3–7, 4, 47, 48
2(3H)-oxazolone-4-carboxylates, 47, 48
3-aryl-5-tert-butyl-2(3H)-oxazolones(s), 3, 4
4-aryl-5-phenyl-2(3H)-oxazolones, 3
4-naphthyl-2(3H)-oxazolone, 4
5-phenyl-2(3H)-oxazolone, 6
bulky 5-substituted-2(3H)-oxazolones, 3
N-1-naphthylvinylurethane, oxidative cyclization with lead tetraacetate, 4
N-aryl urethanes, 3
N-aryl-N-(3-trisopropylsilylpropargyl) carbamate, 7
β-silylvinyl cations, 7
α-bromo ketones, 3, 4
α-diphenylphosphinylcarbamates via anodic oxidation, 4
ethyl N-aryl carbamates, 3, 4
(hydroxyphenacyl)urethanes, 3
α-methoxy carbonyl benzyl carbamate, 6
methyl carbamate, 47
α-O-(Carbomoyloxy)esters, 94, 102
3-unsubstituted-2,4-oxazolidinediones, 94
spirocyclic 2,4-oxazolidinediones, 102
chlorosulfonyl isocyanate, 94, 102
cyclodehydration, 94
from isatins, 102
Carbenes, 57, 59
4(5H)-thiooxazolones, 59
spirocyclic 4(5H)-oxazolones, 57
aminooxy, 57
Carbodiimides, synthesis of unsaturated
5(4H)-oxazolones, 152, 177, 214, 214
Carbonyl compounds, synthesis of unsaturated
5(4H)-oxazolones, 212
Carbonyl ylide, 57
Carbonyl-ene reactions, 585
glyoxylates and pyruvates, 585
Carboxylic acids and esters, oxazoline synthesis,
amino alcohols, 333–334, 337
carboxylic acids, 334–336
carboxylic esters, 337
β-chloro amides, 334
cyclodehydration, 333, 336
Lewis acids, 336
Vorbrüggen’s methodology, 333–334
Cbz-Ox, 40
Central nervous system activity, 237, 239
Chemoselective protection, 38–40
amino alcohols, 38
amino phenols, 38
Boc-Ox, 40
Cbz-Ox, 40
Subject Index

polyalcohols, 40
polyamines, 38
Chimeras, 163
Chiral glycine synthon, 508
Chirality recognition, 581
Chloroacetyl isocyanate, 60
4(5H)-oxazolones, 60
(α-Chloroalkyl)boronates, synthesis, 581
phe-box, 581
Chlorosulfonyl isocyanate, 92, 94, 97, 102, 172
3-unsubstituted 2,4-oxazolidinediones, 94
spirocyclic 2,4-oxazolidinediones, 97, 102
[2+2] cycloaddition with 5(4H)-oxazolone, 172
dioxazabicycloheptanones, 172
Chlozolinate, 90, 120
Cholinergic agents, 98
Chromatographic mobility, 206, 286
saturated 5(4H)-oxazolones, 206
unsaturated 5(4H)-oxazolones, 286
Cinnamates esters, 98
CNS agents, 72
CNS stimulant, 67
Configurational assignments, unsaturated 5(4H)-oxazolones, 284–286
dipole moment, 286
1H NMR, 285
13C NMR, 285
mass spectrometry, 285
Conformationally constrained (restricted) amino acids, 232, 265, 271, 272, 274, 278, 297, 299
aspartic acid analogs, 278
cysteine, 265
phenylalanine, 232, 271, 272, 297
proline, 274, 299
serine analogs, 297
ð±Þ-substituted, 274
(ð±Þ-Conhydrine, 22
(ð±Þ-β-Conhydrine, 108
Conjugate additions, 567–569, 567, 568
bis(oxazoline)-mediated, 567–569, 569
free radical, 567, 567, 568
3-acryloyl-1,3-oxazolidin-2-one, 567
N-cinnamoyl oxazolidinones, 567
N-crotonyl oxazolidinones, 567
enantioselective to α,β-unsaturated N-acyl oxazolidinones, 568
inda-box, 567
phe-box, 567
Michael additions/reactions of, 568–569, 585
O-benzylhydroxylamine, 568
enol silanes, 585
ethyl acetoacetate, 568
methylthio enolsilane, 568
silyl enol ethers, 568
Mukaiyama Michael addition, 585
polar, 569
Corey, 546, 547
Coumarin semicarbazones, 69
Coumarins, 256
Cross-coupling reactions/methodology, 451, 464–468, 508
Negishi, 451
Stille coupling, 36, 508
Ullmann, 464–468
Curacin A, 428
(+)-α-Curcumene, 343, 446
Curtin-Hammett principle, 456
Cyanamide, 74–75
2-amino-5-substituted-4(5H)-oxazolones, 75
reaction with dihydrofuran-2,3-diones, 75
synthesis of pemoline, 74–75
Cyanine dyes, 64
Cyanogen bromide, 389, 394
aza-bis(oxazolines), 394
Cyanohydrins, 58, 97, 99
spirocyclic 2,4-oxazolidinediones, 97
chlorosulfonyl isocyanate, 97
quinolizidines, 97
Cyclization agents/cyclizations, 132–133, 151–154, 177, 187, 188, 210, 211–212, 225, 253, 287, 292, 294
1,1′-carbonyldimidazole, 187
1-(3-dimethylaninopropyl)-3-ethylcarbodiimide hydrochloride (EDAC·HCl), 177, 287
2-chloro-1,3-dimethylimidazolium chloride, 212
2-ethoxy-N-ethoxycarbonyl-1,2-dihydroquinoline (EDEQ), 153
2-isobutoxy-N-isobutoxycarbonyl-1,2-dihydroquinoline (IIDQ), 253
3-(alkoxy carbonyl)benzotriazole-1-oxides, 292
Cyclization agents/cyclizations (Continued)
acetic anhydride, 151, 154, 210
alumina/boric acid + acetic anhydride, 212
bismuth(III)acetate, 292
carbdiiimides, 152
cyanuric chloride, 153
N-cyclohexyl-N' -2-(N-methylmorpholinio)-
ethylcarbdiiimide p-toluenesulfonate, 152, 154
dicyclohexylcarbdiiimide, 187, 212
diethyl pyrocarbonate, 212
difluoroacetic anhydride, 133
N,N-dimethylchlorosulfitemethaniminium
chloride, 153, 212
haloiominium salts, 153, 212
ion-exchange resins, 212
isopropenyl chloroformate, 153
Lawesson’s reagent, 292
methyl chloroformate, 153
microwaves, 212
mixed anhydrides, 153
perfluoroacylating agents, 133
phosphorus oxychloride, 225
phosphorus trihalides, 133
potassium fluoride/alumina, 212
sodium acetate/acetic anhydride, 212
thionyl chloride, 287
triethyl orthoformate, 294
trifluoroacetic anhydride (TFAA), 132, 152
trimethylsilylchloride/acetic anhydride, 212
Vilsmeier-Haack reagent, 294
zinc acetate, 212
zinc chloride, 212

Cyclization of amino acids and derivatives, 132–
134, 133, 151–155, 154, 287
5(2H)-oxazolones, 131–133, 133, 134
2-(difluoromethyl)-4-methyl-5(2H)-
oxazolone, 133
4-alkyl-2-(trifluoromethyl)-5(2H)-
oxazolones, 134
4-aryl-2-(perfluoroalkyl)-5(2H)-
oxazolones, 133
4-methyl-2-(trifluoromethyl)-5(2H)-
oxazolone, 132
5(2H)-oxazolones, 132–133, 133
5(4H)-oxazolones, saturated, 151–154,
154, 287
2-(trifluoromethyl)-5(4H)-oxazolones, 152
2-aryI-4-substituted 5(4H)-oxazolones, 154
from nitrones, 154
Subject Index 647

[2+2], 35–36, 67, 172, 407, 476, 575
bicarbonyl oxazolines, 407
5-alkoxy-2(3H)-oxazolones and imines, 42
oxetanes, 407
Paterno-Büchi reaction with 2,4,5-trimethyloxazole, 407
photocycloaddition, 35–36, 575
[3+2], 35, 147, 408–410, 439
2-aminooxazolines, 408
2-iminoxazolines, 410
cis-2-oxazolines, 408
trans-2-oxazoline-4-carboxylates, 410
trans-2-oxazolines, 408
3-(2-azoalkoxy-1-3(endo)-oxazolines), 36
3-acyethyl-2(3H)-oxazolone, 35
3,4,5-trisubstituted-2(3H)-oxazolones, 35
photochemical, 4(5H)-oxazolones, 67
[4+2], 32–34, 34, 410–412, 411, 476
tricyclic oxazolines, 410
3-(2-azoalkoxy-1-3(endo)-oxazolines), 32
diastereoselective Diels-Alder reaction, 32
preparation of α-amino acids, 33
preparation of chiral 2-oxazolidinone auxiliaries, 32–33
3-acyethyl-2(3H)-oxazolone, 32
3-acylderivative of oxazolines, 32
3-tritylsulfonyl isocyanate, 172
ethyl vinyl ether, 410
isoxazolines, 407
ketenes, 155
mesoionic oxazolones (munchrones) and dipolarophiles, 195–198, 197
nitrile imines, 235, 265, 267, 267, 269
nitrile oxides, 235, 268–269, 268, 289
nitrones, 35
silyl ketenes, 585
ymines, 410
Cyclobutanones, 36
β-amino alcohols and carboxylic acids, 333–334
β-hydroxy amides, 338–375
Cyclohexenones, 200
Cyclopalladation, 458, 460
Cyclopeptides, 427
Cylooxygenase-2 inhibitors, 54, 75
Cyclopropanation(s), 530, 532, 538–545, 539, 542, 543, 544, 586, 585
benzyl bis(oxazoline), 541
bu-box, 530, 539, 540, 541
Cu(I)-bis(oxazoline), 539, 539
Cu(II)-bis(oxazoline), 538, 539
diazoacetate esters, 541, 543
diazoacetates, 530, 538–541
diazomalonate(s), 541
diphenylsulfonium isopropylide, 585
enol ethers, 541, 543
 cyclic, 541
silyl, 541
Evans, 539
intramolecular, 541, 544, 544
Masamune, 539
oxazolidinones, 587
preparation of prostratin, 544
sirenin, 544
py-box-ip, 540, 541
silyl enol ethers, 541
styrene, 530, 538–541
sulfur ylides, 586, 587
Cyclopropanation, unsaturated 5(4H)-oxazolones, 262–265, 269–271, 297
(Z)-4-(ethylidene)-2-phenyl-5(4H)-oxazolone, 263
(E)-4-benzylidene-2-phenyl-5(4H)-oxazolone, 262
Cyclopropanation, unsaturated 5(4H)-oxazolones
(Continued)
(Z)-4-benzylidene-2-phenyl-5(4H)-oxazolone, 262, 297
2-phenyl-4-(sulfanylmethylene)-5(4H)-oxazolone, 265
4-(bromomethylene)-2-phenyl-5(4H)-oxazolone, 263
4-(chloromethylene)-2-phenyl-5(4H)-oxazolone, 263
4-(iodomethylene)-2-phenyl-5(4H)-oxazolone, 263
4-arylmethylene-5(4H)-oxazolones, 263, 265
diastereoselective cyclopropanation, 269–271
molecular orbital calculations, 270
stereochemistry, 269–271
diazomethane, 262–265, 266, 269–270
diphenyldiazomethane, 265
phenyldiazomethane, 297
Cyclopropenes, 572
Cyclosporins, 28
Dakin-West/Diels-Alder reaction, 276
Danishefsky, 394
Danishefsky’s diene, 273, 274, 276, 280, 297, 557, 558, 558, 559, 589
DAST and Deoxofluor, 23, 368–373, 370–371, 372
competitive fluorination, 369, 373
cyclization of peptidyl β-hydroxy amides, 369, 372
DBF-box, 534, 550, 551
Diels-Alder reaction, 550, 551
x-ray crystal structure, 534
10-Deacetylbaccatin III, 366
Decarbonylation of 5(4H)-oxazolones, 193–194, 193
N-acylimines, 193–194
enamides, 193–194, 193
thermolysis, 193, 194
Dehydrating agents/conditions, oxazoline
Burgess reagent, 361–365
boric acid, 333
DAST and Deoxofluor, 368–373
HF, 349
methanesulfonic acid, 348
Mitsunobu reaction, 365–368, 367, 369
phosphorus oxychloride, 348
thionyl chloride, 338–347, 340–344, 345
toluenesulfonic acid, 348
trifluoroacetic acid, 350
triphenylphosphine/carbon tetrachloride
(carbon tetrabromide), 333–334, 373–375
Vilsmeier reagent, 347–348
Vorbrüggen conditions, 333–334
N-(benzoyl)dehydroamino acid amides, 247
biomimetic synthesis of stizolobinic acid, 231
aminolysis, 235–237, 237, 238, 239, 240
hydrolysis or alcoholysis, 226–230, 229, 233
from unsymmetrical ketones, 232
reactions, 216, 230–233, 234–235, 237, 240, 243–244, 244, 292
1,3-dipolar cycloaddition reactions, 234–235
catalytic hydrogenation, 230–233, 240
diastereoselective, 232–233
enantioselective, 232–233
cyclizations of dehydroamino acid amides/derivatives, 213, 214, 216, 238–240
decarboxylation, 235
deprotection, 292
nitrosoation, 216
Pictet-Spengler reaction, 233, 237
with hydrazides, 243–244, 244
synthesis of amino acids, 230–233
synthesis of heterocycles, 235, 238–240
synthesis of α-keto acids, 230
synthesis of unsaturated 5(4H)-oxazolones, 213, 214, 216
Dehydroaspartame, 242
Dehydropeptides, 241–243, 295
asymmetric reduction, 243
α,β-dehydropeptides, 241–242, 295
amino acids or esters and unsaturated 5(4H)-oxazolones, 241, 295
C-terminal or internal amino acid, 242
N-terminal amino acid, 241
electrochemical reduction, 243
Dengibsin, 340, 433
Dermorphin, 242
Desimoni’s protocol, 536
(−)-Desoxoprosopinine, 29
α,α-Dialkylamino acids, 173, 187, 189–190, 289
4,4-disubstituted 5(4H)-oxazolones, 189–190
conformation in peptides, 190
incorporation into peptides, 189–190, 289
Dialkylcarbonates, 16, 17
3-alkyl-4,5-disubstituted-2(3H)-oxazolones, 16, 17
Subject Index

2,3-Diaminopropane-1-carboxylates, alkyl, 44
5-alkoxy-2(3H)-oxazolones, 42, 44
Diastereoselective reactions of 3-acyl-2(3H)-oxazolones, 24–25, 25, 26, 32–34, 34
[4+2] cycloadditions of azodicarboxylates, 33, 34
Diels-Alder reactions, 32
methoxybromination, 25
methoxyselenylation, 26
1,3-Diazadienes, 199, 200
cycloaddition with saturated 5(4H)-oxazolones, 199–200, 200
1,3-Diazaetidines, 283
Diazaoacetate esters, 541, 543
Diazacacetates, 530, 538–541
tert-butyl diazocacetate, 541
ethyl diazocacetate, 530, 538–541
methyl diazocacetate, 541
Diazomalonates, 541
Diazonium salts, reactions with 5(4H)-oxazolones, 176
2-aryl-4-arylaazo-5(4H)-oxazolones, 176
2-aryl-4,5-oxazoledione-4-arylhazones, 176
1,2,4-triazole-3-carboxamides, 176
tautomers, 176
Dibenzothiepines, 210
1,2-Dideoxynojirimycin, 360
2(3H)-oxazolones, 10–12, 32, 35
bicyclic 2(3H)-oxazolones, 10–12
of 3-(2-exo-alkoxy-1-apocamphanecarbonyl)-2(3H)-oxazolones, 32
diastereoselective, 32
4(5H)-oxazolones, 67
4(5H)-oxazolones, from tropolones, 67
5(4H)-oxazolones, saturated, 144, 160
4-substituted-2-vinyl-5(4H)-oxazolones, 160
5(4H)-oxazolones, unsaturated, 271–280
(E)-4-(chloromethylene)-5(4H)-oxazolone, 277
(E)-4-benzylidene-2-phenyl-5(4H)-oxazolone, 272, 273
(Z)-4-arylidene-2-phenyl-5(4H)-oxazolones, 273
(Z)-4-benzylidene-2-phenyl-5(4H)-oxazolone, 271, 272, 273
4-(alkoxymethylene)-5(4H)-oxazolones, 297
4-(methoxymethylene)-5(4H)-oxazolone, 297
4-[(ethoxycarbonyloxy)methylene]-2-phenyl-5(4H)-oxazolone, 297
4-arylmethylene-5(4H)-oxazolones, 297
4-heteroaarylmethylene-5(4H)-oxazolones, 297
acyclic dienes, 271–276, 277, 278, 278
activated dienes, 280, 281
AM1 semi-empirical calculations, 280
benzamidophenols, 273
constrained aspartic acid analogs, 278
constrained phenylalanine analogs, 271–272
constrained proline analogs, 274, 299
constrained serine analogs, 297
cyclic dienes, 277–278, 280
Danishefsky’s diene, 273, 274, 276, 280, 297
diastereoselective Diels-Alder reactions, 277–280, 297–299
enantioselective Diels-Alder reaction, 297
epibatidine, 274
solid-state photo Diels-Alder reaction, 276
spirooxazolones, 271
tandem Dakin-West/Diels-Alder reaction, 276
unsaturated 5(4H)-oxazolones
1-acetoxy-1,3-butadiene, 276
2-tert-butylidemethylsilyloxy-1,3-butadiene, 276
Danishefsky’s diene, 276, 297
piperylene, 276
bis(oxazolines), 530, 532–533, 545–554, 555, 546, 547, 548, 549, 550, 551, 552, 553
3-acryloyl-1,3-oxazolidin-2-one, 546–551, 552, 553
acroleins, 551, 552
N-acyl oxazolidinones, 552, 553
bu-box, 548, 552
chelation geometry, see transition state
chelation model, see transition state
Corey, 546, 547
CuOTf, 548, 549, 550
Cu(II) triflate, 548, 549, 550
cyclopentadiene, 546, 547, 548, 549, 550, 551, 552, 553
DBF-box, 550
dienophiles, 553
Fe(III) halides or salts, 546, 547, 548
geometry affects on enantioselectivity, 532–533, 547–548, 548–549, 550
inda-box, 549, 549
intramolecular reaction, 552
Diels-Alder reaction(s) or adducts (Continued)
Mg(II) anhydrous or hydrated, 550
Mg(II) salts, 546, 547, 547, 548, 549, 550
Ni(II) perchlorate, 550
phe-box, 530, 546, 548, 549
i-pr-box, 548
py-box, 551
total synthesis, 552–554
azadirachtin, 554
(ent/-C0-isopulo’upone, 552
ent-shikimic acid, 554
ent-1-tetrahydrocannabinol, 554
transition state, 547–548, 548–549, 549–550
unsaturated esters, 552
2-alkenylloxazolines, 447, 476–477, 477
asymmetric Diels-Alder reaction, 447
asymmetric hetero-Diels-Alder reaction, 476–477, 477
computational studies, 477
isocyantes, 476–477
diastereoselective Diels-Alder reaction, 477–478
oxazolines from oxazoles and dienophiles, 410–412
Dienes and azadienes, reaction with saturated
5(4H)-oxazolones, 198–201, 199, 200
1-azadienes, 198, 199, 201
1,3-diazadienes, 199, 200,
1,3-dipolar cycloaddition, 201
2-pyridiones, 198, 199, 201
2,3-diazadienes (aldazines), 199
cycloaddition reactions, 198, 199, 200
cyclohexenones, 200
dienamines, 200
nucleophilic addition, 201
pyridazinones, 199
pyridines, 201
pyrimidin-6-ones, 199, 200
pyroles, 201
Dienophiles, 2(3H)-oxazolones, 32
Diethylaluminum chloride, 392
Diethylaluminum cyanide, 446
Diethylmalonate, 562–564, 564
(R)-Dihydrootacnidiolide, 560, 561
Dihydrobenzofurans, 580
Dihydrobenzoxazoles, 252
Dihydrofurans, 2,3-diones, 75
2-amino-5-substituted-4(5H)-oxazolones, 75
ring opening with cyanamide, 75
Dihydroimidazoles, 235
Dihydroisoquinolines, 426
Dihyronaphthalenes, 469
Dihydroorotate inhibitors, 71
Dihydropyridine(s), 148, 174
Dihydropyridones, 252
Dihydrospingosine, 26
Dihydotriazoles, 143
from 4-aryl-2-(trifluoromethyl)-5(2H)-oxazolones, 143
1,2-Diketones, 8–12, 10
4-methyl-3-phenyl-5-vinyl-2(3H)-oxazolones, 12
4,5-disubstituted-2(3H)-oxazolones, 10
bicyclic oxazolones, 10
Diels-Alder reaction of 4,5-dialkylidene-2-oxazolidinones, 10–12
precursors to α-imino ketones, 8, 10
reaction with isocyantes, 10
Diketones, 211
α-Diketones, 134
β-Diketones, 152
Dimerization reactions, 194–195, 195, 283, 289
saturated 5(4H)-oxazolones, 194–195
4,4’-bis(oxazolones), 194, 195, 195, 289
2,2,6,6-tetramethyl-1-piperidinyloxy, free radical (TEMPO), 289
kinetic study, 194
nickel peroxide, 194
photooxidation, 194
pyrrolidinedione 194
unsaturated 5(4H)-oxazolones, 283
1,3-diazetidines, 283
photodimerization, 283
Dimethadione, 90, 99, 120
[2-11C]5,5-dimethyl-2,4-oxazolidinedione, 99
N,N-Dimethylcyanamide, 389, 393
(+)-Dioncophylline C, 463
Dioxazabicycloheptanones, 172
1,3-Diphenylallyl acetate, 564
Diphenylketene, 56, 57
4-(α-arylethylidene)-5(4H)-oxazolones, 218, 218
spiroxazolones, 218
derhyomo amino acid derivatives, 234–235
as dipolarophiles, 234–235
cyclopropanations, 234–235
diazomethane, 234
nitrile imines, 235
nitrile oxides, 235
5(2H)-oxazolones, 145, 149–150
N-oxides as cyclic nitrones, 149
precursors to alkoxy substituted nitrile ylides, 145
5(4H)-oxazolones, saturated, 195–198, 197, 289
precursors to munchonones, 195–198
4-methyl-2-phenyl-5(4H)-oxazolone, 289
cyclopropanations, see cyclopropanation, unsaturated 5(4H)-oxazolones, 262–265, 269–271, 297
homologation, 217–218, 262, 263, 270
diphenyldiazomethane, 265
4-arylmethylene-5(4H)-oxazolones, 265
nitrile imines, 198, 235, 265, 267, 268
unsaturated 5(4H)-oxazolones, 265
oxazolone spiropyrazolines, 265, 267
nitrile oxides, 235, 268–269, 268, 289
4-arylmethylene-5(4H)-oxazolones, 268
4-(ethoxymethylene)-2-phenyl-5(4H)-oxazolones, 269
oxazolone spirosisoxazolines, 268, 268
phenyl diazomethane, 297
preparation of
2,3-methanomethionine, 263
constrained phenylalanine analog, 297
constrained cysteines, 265
cyclopropylamino acids, 262, 263, 265, 270–271, 297
cyclopropylhomoserine, 265
isoxazoles, 268
oxazolone spirocyclopropanes
(spirocyclopropane oxazolones), 262, 263, 265, 266
pyrazoles, 268
pyroles, 289
spirosisoxazolines, 268, 268
spiropyrazolines, 218, 265, 267
bis(oxazolines),
BINOL-box, 587
bu-box, 561
eenantioselective, 562
nitrones and alkynes, 587
nitrones and ethyl vinyl ether, 561
nitrones and phenylacetyle, 561, 561
nitrones and α,β-unsaturated oxazolidinones, 561, 562
phe-box, 561
i-pr-box, 561
oxazoline N-oxides, 447
Dipolarophiles, 35, 143, 144, 145, 147, 195–198, 197, 234, 269, 289
1-nitroso-2-naphthol, 198
2-phenylbenzazete, 197
4-(ethoxymethylene)-2-phenyl-5(4H)-oxazolones, 269
4-arylmethylenesiozol-5-ones, 289
[60]fullerene, 198
acrylates, 196
dehyroamoic acid derivatives, 234–235
dimethyl acetylatedicarboxylate, 196
fumarates, 196
fumaronitrile, 196
nitroso benzene, 197
N-(phenylmethylene)benzenesulfonamide, 198
triphenylnylyphosphonium bromides, 196
 Dipole moments, unsaturated 5(4H)-oxazolones, 286
Displacement reactions, synthesis of 2-amino-4(5H)-oxazolones, 75, 89
5-(benzylidene)-2-substituted-4(5H)-oxazolones, 76
indolmycin, 89
5-(benzylidene)-2-methylthio-4(5H)-oxazolone, 75, 76
DNA transfection, 508
DPPOx, 40
Dual 5-lipoxygenase and cyclooxygenase inhibitors, 54, 75, 114
Dynamic kinetic resolution, saturated 5(4H)-oxazolones, 179, 180, 181–182, 289
deracemization, 180
Electrogenerated base (EGB), 103, 105
Electrophilic additions, 23–25, 26
of 3-(2-exo-alkoxy-1-apocamphanecarbonyl)-2(3H)-oxazolones, 24, 25, 26
3-hydroxyglutamic acid, 24
AHMHA, 24
AHPBA, 24
dihydrophosphoginse, 26
(→)-Geissman-Waiss lactone, 26
hydroxy amino acids, 24
statine(s), 24
of 3-acyl-2(3H)-oxazolones, 25, 26
diastereoselective methoxybromination, 25
diastereoselective methoxyselenylation, 26
of 3-acyl-4,5-unsubstituted-2(3H)-oxazolones, 23
methoxybromination, 23
methoxyselenylation, 23
synthesis of 2-amino alcohols, 24
Electrophilic additions (Continued)
preparation of 4,5-dialkoxy-2-oxazolidinones, 25
α-amino acids, 25
α-amino aldehydes, 25
Electrophotographic light-sensitive materials, 209
Enamines and formamidines, reactions with 5(4H)-oxazolones, 172–174
4-(aminomethylene)-2-phenyl-5(4H)-oxazolones, 174
unsaturated 5(4H)-oxazolones, 173
β-amino-α,β-dehydro-α-amino acid equivalents, 174
benzopyran-2,5(6H)-diones, 173
pyran-2-ones, 173
pyridones, 172
pyridotriazinones, 172
β-Enaminosulfoxides, 12
4-(difluoromethyl)-5-p-tolylthio-2(3H)-oxazolone, 1, 2
Pummerer rearrangement, 12
Enantioselective reactions, 530, 546–552, 554, 556, 557, 558, 559, 560, 562, 563, 564, 566, 568, 571, 572, 581, 585–586, 588
addition of allylzinc reagents, 571
aldol reaction, 566
allylic substitutions, 563, 566, 588
allylzincation, 573
amination of enolsilanes, 581
asymmetric addition to imines, 571
asymmetric polymerization, 572
aza-Claisen rearrangement, 581
conjugate addition, free radical, 568
Diels-Alder reaction, 546–552
1,3-dipolar cycloadditions, 562
e ne reaction, 554, 556, 557
formation of double and triple helicates, 581
hetero-Diels-Alder reaction, 557, 558, 559, 560
hydroisilylation of ketones, 530
Mukaiyama Michael addition, 585–586
En-reaction of 2(3H)-oxazolones, 35
of 3-tert-butoxycarbonyl-2(3H)-oxazolone, 35
2,2'-biindole, 35
Ene reactions, 554–555, 556, 557, 585
2,3-dimethyl-1,3-butadiene, 554
carbonyl-ene reactions of glyoxylates and pyruvates, 585
enantioselective, 554, 556
ethyl glyoxylate, 554, 556
glyoxylates, 554, 556, 585
methylene cyclohexane, 554
pyruvates, 585
selectivity, 555
Enol ethers, 541, 543, 544, 558, 565, 566, 581, 585
amination of enolsilanes, 581
cyclic, 541, 544, 565
cyclopentenyl, 541
cyclopropanation, 541, 543, 544
enantioselective hetero-Diels-Alder reaction, 558
enolsilanes (silyl enol ethers), 541, 565, 568, 581, 585
trimethylsilyl, 565, 565
Michael addition, 568
Mukaiyama aldol reaction, 565, 565
Mukaiyama Michael reaction, 585–586
(±)-Ephedrine, 22
Epibatidine, 274
Epoxytrichloroacetimidates, 391–392, 392
(--)-Eptazocine, 340, 469
Erlenmeyer synthesis (N-acylglycines and carbonyl compounds), synthesis of unsaturated 5(4H)-oxazolones, 210–212, 213–216, 212, 213, 214, 216, 217, 237, 292, 294
2-aryl-4-arylidene-5(4H)-oxazolones, 214
4-(aminomethylene)-5(4H)-oxazolones, 215
4-(dimethylaminomethylene)-5(4H)-oxazolones, 215
4-(ethoxyimethylene)-2-(1-naphthyl)-5(4H)-oxazolone, 294
4-(heteroarylmethylene)-2-substituted 5(4H)-oxazolones, 210
4-arylidene-2-phenyl-5(4H)-oxazolones, 212
4-arylmethylene-2-[3-chlorobenzol[b]thien-2-yl]-5(4H)-oxazolones, 292
bis-4-arylidene-5(4H)-oxazolones, 237
unsaturated 5(4H)-oxazolones, 212, 213, 214, 216, 217, 292
(E)- and/or (Z)-unsaturated 5(4H)-oxazolones, 210–212
N-acylamino acid derivatives, 215, 217, 294
N-acylamino acids and aldehydes, 210
N-acylglycines, 211, 212, 292
aldol condensation, 211
amino acid precursors, 213
β-arylserines, 214
N-benzyoglycine with diketones, 211
N-benzyoglycine with ketones, 211
carbodiimides, 214, 214
carbonyl compounds, 212
cyclodehydrating (cyclodehydration), 210, 211–212, 292
dialdehydes, 237
α,β-didehydroamino acids, 214, 216
experimental conditions, 211–212
iminophosphoranes, 214, 216
isocyanides, 215–216, 216
isomerization, (Z)-unsaturated 5(4H)-oxazolones to (E)-unsaturated 5(4H)-oxazolones, 212–213, 213
mechanism, 211
microwave accelerated reactions, 212
(E)-unsaturated 5(4H)-oxazolones, 211
(Z)-unsaturated 5(4H)-oxazolones, 210–211
Vilsmeier (Vilsmeier-Haack) reagent, 216, 217

Ester(s), 541, 543, 552, 554, 557, 558, 572, 575, 575, 585, 589
cinnamates, 575, 575
diazoacetates, 541, 543
diazomalonates, 541
glyoxylate(s), 554, 558, 585
α-imino, 575
α-keto, 557, 589
α-oximino, 572
pyruvates, 585
thioesters, 585
unsaturated, 552

Ethambutol, 182
Ethoxy carbonyl isocyanate, 510
Ethoxyvinyl lithium (EVL), diastereoselective conjugate additions, 469, 470
Ethoxyvinyl lithium-HMPA complex (EVL-HMPA), 436, 458, 459, 466
benzylic deprotonation of oxazolines at C-5, 436
metalation of arenes, 458, 459, 466
Ethyl 3-ethoxy-2-cyanoacrylate, 510
Ethyl cyanofomate, 140, 141
4-(arylhthio)-5(2H)-oxazolones, 140, 141
ketones, 139, 141
thioimidates, 140
Evans, 539

Famoxadone, 90, 120
Felkin-Ahn transition state model, 477
Ferrocone-box, 563, 564
allylic substitution, 563
diethylmalonate, 564
1,3-diphenylallyl acetate, 564
enantioselective substitution, 564
Ferroccenes, 452–458, 453–454, 457
bis(oxazoline)-substituted, 457–458
oxazolyl, 452–457, 453–454, 457
diastereoselective lithiation, 452–457
nitrogen-directed lithiation, 455–456
oxygen-directed lithiation, 456–457
Flash vacuum pyrolysis, 194
Fluorescence of unsaturated 5(4H)-oxazolones, 284
Fluorination, 282, 287
saturated 5(4H)-oxazolones with tetramethylfluoroformamidinium hexafluorophosphate (TFFH), 287
unsaturated 5(4H)-oxazolones, 282
Formyl anion equivalent, 162
4-isopropyl-5(4H)-oxazolone, 162
Friedel-Crafts reaction(s), 3, 36, 79, 255, 256, 259–260, 289, 588–589, 589
2(3H)-oxazolones, 3, 36
acylation, 36
4(5H)-oxazolones, 79
alkylation of indole, 79
5(4H)-oxazolones, saturated, 289
arylation, 289
5(4H)-oxazolones, unsaturated, 255, 256, 259–260
arylation, 259–260
intramolecular ring opening, 256
ring opening, 255, 256
bis(oxazolines), 589
bu-box, 589
Fujiwara-Moritani reaction, 506
Fullerenes, 575
Fungicides, 54, 90, 176, 209, 509
2(5H)-Furanones, 111–112, 211

(--)-Geissman-Waiss lactone, 26
Glucofuran[2,1-d]oxazolines, 349
Glycine(s), see amino acids and derivatives cationic equivalents, 220
enolate equivalents, chiral, 184
synthons, 186
Glycopyranosyl donors, 430–432
(S)-Gossypol, 341, 342, 466–468
Guanidine(s), 53, 65, 72–74, 73, 74–75, 79, 88–89, 120
2-amino-4(5H)-oxazolones, 53, 74
spirocyclic 4(5H)-oxazolones, 72–74, 73, 1,1,3,3-tetramethyl, epimerization of indolmycin, 88
N,N0-dimethyl, 79, 120
indolmycin, 79
reaction with indolmycenic acid esters, 79–80, 120
pemoline, 74–75
reaction with α-hydroxy esters, 72–74, 73
reaction with indolmycenic acid esters, 88–89
reaction with oxazolonium salts, 65

(--)-Hadinecine, 390
α-Halo acetanilides, 105
654 Subject Index

α-Halo amides, 61, 68, 103, 105

2-amino-4(5H)-oxazolones, 68
2-phenyl-4(5H)-oxazolones, 61
3,5-diaryl-2,4-oxazolidinediones, 103
3,5,5-trialkyl-2,4-oxazolidinediones, 103
5-arylidene-4(5H)-oxazolones, 61
N-arylocinnamides, 61
condensation with tetraethylammonium hydrogen carbonate, 105
α-halo acetanilides, 105
electrochemical reduction, 103, 105
electrogendated base, 103, 105
radical anions, 103
superoxide, 105

2-phenyl substituted oxazolines, 383
4-(alkylamino)-2-phenyloxazolines, 382
4-(cyclopropyl)oxazoline carboxylates, 376
oxazolinecarboxylates, 378
spiro-2-oxazolines, 377
β-chloro amides, 338–339, 347
electrochemical methodology, 382
Obrecht’s methodology, 381
oxazolines from
2-benzoylaminono-3-chloropropenoic acid, 377
2-chloro-2-cyclopropylidene acetates, 376, 378
N-(2,2-dichlorovinyl)amides, 382
3-benzoylaminono carboxylates, 379
4,4-dichloro-azadienes, 378
allylic alcohols and trichloroacetonitrile, 381
amino[phenylthio)methyl]malonates, 376
Michael additions, 376
photoisomerization of oxazolines, 381
propenybenzamide, 375
propynylcarboxylates, 377
spirooxazolines, 377
spirooxazoline, 381
x-ray crystal structure, 377

α-Halo carboxylic acid ureides, 68, 71

2-(arylmino)-4(5H)-oxazolones, 70
2-amino-4(5H)-oxazolones, 68
2-amino-5-isopropyl-4(5H)-oxazolone, 68
spirocyclic 2-aminono-4(5H)-oxazolone, 71
hydantoins, 68, 71
thiodylantoins, 71

α-Halo ketones, 111, 113
preparation of, 111, 113
2(5H)-furanones, 111, 113
W-3681, 113
reaction with dianions of 2,4-oxazolidinediones, 111, 113

Halogenation of 5(4H)-oxazolones, 175–176
2-phenyl-4-(phosphoranylidene)-5(4H)-oxazolone, 175
4-(1-chloroalkylidene)-2-phenyl-5(4H)-oxazolones, 176
4-(phosphoranylidene)-2-substituted-5(4H)-oxazolones, 175–176
4-(phosphoranylidene)-5(4H)-oxazolones, 175–176
4-alkyl-2-phenyl-5(4H)-oxazolones, 176
chlorination of 4-acyl-5(4H)-oxazolones, 175
precursors to 4-(phosphoranylidene)-5(4H)-oxazolones, 175
Wittig olefination, 175–176
Hammert constants, 284
Heck reactions, 493–495, 494
asymmetric intermolecular, 494
double-bond migration, 493–494
enantioselective, 493
PhosOx ligands, 493–494
PyrOx ligands, 495
regioselective, 493
x-ray crystal structure, 494
Heimgartner, 287
(−)-Hennoxazole A, 371
Hennoxazole A, 362, 374
Hepatic gluconeogenesis inhibitors, 342
(−)-Herbertenediol, 341
Herbicides and herbicidal activity, 54, 90, 109, 151, 176, 183, 209, 227
Hetero-Claisen rearrangement, synthesis of oxazolines, 416–417
2-(α-acyloxy)oxazolines, 417
of oxazoline N-oxides, 416–417
Heteroaannulation, synthesis of 2H-pyrans, 580
Heterocumulenes, 92, 93
2,4-oxazolidinediones, 92
Boulton-Katritzky rearrangement, 92, 93
reaction with 5,5-dimethyl-2-ethoxy-4-(p-tolylimino)-4(5H)-oxazolone, 93
1,3-cyclohexadiene, 555
2,3-dimethyl-1,3-butadiene, 554–555
acyl phosphonates, 558, 560
antitumor agent, 561
aza-Diels-Alder reaction, 558
aza-dienes, 560
bu-box, 555, 557, 559
Danishsky’s diene, 557, 558, 558, 559, 589
diethyl ketomalonate, 555
enantioselective, 557, 558, 559, 560
enol ethers, 558
glyoxylates, 554, 555, 557
esters, 554, 555, 557
alkyl, 557
ethyl, 554, 555
inda-box, 557, 559, 589
α-keto esters, 557, 589
oxazolidinones, 559
pher-box, 557
preparation of (R)-actinidiolide, 561
(R)-dihydroactinidiolide, 561
laulimalide, 559
(-)-malyngolide, 589–590
α-pyranones, 589
tetrahydropyridones, 558

1H NMR spectrometry, 132, 134, 206, 284–285
kinetics of racemization of 2,4-disubstituted 5(4H)-oxazolones, 134, 206
tautomerism, 5(4H)-oxazolones to 5(2H)-
oxazolones, 132, 134, 206
unsaturated 5(4H)-oxazolones, 284–285
configuration assignments, 284–285
correlation with Hammett constants, 284
nuclear Overhauser enhancements (nOe’s), 285
rotational barriers, 284
Hippadine, 462
Human immunodeficiency virus (HIV)-protease inhibitor, 359, 395, 404
Hydantoins, 68, 77, 82
Hydrazides, ring opening of unsaturated 5(4H)-oxazolones, 246, 251
bis(acylhydrazides), 246
hydrazidimide, 251
imidazotriazoles, 251
pyrazoles, 246
Hydrazines, 64, 65, 66, 117
reaction with 2-phenyl-4(5H)-oxazolone, 65, 66
reaction with 2,4-oxazolidinediones, 117
reaction with oxazolonium salts, 64, 65
Hydrazines, ring opening of unsaturated 5(4H)-
oxazolones, 243–246, 244, 249
α-acylamino hydrazides, 244, 244
aminomidazoles, 243, 244
dehydroamino acid hydrazides, 244
α-(heteroaryl)glycinates, 249
pyrazolinoxazolones, 246
spiropyrazolidinone, 245
triazines, 245
Hydrogenation, 22–23, 440–441, 495–501, 496–497, 500

4,5-disubstituted-2(3H)-oxazolones, 22
of 4,5-disubstituted 2(3H)-oxazolones, 22
erythro-2-amino alcohols, 22
(±)-coughdrine, 22
(±)-ephedrine, 22
(±)-N-methylphendrine, 22
of oxazolines, 440–441
via mononuclear oxazine ligands, 495, 496–497, 498, 499, 500, 501
asymmetric hydrogenation of styrenes, 496–497
carbone ligands, 498
deuterium scrambling, mechanism, 498–499
enantioselective hydrogenation of alkenes, 495
enantioselective hydrogenation of imines, 499
enantioselective transfer hydrogenation of ketones, 500, 501
Meerwein-Ponndorf-Verley reduction, 501
PhosOx ligands, 501
ligand topography, 498
supercritical carbon dioxide, 499
x-ray crystal structure, 498, 501
Hydrogenolysis, 23
of 4,5-diphenyl-2(3H)-oxazolones, 23
DAST, 23
β-fluoro-α-amino acids, 23
of 2,4-oxazolidinediones, 116
enzymatic with ring opening, 117
HCl/formic acid without ring opening, 116
of 4-substituted oxazoles, 55–56
4(5H)-oxazolones, 55–56
of 5(4H)-oxazolones, saturated, 178–193, 181, 289
chiral catalysts, 179–180
diastereoselective, 178
dynamic kinetic resolution, 179, 181, 289
enantioenriched amino acids/derivatives, 180, 181, 182
enantioselective, 178–183
enzymatic, 181–183, 289
kinetics, 179
molecular orbital calculations, 179
preparation of N-acylamino acid esters, 178, 180, 181
N-acylglycine choline esters, 179
N-benzoylamino acids, 181–182
N-benzoylamino acid esters, 289
N-benzoylalanine butyl ester, 181
Hydrolysis and alcoholysis (Continued)

N-benzoyl-tert-leucine butyl ester, 182
N-benzoylphenylalanine esters, 181
Ethambutol, 182
non-proteinogenic amino acids, 178
allo-threonine, 182
racemization, 179
tautomerism, 179
of 5(4H)-oxazolones, unsaturated, 226–230,
229, 233
mechanism, 227
of 4-heteromethylene-5(4H)-oxazolones, 228
phase-transfer catalyzed reactions, 227
preparation of
2-acylaminocinnamic acids, 226
N-acyl dehydroamino acids and esters, 229
acrylates, 227, 228
acrylic acids, 227, 228
aminoalkyl esters, 227
dehydroamino acids and esters, 226–230
fluorobutenyl esters, 227
α-keto acids, 230
monoglycerides, 227
peptides incorporating dehydroamino acids and esters, 229
stereospecific, 227, 228
with chiral alcohols, 233
of oxazolines, 417–427, 419–421, 422–423, 427
amino alcohols from 2-(trichloromethyl)-oxazolines, 427
amino alcohols using strong acids, 417–418
amino alcohols using strong bases, 424–425
amino esters and hydroxy amides using mild base, 418, 422–423, 423
dihydroisoquinolines, 426
of 2-aminooxazolines, 424–425
of oxazoline-2-thiones, oxidative hydrolysis, 423–424
of spirocyclic oxazoline esters, 424
of tetrasubstituted oxazolines, 426
Taxol side chain, 422–423
tetrahydroisoquinolines, 426
trehazolin, 424
Hydrosilylation, 161, 503–504
α-addition, 161
β-addition, 161
asymmetric hydrosilylation of imines, 503
asymmetric hydrosilylation of ketoximes, 503
hydrosilylation-cyclization of dienes, 503–504
of 2-alkenyl-5(4H)-oxazolones, 161
of 2-vinyl-5(4H)-oxazolones, 161
of bis(oxazolines), see reductions,
Hydrosilylation

Hydrolysis and alcoholysis (Continued)

α-lactams, 12
α-mesyloxyamides, 47
sonication, 47
α-Hydroxy acids, 82, 117
enzymatic hydrolysis of 2,4-oxazolidinediones, 117
α-Hydroxy amides, 21, 21, 58, 68, 82, 94–95, 96,
97, 98, 99, 103
2(3H)-oxazolines, 21, 21
[2-11C]5,5-dimethyl-2,4-oxazolidinedione, 99
2-aminooxazolines, 68
3-unsubstituted-2,4-oxazolidinediones, 94
5-substituted-2,4-oxazolidinediones, 96
spirocyclic 2,4-oxazolidinediones, 96, 97, 98
cyclization, 58, 68, 94–96, 97, 98, 99, 103
carbonates, 94, 96–97, 98, 99
3-monosubstituted oxazolines, 338
5-monosubstituted oxazolines, 338
bis(oxazolines), 347
glucofuran[2,1-d]oxazolines, 349
multiply substituted oxazolines, 338
acetates, mesylates, triflates, 351, 352–357
1,2-dideoxynojirimycin, 360
2’-epi-Taxol, 358
epimerization, 351, 358
β-glycosylation, 360
Nelfinavir®, 359
Taxol, 358
cyclodehydration with, 338–375
Burgess reagent, 361–365, 361–363, 366
DAST and Deoxofluor, 368–373, 370–371, 372, 373–375
HF, 349
methanesulfonic acid, 348
phosphorous oxychloride, 348
Subject Index

Pictet-Gams conditions, 348
(R)-(-)-rolipram, 348
strong acids, 348–350, 351
thionyl chloride, 338–339, 340–344
Baccatin III, 346
bis(oxazoline) ligands, 347
(+)-calyculin A, 339
(--)-calyculin B, 339
mechanism, 339
mycetin, 344
NMR study, 339
1,2,3-oxathiazolidines, 346
paclitaxel, 346
racemization, 344, 346
solvent affects, 346–347
toluenesulfonic acid, 348
trifluoroacetic acid, 350, 351
urethane protected, 350, 351
triphenylphosphine/carbon tetrachloride (carbon tetrabromide), 373, 373–375
Vilsmeier reagent, 347–348, 348
b-chloro amides, 347
Taxol, 347
Mitsunobu reaction, 365–368, 367, 369
preparation of, 338
tosylates, via polymer-bound tosyl chloride, 359
urethane-protected, 350–351
a-Hydroxy esters, 53, 68, 72–74, 73, 74–75, 94–95, 96, 97, 98, 99, 100, 102, 103
[2-13C][5,5-dimethyl-2,4-oxazolidinedione, 99
3-unsubstituted-2,4-oxazolidinedione(s), 94
5-methyl-2,4-oxazolidinedione, 100
spirocyclic 2-amino-4(5H)-oxazolones, 72–74, 73
spirocyclic 2,4-oxazolidinediones, 96, 97, 98
cyclization with cyanamide, 74
guanidine, 53, 68, 72–74, 73, 74–75
metal cyanates, 103
urea, 94–95, 96, 97, 98, 99, 100
pemoline, 72, 74
a-Hydroxy imidates, 99–100, 100, 101
5-aryl-2,4-oxazolidinediones, 100, 100
5-heteroaryl-2,4-oxazolidinediones, 100
spirocyclic 2,4-oxazolidinediones, 100
101
cyclization of with 1,1’-carbonyldiimidazole, 100
3-Hydroxyxylutamic acid, 24
5-(Hydroxymethyl)-3-phenyl-1H-1,2,4-triazoles, 66
Hypoglycemic agents, 96, 99, 111
Hypolipidemic agent, 451
Imidates, oxazoline synthesis, 387, 388–389
reaction with amino alcohols, 387, 388–389
Imidazobenzimidazoles, 248
Imidazoles, 198, 215, 235, 286
2,5-disubstituted, 198
4-Imidazolidinones, 65
Imidazolidone-4-carboxylates, 4-alkyl, 42, 44
5-alkoxy-2(3H)-oxazolones and imines, 42
Imidazolinones, 238–240
cyclization of acylamino acid amides, 238–240
2-styryl-1-substituted, 247
N-(2-aminophenyl), 248
amino, 243, 250
from 2(H)-azirines and 2,4-oxazolidinediones, 117–119
microwave-assisted synthesis, 296
polymeric, 284
unsaturated, 247
Imidazotriazoles, 251
Imines and carbonyl compounds, reactions with 5(4H)-oxazolones, 171–172
2-phenyl-4-(α-phenylethylidene)-5(4H)-oxazolone, 171
4-(diphenylmethylenyl)-2-phenyl-5(4H)-oxazolone, 171
4-[bis(methythio)methylene]-2-phenyl-5(4H)-oxazolone, 172
unsaturated 5(4H)-oxazolones, 171–172
2-methyl-3-phenylserine, 172
3-amino-β-lactams, 172
carbon disulfide, 172
chlorosulfonyl isocyanate, 172
[2 + 2] cycloaddition with 5(4H)-oxazolone, 172
dioxazabicycloheptanones, 172
hindered electrophiles, 171
synthesis of unsaturated 5(4H)-oxazolones, 171–172
α-Imino esters, 575
α-Imino ketones, 8, 10, 10
4,5-diphenyl-2(3H)-oxazol-2-thiones, 10
4,5-diphenyl-2(3H)-oxazolones, 10
4,5-disubstituted-2(3H)-oxazolones, 10
Iminoxalates, 140, 142
4-alkoxy-5(2H)-oxazolones, 140, 142
ketones, 140, 142
Iminophosphoranes, synthesis of unsaturated 5(4H)-oxazolones, 214, 216, 293
2-aryl-4-arylidene-5(4H)-oxazolones, 214, 216
Iminophosphoranes, synthesis of unsaturated 5(4H)-oxazolones (Continued)

2-arylamino-4-arylidene-5(4H)-oxazolones, 214
unsaturated 5(4H)-oxazolones, 214, 216, 293
aryl chlorides, 214
carbodiimides, 214, 214
from azidocinnamates, 214
N-vinyl phosphazenes, 293

Iminoribitol, 389
Inda-box, 534, 537, 549, 557, 559, 567, 574–575, 577, 589
allene annulation, 574–575
allylic oxidation, 577
conjugate addition, 567
crystal structure, 534
Diels-Alder reaction, 549, 549
hetero-Diels-Alder reaction, 557, 559, 589
preparation of (R)-actinidiolide, 560, 561
(R)-dihydroactinidiolide, 560, 561
Ireland-Claisen rearrangement, 155
Isatins, 102, 103
spirocyclic 2,4-oxazolidinediones, 102, 103
preparation of α-acyloxy amides, 102

Isocyanates, 59, 92
3,4,5-triaryl-2(3H)-oxazolones, 8
bicyclic 2(3H)-oxazolones, 10
cyclization of 1,2-diketones, 10
cyclization of benzoin, 8
2-alkenyl-4,5-oxazolones, 62
2-alkyl-4(5H)-oxazolones, 54
2-phenyl-4(5H)-oxazolone, 54
2-substituted-4,5-oxazolones, 62
spirocyclic 4(5H)-oxazolones, 57
acyl isocyanates, 120
alkenyl isocyanates, 62
benzoyl isocyanate, 54, 57
benzoyl isothiocyanate, 59
chloroacetyl isocyanate, 60
chlorosulfonyl isocyanate, 92, 94, 97, 102

3H-Indoles, 197
Indoles, 210, 222, 233, 240
α-Indolmycenic acid and esters, 79–80
cyclization of, 79–80
epimerization, 79
resolution, 79
(+)‑Indolmycin, 85
(±)‑Indolmycin, 88

Indolmycin, 68, 78, 79–81, 84–89, 120
absolute configuration, 79
asymmetric synthesis, 80, 85, 88–89, 120
conformationally restricted analogues, 85
epimerization, 85, 88
racemic, 79, 85, 88
synthesis from a 4(5H)-oxazolone, 84–89
2-(dimethylamino)-4(5H)-oxazolone, 84–85, 88
synthesis of the 4(5H)-oxazolone ring, 79–81, 88–89, 120
cyclization of thiourea, 80
N,N'-dimethylguanidine and α-indolmycenic acid and esters, 79–81, 120
guanidine and indolmycenic acid ester, 88–89, 120
isoindolmycin, 79
Insecticides, 143, 210
Ionic liquids, 409
IR spectroscopy, saturated 5(4H)-oxazolones, 206
Isotope labeling, 22
Isoxazoles, 268, 269
Isoxazolidines, 150
Isoxazolines, 268, 268, 269, 410
spiro, 268, 268

Kalbretorine, 462
Kalkitoxin, 428
Ketenes, 56–57, 92, 155
2,4-oxazolidinediones, 56–57, 57
2,5-diphenyl-2-substituted-4(5H)-oxazolones, 56–57, 57
bis(ethoxycarbonyl)ketene, 92
tert-butylecyanoketene, 57
diphenylketene, 56–57, 57, 92
Pummerer reaction, 57
reaction with N-acylsulfilimines, 56
Ketenimines, 91
2-ethoxy-4-(p-tolylimino)-4(5H)-oxazolones, 91
5,5-diethyl-2,4-oxazolidinedione, 1
5,5-dimethyl-2,4-oxazolidinedione, 1
thermolysis of ethyl azido formate, 91
Keto esters, 47, 48
2(3H)-oxazolone-4-carboxylates, 47
ethyl 2(3H)-oxazolone-4-carboxylates, 48
3-bromo- with methyl carbamate 47, 48
3-nosyloxy- with methyl carbamate, 47, 48
α-Ketols, 8, 47
3,4,5-triaryl-2(3H)-oxazolones, 8
2(3H)-oxazolones, 47
reaction with isocyanates, 8, 47
2(3H)-oxazolones, 3, 10, 18, 20, 22
3-arylated-5-tert-butyl-2(3H)-oxazolones, 3, 4
3-arylated-5-phenyl-2(3H)-oxazolones, 3
4-(alkylthio)-5(2H)-oxazolones, 139, 140
4-(arylthio)-5(2H)-oxazolones, 139, 141
4-alkoxy-5(2H)-oxazolones, 140, 142
4,5-diphenyl-2(3H)-oxazolones, 10
4,5-diphenyl-2(3H)-oxazol-2-thiones, 10
5(2H)-oxazolone N-oxides, 149
acetophenone, 578, 578
α-acetylamin, 192
N-acetylamin, 287, 289
α-alkoxy, 587
α-amino, 169, 191
α-bromo, 4, 22
α-chloro-α-acetylamin, 175
cyclic, 578
α-diazo, 20
α,α-difluoroalkyl, 169
difuoro, 169
α-halo, 18, 164
α-imino, 8, 10
α-methoxyacetophenone, 587
reduction, 530, 577–579, 578, 579, 587
hydroxylolation, 530, 577–578, 578
transfer hydrogenation, 579, 579
trifluoro, 169
β,γ-unsaturated, 138
Kinetic resolution(s), 501, 507
Knoevenagel condensation (reaction), 75, 110, 111, 113–116
5-(benzylidene)-2,4-oxazolidinediones, 114
5-alkenyl-2,4-oxazolidinediones, 113
5-alkyl-2,4-oxazolidinediones, 113
of 2-thio-2,4-oxazolidinedione, 75, 113
of 2,4-oxazolidinediones, 110, 111, 113–116
preparation of, 75, 113, 114, 115
antidiabetic agents, 115, 116
cyclooxygenase inhibitors, 75
dual 5-lysoxygenase and cyclooxygenase inhibitors, 75, 114
metabolic bone disorder agents, 115
non-linear optical materials, 114
Labeling studies, 72
Lacinilene C-7 methyl ether, 343
(+)-Lactacystin, 390, 437
(6R)-Lactacystin, 437
clasto-Lactacystin β-lactone, 437
Lactacystin and analogues, 345, 436
α-Lactams, 12
5-alkyl-3-aryl-4-halo-2(3H)-oxazolones, 12, 13
3-aryl-5-substituted-2(3H)-oxazolones, 12, 14
β-Lactams, 471, 561
Lactones, 184
Lankacidin antibiotics, 415
Laulimalide, 559
Lawesson’s reagent, 292
Lead tetracetate, 4
Leucine enkephalin, 242
Lissoclinamide 4, 363
Lissoclinamide 7, 363, 429
Lithiation, 448–458, 453–454, 457
benzylic, 448
Curtin-Hammett principle, 456
diastereoselective, 452, 453–454, 455–458
dilithiation, 457–458
ortho-lithiation, 448
oxazolylferrocene, 453–454, 455–456, 457
Lithiation (Continued)
- nitrogen-directed, 455–456
- oxygen-directed, 456–457
Local anesthetic activity, 173
Lonazolac, 227
Luminescence dyes, 120
Luminescence properties, saturated 5(4H)-oxazolones, 206
Luminophores, 209
Lytisol, 389
Macrocycles, 61
Macrolactams, 237
Macrolides, 27
- (−)-Madumycin II, 363
Maleimides, 572
Malononitrile, synthesis of bis(oxazolines), 537
- (−)-Malyngolide, 589–590
Mannich reactions, 83–84, 110, 217
- of 2-amino-5-phenyl-4(5H)-oxazolone, 83
- of 5-(arylidene)-2-thio-4-oxazolidinones, 110
- of spirocyclic 2,4-oxazolidinediones, 110
- (+)-Mannostatin, 391
Masamune, 539
Masamune’s protocol, 536
Masked 1,3-dipoles, 198
Mass spectrometry, saturated 5(4H)-oxazolones, 206
Mass spectrometry, unsaturated 5(4H)-oxazolones, 285–286
- (−)-Mastigophorene A, 341, 465–466
- (−)-Mastigophorene B, 341
Mastigophorene, 465
MeBmt, 28
Meerwein arylation, 575
Meerwein’s salt, 42
Meerwein-Pondorf-Verley reduction, 501
Mesoionic oxazolones (munchrones), 195–198, 197
- from cyclodehydration of N-substituted α-amino acids, 195
preparation of
- 1,3-benzodiazepines, 197
- 2,5-disubstituted imidazoles, 198
- naphth[1,2-d]oxazoles, 198
- pyrroles, 195, 196, 197
- pyrrolofullerenes, 198
- 1,2,4-triazoles, 198
reaction with dipolarophiles, 195–198, 197
- acrylates, 196
- dimethyl acetylenedicarboxylate, 196
[60]fullerene, 198
fumarates, 196
fumaronitrile, 196
nitrile imines, 198
- nitrosobenzene, 197
- 1-nitroso-2-naphthol, 198
- 2-phenylbenzazete, 197
N-(phenylmethylene)benzenesulfonamide, 198
triphenylvinylphosphonium bromides, 196
Metabolic bone disorder agents, 54, 115
Methoxybromination, 23–24, 25
Methoxyselenylation, 23–24, 26
Methyl α-L-vancosaminide, 390
- (−)-O-Methylancistrocladine, 389, 463
- (+)-O-Methylancistrocloline, 463
- (±)-N-Methylcephedrine, 22
- (±)-O-Methylpallididine, 108
2-aryl-4-(hydroxymethylene)-5(4H)-oxazolones, 223
2,4,4-trisubstituted 5(4H)-oxazolones, 166
4-(alkylaminomethylene)-2-phenyl-5(4H)-oxazolones, 225
4-(alkylthiomethylene)-5(4H)-oxazolones, 223, 224
4-(aminomethylene)-2-phenyl-5(4H)-oxazolones, 221, 221
4-(N,N-disubstituted-1-aminoalkylidene)-5(4H)-oxazolones, 223
4-{[1,2,4-oxadiazol-3-yl]aminomethylene}-2-phenyl-5(4H)-oxazolone, 225
4-{[N-cycloalkeny]aminomethylene}-5(4H)-oxazolones, 224
4-{[imidazol-1-yl]methylene}-2-phenyl-5(4H)-oxazolone, 219
4,4-disubstituted 5(4H)-oxazolones, 166
5(2H)-oxazolones, 134, 143
5(4H)-oxazolones, saturated, 160, 161, 162, 164–167, 166
C-2 vinyl as Michael acceptor, 160–161
formyl anion equivalent, 162
Michael addition to α,β-unsaturated carbonyl compounds, 162
Michael addition to methyl propiolate, 164
Michael addition to triphenylvinylphosphonium bromide, 166
nucleophilic acyl equivalents, 165
preparation of
1,4-dicarbonyl compounds, 165
3-acrylacrylates, 164
pyran-2-ones, 165
pyrroline-2-carboxylic acid esters, 167
5(4H)-oxazolones, unsaturated, 218–226, 221, 224, 248–252, 258–261, 261
at the exocyclic double bond, 218–221, 258–261
2-nitropropane, 259
amino acid derivatives, 224
carbon disulfide, 223
hexamethylphosphorus triamide, 259
hydrazines, 222, 225
imidazole, 219, 222
indole, 222
phosphites, 259
sodium thiomethoxide, 220
sulfur ylides, 260–261, 261
thiols, 258
toluene, 260
triphenylphosphine, 220, 221
ring opening with bis(nucleophiles), 248–252, 254
transaminations, 224–226
bis(oxazolines), 568–569, 585–586
Mukaiyama, 585–586
of O-benzylhydroxylamine, 568
of enolsilanes, 585
of ethyl acetooacetate, 568
of methylthio enolsilane, 568
of silyl enol ethers, 568
oxazolines, 376–378, 410, 413, 437–438, 445–446, 504, 505
2-oxazolines from β-halo amides/precursors, 376–378
asymmetric Michael addition to
2-alkenyloxazolines, 445–446
arylithium reagents, 446
(+)-α-curcume, 446
diethylaluminum cyanide, 446
diethylphosphite, 446
(+)-xanthorrhizol, 446
asymmetric Michael additions to cyclic enones, 504, 505
prochiral nucleophiles, 504
stereoselective addition of stabilized
4-oxazoline enolates, 437–438
Microginin, 367
Microwave accelerated (assisted) reactions, 212, 296, 384
(−)-Mirabazole C, 178
Miscellaneous carbon-carbon bond forming reactions, bis(oxazolines), 573–575
[2+2] photocycloaddition, 575
[2,3]-Wittig rearrangements, 573–574
allene annulation, 573
allylzincation, 573
bis(alkoxyacylation), 573
C-H insertion reactions, 575
chiral fullerene synthesis, 575
Meerwein arylation, 575
Miscellaneous reactions, 42–45, 43, 44, 45, 508–510, 511–512, 580–581
2-alkyloxazolines, chiral, 508
2(3H)-oxazolones, 42–45, 43, 44, 45
alkylation, 42
oxidation, 42
tert-butylhypochlorite, 42
pyridinium chlorochromate, 42
5-alkoxy-2(3H)-oxazolones, 42–43, 43
reaction with acetals, 43
5,5-dialkoxy-2-oxazolidinones, 43, 44
amino acid esters, 43, 45
reaction with aldehydes, 42
2-oxazolidinone-4-carboxylates, 43, 44
reaction with imines, 42, 44
2,3-diaminopropane-1-carboxylates, 42, 44
bis(oxazolines), 580–581
amination of enolsilanes, 581
aza-Claisen rearrangement, 581
heteroannulations, 580
synthesis of (α-chloroalkyl)boronates, 581
Wacker-type cyclizations, 580
oxazolines, 508–510, 511–512
annulations of 2-aminoaxazoline, 510
bifunctional electrophiles, 510, 511–512
molecular orbital calculations, 510
pyrimidinones, 510
triazinones, 510
x-ray crystal structure, 510
electrophilic reactions of 5-alkylidene)oxazolines, 509
oxidative rearrangement of 2-alkyloxazolines, 508
1,4-oxazinones, 508
chiral glycine synthon, 508
Stille couplings, 508
thietane N-acylimines from spirocyclic oxazolines, 509
Miscellaneous syntheses, of 2(3H)-oxazolones, 20–22, 21

3-phenyl-2(3H)-oxazolones, 20
- diazo ketones and phenyl isocyanate, 20
- 1,3-dipolar cycloaddition, 20
- heterocumulenes, 20
- ω-keto carbenoids, 20

2(3H)-oxazolones, 21, 21
- ω-hydroxy amides, 21, 21
- phosphorus ylide, 21, 21
- Wittig olefination, 21

2(3H)-oxazolones, 22
- 2-aminobenzoxazole and ω-bromo ketones, 22
- isotope labeling, 22

Mitsunobu reaction, 108–109, 365–368, 367, 369
- alkylation of 2,4-oxazolidinediones, 108–109
- oxazoline synthesis, 38, 385–398, 385–386
- 2-aminooxazolines, 394, 396
- 2-heteroaryloxazolines, 384
- aza-bis(oxazolines), 394
- bis(oxazolines), 384
- multiply substituted oxazolines, 384
- unsubstituted oxazolines, 384
- allylic alcohols, 389, 390
- β-amino alcohols, 389, 390
- cyanamide, 396
- cyanogen bromide, 389, 394
- aza-bis(oxazolines), 394
- N,N-dimethylcyanamide, 389, 393
- epoxytrichloroacetimidates, 391–392, 392
- (−)-myriocin, 392
- imidates, 387, 388–389
- reaction with amino alcohols, 384, 385–386, 387
- microwave irradiation, 384
- platinum complexes, 387
- Ritter reaction, 395–398
- cyanamide, 396
- Indinavir, 395

N-Substitution of 2(3H)-oxazolones, 38, 40–41

3-acetyl-2(3H)-oxazolones, 40
- acylation and alkoxy carboxylation, 38, 40
- Boc-Ox, 40
- Cbz-Ox, 40
- chemoselective protection, 38
- DPPOx, 40
- regioselective protection, 38
- phosphorylation, 40–41
- mixed phosphate esters, 40

Naphth[1,2-d]oxazoles, 198
N-Nitrenolactams, 42

Nitrile imines, 198, 235, 265, 267, 268
Nitrile oxides, 235, 268–269, 268, 289
Nitrile ylides, 143–145, 146, 147, 194
- [3+2]-cycloaddition, 147
- 1,3-dipolar cycloaddition, 144
- alkoxy substituted by decarboxylation of 5(2H)-oxazolones, 145
dipolarophiles, 143, 145
from 2,2-bis(trifluoromethyl)-5(2H)-oxazolone, 147
from 4-(alkylthio or arylthio)-5(2H)-oxazolones, 143
from 4-(isopropoxy)-2-phenyl-2-(trifluoromethyl)-5(2H)-oxazolone, 145
hydrogen substituted, 147
intermediates to pyridines, 194
thiosubstituted by thermolysis of 5(2H)-oxazolones, 143

Nitriles, oxazoline synthesis, 383–398, 385–386

2-aminoxazolines, 394, 396
2-heteroaryloxazolines, 384
aza-bis(oxazolines), 394
bis(oxazolines), 384
multiply substituted oxazolines, 384
unsubstituted oxazolines, 384
allylic alcohols, 389, 390
β-amino alcohols, 389, 390
cyanamide, 396
cyanogen bromide, 389, 394
aza-bis(oxazolines), 394
N,N-dimethylcyanamide, 389, 393
epoxytrichlorooacetimidates, 391–392, 392
(−)-myriocin, 392
imidates, 387, 388–389
reaction with amino alcohols, 384, 385–386, 387
microwave irradiation, 384
platinum complexes, 387
Ritter reaction, 395–398
cyanamide, 396
Indinavir, 395
inversion of configuration, 396
preparation of cis-1-amino-2-indanol, 395
preparation of C2-symmetric bis(oxazolines), 396
preparation of \(\alpha \)-furfuryl amides, 397
preparation of Taxol side chain, 397
retention of configuration, 396
with alkenes, 397, 398
with 1,3-dioxolanes, 396
with epoxides, 396
with furfuryl carbinol acetates, 397
with cis-indane-1,2-diol, 396
with olefins, 396–397
trichloroacetimidates, 389, 391–395
2′-amino-2′-deoxycytidine, 393
2′-amino-2′-deoxyuridine, 393
bis(trichloroacetimidate), 394
staurosporine, 394
vinylogous Schmidt glycosylation, 394
diethylaluminum chloride, 392
from allylic alcohols, 389, 390
from cyclic sulfates, 393
(+)-mannostatin, 391
trichloroacetonitrile, 383, 389, 393
Nitrones, 38, 561–562, 587
NOE of cyclopalladated oxazoline, 460
Non-linear optical materials (NLO), 54, 84, 114, 210
Non-sedating anxiolytic, 348
Non-steroidal anti-inflammatory drugs (NSAIDS), 334
Nucleophilic acyl equivalents, 165
Nucleophilic reactions of oxazolines, 417–433
see: hydrolysis, 417–427
other nucleophiles, 427–429
curacin A, 428
cyclopeptides, 429
kalkitoxin, 428
selective thiolyis, 428
thiazolones from thiolyis of oxazolines, 427–429
substitution at the 5-position, 430–433
anomeric oxazolones as glycopyranosyl donors, 430–432
azide, 432
HBr, 430
HI, 430
Nelfinavir\(^{\text{R1}}\), 432
neuraminic acid analogues, 432
pyridine hydrochloride, 430
thiagazole, 430
thiazolines, 430
thiolacetic acid, 432
Obrecht’s methodology, 187–188, 189, 271, 381
phenylalanine cyclohexylamide, 187
resolution of quaternary amino acids, 271
resolution of racemic \(\alpha,\alpha \)-dialkylamino acids, 187
substituted amino acid amides, 189
Organometallic complexes, 202–206, 291
saturated 5(4\(H\))-oxazolones, 202–206
dinuclear, 202–206
mononuclear, 202–206
ortho metalation, 203
C2-symmetric bis(oxazolone) ligands, 291
Orthoesters, reaction with oxazolonium salts, 63
4-Oxa-2-aza-podophyllotoxin, 108
1,2,3-Oxathiazolines, 346
1,2,4-0xa-2-aza-podophyllotoxin, 108
1,2,4-Oxadiazole-3-carboxylates, 216, 235
1,2,4-Oxadiazoline-3-carboxylic acids, 197
1,3-Oxathirole, 59
1,3-Oxazine-2,4(\(H\))-diones, 18
5-aryl-2(3\(H\))-oxazolones, 18
1,3,4-Oxadiazolines, 57
1,4-Oxazinones, 508
2-allyloxy-4,5-diphenyl, 7, 45
2-benzyloxy-4,5-diphenyl, 7, 45
2-chloro-4,5-diaryl, 46
2-ethoxy, 42
2,4,5-trimethyl, 407
2,5-diacyl, 191, 191, 289
2,5-disubstitued, 192
4-[\(\alpha\)-bis(dimethylamino)phosphoryl]benzyl-5-(dimethylamino)-2-phenyl, 259
4-acyl-2-phenyl, 417
4-carboxylates, 376
4-nitro-2-phenyl, 410
4-nitro-2-phenyl-5-carboxylic acid methyl ester, 410
5-(aryl-methoxy)-2-phenyl-4-(trifluoromethyl), 158
5-(benzoyloxy)-2-phenyl-4-(trifluoromethyl), 158
5-acylxyloxy, 159, 168–169
5-acyloxy-2-phenyl, 168
5-alkoxy, 137, 138, 155–159, 160, 410
5-aryl-2-phenyl, 289
5-fluoro-2-phenyl-4-(trifluoromethyl), 156
5-methoxy-2-(p-methoxyphenyl), 439
5-methoxy-4-substituted-2-(tert-butyldimethylsilyl), 407
5-oxazolacetates, 192
8, bis, 191
Oxazoles (Continued)
hydrolysis, 55–56
nitro, 410
triflates, 66, 120
2,4-Oxazolidinediones, 89–119, 93, 100, 101, 103, 109, 119
2-alkoxy, 91–94, 93
from α-bromo amidines, 92–93
from heterocumulenes, 92, 93
from ketenimines, 91
3-alkoxy, 90
3-alkyl(aryl), 90
3-(arylideneamino), 90
N-acyliminium ion precursors, 108
anions, 110–111
Boulton-Katritzky rearrangement, 92–93, 93
dianions, 111, 113
preparation of 2(5H)-furanones, 111, 113
reaction with α-halo ketones, 111, 113
natural products, 106
radiolabelled, 99
reactions, 94, 108–120, 109, 119
acylation, 109
chlorosulfonation, 116
hydrolysis, 116
Knoevenagel reaction, 110, 113–117
Mannich reaction(s), 110
Mitsunobu reaction, 108–109
nucleophilic displacements, 116
reduction, 116
ring opening, 117–119, 119
(2H)-azirines, 117–119, 119
enzymatic hydrolysis, 117
hydrazines, 117
α-hydroxy acids, optically active, 117
imidazolones, 117–119, 119
triazolones, 117
spirocyclic, 97, 98, 100, 101, 102, 103, 110
synthesis, 94–107, 100, 101, 103
2-aminooxazoles, oxidation, 106
α-O-(carbamoyloxy)esters, 94, 102
cyanohydrins, 97, 99
electrochemical reduction, 103–105
α-halo acetanilides, 105
α-halo amides, 103
α-hydroxy amides, 94–95, 96, 97, 98, 99, 103
α-hydroxy esters, 94–95, 96, 97, 98, 99, 100, 102, 103
α-hydroxy imidates, 99–100, 100, 101
isatins, 102, 103
ring contractions, 100, 105–106
base catalyzed, 100
oxidative, 105–106
α-tosyl acetanilides, 105
tautomerism, 89
x-ray crystal structures, 89
2-Oxazolidinones, 4, 6, 10, 12, 14–16, 23–25, 32, 33, 35, 38, 42, 43, 44, 45, 46, 47
3-alkyl-2(3H)-oxazolones, 15
diphenylyvinylene carbonate and amines, 15
3-amino-2(3H)-oxazolone, 15
diphenylyvinylene carbonate and hydrazine, 15
4-(3-indolyl)-2(3H)-oxazolone, 14
from 4-methoxy-2-oxazolidinone, 14
5-phenyl-2(3H)-oxazolone, 6
from a 4-hydroxy-2-oxazolidinone, 6
2(3H)-oxazolone(s), 4, 10, 12, 14–15
anodic oxidation of 2-oxazolidinones, 14
Diels-Alder reactions of 4,5-dimethylene-2-oxazolidinones, 10–12
electrophilic reactions of 3-acyl-4,5-unsubstituted-2(3H)-oxazolones, 23–24
2-oxazolidinone-4-carboxylates from 5-alkoxy-2(3H)-oxazolones, 42, 43
2-oxazolidinones from α-ketols and isocyanates, 47
4,5-dialkoxy-2-oxazolidinones, 25
5-alkoxy-2(3H)-oxazolones and aldehydes, 43
5,5-dialkoxy-2-oxazolidinones from 5-alkoxy-2(3H)-oxazolones, 43, 44, 45
Oxazolidinones, 546–552, 553, 554, 559, 561, 562, 567, 568, 568, 585
3-acryloyl-1,3-oxazolidin-2-one, 546–552, 567
cyclopropanation, 587
N-acyl oxazolidinones, 553, 568
N-cinnamyl oxazolidinones, 567
N-crotonyl oxazolidinones, 567
Diels-Alder reaction, 546–552, 553, 554
1,3-dipolar cycloaddition reactions, 561, 562
free radical conjugate additions, 567, 568
hetero-Diels-Alder reaction, 559
Michael addition, 568
Oxazolidinopiperidines, 30
Oxazoline N-oxides, 416–417, 447
2-(α-aclyloxy)oxazolines, 417
hetero-Claisen rearrangement of oxazoline N-oxides, 416–417
ketene aminal, 417
dipolar cycloadditions, 447
Oxazoline directed metalation and electrophilic substitutions, 448–460, 453–454, 455–456, 457, 459
chiral ferrocenyloxazoline ligands, 452, 453–454, 455–456, 457

Subject Index
chiral oxazolinyl aryl sulfides, 448
chiral phosphinoxazolines, 448
arenes, 458
EVL-HMPA, 458, 459
benzylc deprotonation, 448
cyclopalladation, 458, 460
diastereoselective, 460
nOe, 460
x-ray crystal structure, 458
diastereoselective lithiation, 452, 453–454, 455–458
Curtin-Hammett principle, 456
dilithiation of oxazolinylferrocene, 457–458
lithiation of oxazolinylferrocene, 453–454, 455–457, 458
nitrogen directed, 455–456
oxygen-directed, 456–457
x-ray crystal structure, 455, 458
dilithiation, 457–458
metatation of, 448, 456–457, 458
\(\eta^3\)-cyclopentadienylrhenium(I) tricarbonyl oxazoline complex, 458
2-(2-methylphenyl)oxazoline, 448
4,4-dimethyl-2-phenyloxazoline, 448
trans-4,5-diphenyloxazolinylferrocene, 456–457
preparation of
anti ulcer compound AI-77-B, 448–449
aryl ketones, 451
biaryls, 451
C\(_2\)-symmetric tetradentate ligands, 457–458
chiral ferrocenyloxazoline ligands, 452, 453–454, 457
chiral oxazolinyl aryl sulfides, 448
chiral phosphinoxazolines, 448
thromboxane \(A_2\) receptor antagonist, 448
xenalin, 451
x-ray crystal structure, 452
Oxazoline directed nucleophilic additions, 469–475
diastereoselective conjugate additions to oxazolinylnaphthalenes, 469–475, 470, 472–473
1,6-addition of lithium dialkylamides, 474–475
ethoxyvinyllithium (EVL), 469, 470
lithiosilane, 469
lithium amides, 470–471, 474–475, 472–473
RLi, 475
preparation of
(\(-\))-aphanorphine, 469
(\(-\))-eptazocine, 469
\(\beta\)-amino acids, 471
\(\delta\)-amino acids, 475
chiral tetralonenes, 475
dihydroporphthalenes, 469
\(\beta\)-lactams, 471
Tamao oxidation, 469
x-ray crystal structure, 469
Oxazoline directed nucleophilic substitutions, 461–468, 462, 466
phosphinoxazoline ligands, 461
atropisomerism selectivity, 463
preparation of axially chiral biaryls, 462
preparation of biaryls, 461–462, 463–468
actinoidic acid, 462
Suzuki coupling, 462
unsymmetrical, 462
preparation of phosphinoxazoline ligands, 461
preparation of pyrrolophenanthidine alkaloids, 462
stereoselective synthesis of biphenyls, 462
stereoselective Ullmann coupling, 464–468, 466
substitution of, 461, 466
2-(\(ortho\)-chlorophenyl)-4,4-dimethyloxazoline, 461
2-(\(ortho\)-fluorophenyl)oxazoline, 461
4,4-dimethyl-2-(2,3,4-trimethoxyphenyl)oxazoline, 466
Oxazolines as activating groups, 442–447
Diels-Alder reactions, 447
Michael additions, 445–446
2-proton abstraction, 442–445
Oxazolines as chiral directing groups, 476–481
as \(\Psi\)-geminal directing groups, 481
bromination of oxazolinylcyclophanes, 481
for asymmetric hetero-Diels-Alder reaction, 476–477, 477
chiral 2-alkenylxazolines, 476–477, 477
computational studies, 477
isocyanates, 476–477
for diastereoselective Diels-Alder reaction, 477–479
oxazoline substituted acrylates, 478–479
for diastereoselective Grignard addition, 477
Felkin-Ahn transition state model, 477
oxazoline aldehydes, 477
for diastereoselective sulfimidation, 480
for stereoselective oxidation of sulfides, 479
transition state models, 479–480
preparation of
chiral sulfimides, 480
chiral sulfoxides, 479
\(D\)-ribo-phytosphingosine, 477
tetrahydrooxazoalopyrimidines, 476
Oxazolines as directing groups, 448–475
metalation and electrophilic substitutions, 448–460
nucleophilic additions, 469–475
nucleophilic substitution, 461–468
Oxazolines as ligands in asymmetric synthesis, 481–507, 489, 490, 491, 494
allylic substitution, 487–493
allylic imidate rearrangements, 491–492
ferrocenyloxazolines, 491
hard nucleophiles, 492
intramolecular allylic amination, enantioselective, 492
nickel (0) catalyzed substitutions, 492
palladium-catalyzed alkylation of, 488–493, 489, 490, 491
3-acetoxycyclohexene, 490, 491
3-acetoxycyclopentene, 490
dimethylallyl acetate, 490, 490
dimethylallyl tert-butylcarbonate, 490, 490
diphenylallyl acetate, 487–489, 489
PhosOx ligands, 490, 491, 492, 493
platinum-catalyzed alkylation, 491
soft nucleophiles, 487–493
acetylacetone, 489
arylboronic acids, 493
benzylamines, 489
dimethyl malonate, 487–489, 489, 490, 491
dimethyl methylmalonate, 489
silyl enolates, 489
x-ray crystal structure, 489, 491
cyclopropanations, 504, 506
bis(oxazolines) 504, see also Chapter 9, pp 538–545
PyrOx ligands, 506
dialkylzinc additions, 501, 502
asymmetric addition to aldehydes, 501, 502
dimethylzinc, 501
HydrOx ligands, 501
Heck reactions, 493–495, 494
asymmetric intermolecular, 494
double-bond migration, 493–494
enantioselective, 493
PhosOx ligands, 493–494
PyrOx ligands, 495
regioselective, 493
x-ray crystal structure, 494
hydrogenation, 495–501
hydroisilylation, 503–504
asymmetric hydroisilylation of imines, 503
asymmetric hydroisilylation of ketoximes, 503
hydroisilylation-cyclization of dienes, 503–504
PhosOx ligands, 503
PyrOx ligands, 503–504
ligand classes, 483–488, 490, 491, 492, 493, 495, 498, 501, 503, 504, 506, 507
carbenes, 498
HydrOx, 483, 488, 501, 507
PyrOx, 483, 486, 495, 503–504, 506
SelOx, 483, 488
SulfOx, 483, 487, 504
Michael additions, 504, 505
asymmetric addition to cyclic enones, 505
PhosOx ligands, 504
phosphate-oxazoline ligands, 504, 505
prochiral nucleophiles, 504
SulfOx ligands, 504
x-ray crystal structure, 504
miscellaneous reactions, 506–507
alkyne couplings, 507
kinetic resolution, 507
PhosOx ligands, 507
asymmetric Fujinawa-Moritani reaction, 506
asymmetric sulfide oxidation, 507
HydrOx ligands, 507
Oxazolines as protecting groups, 442
2-Oxazolines, 332–528
anomeric oxazolines as glycopyranosyl donors, 430–432
as ligands for asymmetric catalysis, 481–507
bis(oxazolines), 333, 394, 396, 481, 504
aza-bis(oxazolines), 394
C2-symmetric bis(oxazolines), 396
epimerization, 439
ligand classes, 483–488
natural products, 361, 363, 367, 428
calyculin C, 361
curacin A, 428
thiogauze, 363, 367
oxazolinium salts, 433–435
reactions, 417–512
activating groups, 442–447
N-alkylation, 433–435
chiral directing groups, 476–481
directing groups for aromatic reactions, 448–475
ligands in asymmetric catalysis, 481–507
miscellaneous reactions, 508–512
nucleophilic reactions, 417–433
hydroylsis, 417–433
other nucleophiles, 427–429
Subject Index

- substitution at the 5-position, 430–433
- oxidation, 440
- polymeric oxazolines, 507–508
- protecting groups, 442
- proton abstraction of the oxazoline ring, 435–440
- reductions, 440–442
- synthesis, 333–417
- N-acylaziridines, 398–402
- allyl amides (enamides), 402–406
- carboxylic acids and esters, 333–338
- cycloaddition reactions, 407–412
 - [2+2], 407
 - [3+2], 408–410
 - [4+2], 410–412
- β-hydroxy amides, 338–375
- β-halo amides, 375–383
- isonitriles, 406–407
- miscellaneous methods, 412–417
 - from acylisothiocyanates, 417
 - from acylnitrenes, 415
 - from azido alcohols, 413
 - from azido esters, 412
 - from oxazoline N-oxides, 416
 - from sulfilimines, 413
- reductive photocyclization, 417
- Staudinger-aza-Wittig reaction, 412–413
- nitriles, 383–398

Oxazolinium salts, 433–435
- hydrolysis, 433
- intramolecular, 434
- precursors for azaspirocycles, 434
- precursors for dengibsin, 433
- reaction with cyclobutanes, 435
- reduction, 433

Oxazolinylcyclophanes, 481

Oxazolinylidenes, 120
- 2-aryl-5,5-dimethyl-4(5H)-thiooxazolones, 120

Oxazolynaphthalenes, 469–475, 470, 472–473
- diastereoselective conjugate additions, 469–475, 470, 472–473
- 1,6-addition of lithium dialkylamides, 474–475
- ethoxymethyleneiminium (EVL), 469, 470
- lithosilane, 469
- lithium amides, 470–471, 474–475, 472–473
- RLi, 475

Oxazolo[5,4-b]pyridines, 254
- 2(3H)-Oxazolones (4-Oxazolin-2-ones), 2–45, 4, 9, 10, 13, 14, 17, 21, 25, 26, 34, 43, 44, 45, 47–49, 48
- acylating agents, 32
- alkylation, 42

bicyclic, 10
- C-substitution, 36, 39
- cross-coupling reactions, 36, 39
- cycloadditions, 32–36, 42
- Diels-Alder reactions, 10–12, 32, 35
- dienophiles, 32
- dipolarophiles, 35
- electrophilic additions, 23–25
- ene-reaction, 35
- Friedel-Crafts acylation, 36
- hydrogenation, 22–23
- miscellaneous reactions, 42–45
- miscellaneous syntheses, 20–22
- N-substitution, 38–41
- acylation, 38–40
- alkoxylation, 38–40
- phosphorylation, 40–41
- oxidation, 42
- pericyclic additions, 32–36
 - [2+2], 35–36
 - [3+2], 35
 - [4+2], 32–35
- radical additions, 25, 27–32
- alkenyl radicals, 30–31
- alkyl radicals, 25, 27–30
- polymers, 32
- reactions with
 - acetal, 43
 - aldehydes, 42
 - imines, 42
- synthesis from, 3–22, 47–49
 - 1,2-diketones, 8–12
 - 1,2,4-triazolium salts, 18
 - 2-allyloxyoxazoles, 7
 - 2-oxazolidinones, 14–16
 - 2,4-thiazolidinediones, 17–18
 - acyclic carbamates or urethanes, 3–7, 47
 - α-amino acid esters, 7–8
 - benzoate and isocyanates, 8, 47
 - β-aminosulfonofuorides, 12
 - hydroxamic acids, 12–14, 47
 - oximes, 16–17
 - via three component condensation, 18–20
- 2(5H)-Oxazolones (3-Oxazolin-2-ones), 45–46
- 4,5-diaryl-5-methoxy-2(5H)-oxazolones, 46
- 5-chloro-4,5-diaryl-2(5H)-oxazolones, 46
- from 4,5-diaryl-2(3H)-oxazolones, 46
- 5-substituted-2(5H)-oxazolones, 45
 - from irradiation of 2-allyloxyoxazoles, 45
 - dimers, 46
- reactions, 46
- synthesis, 45–46
 - photolysis of oxazoles, 45
4(5H)-Oxazolones and thiooxazolones, 53–89, 57, 64, 66, 73, 76, 78, 120
2-alkoxy, see 2,4-oxazolidinediones, pp 89, 91–94
2-alkyl(aryl), 55–62, 120
Almazole D, 62
cycloaddition(s), 67
Diels-Alder reaction, 67
macrocyclic, 61
oxazolonium salts, synthesis, 58–59
oxazolonium salts, reaction with aldehydes and orthoesters, 63–64
reactions, 63–67, 120
[2 + 2] photochemical cycloaddition, 67
4-aminothymol, 65
Diels-Alder reaction, 67
xenodizes, 64, 65
imidazolidinones, 65
oxazole triflates, 66, 120
triazoles, 64, 65
tropolones, 67
spirocyclic, 57
synthesis, 55–62, 120
acrylamide, 62
acyl isocyanates, 120
carbenes, 57, 59
x-halo amides, 61
hydrolysis, 55–56
N-acylsulfilimines, 56–57, 57
trifluoromethylsulfenylation, 60
sulfoximine I, 66
tautomerism, 54
2-amino, 53, 54, 67–89, 120
acetylation and acylation, 82–83
aldol condensation (reaction), 82
alkylation, 82
hydrolysis, 82
indolmycin, 68, 78, 79–81, 84–89, 120
isoindolmycin, 79, 88
Mannich reactions, 83–84
pemoline, 67, 68, 72, 74–75
polymerization, 84
reactions, 81–89
spirocyclic, 71–72, 73, 74
x-halo esters, 72–74, 73
pterins, 72
ureides, 71
synthesis, 53, 67–81, 73, 76
alkylation of 2-amino analogue, 68
aminolysis of a 2-thione, 68
N-aryl ureas and chloroacetic acids, 70
coumarin semicarbazones, 69
dihydropyran-2,3-diones, 75
displacement of a leaving group at C-2, 68, 75
x-halo carboxylic acid ureides, 68, 71
x-halo amides, 68–69
x-hydroxy amides, 68
x-hydroxy esters, 53, 68, 72–74, 73
indolmycin, 79–81
oxidative ring contraction, 77, 78
pterins, 72
tautomerism, 54–55, 68
transamination, 82
2-hydroxy, see 2,4-oxazolidinediones, pp 89–119
spirocyclic, 57, 71–72, 73, 74
5(2H)-Oxazolones, 131–150, 133, 135, 138, 140, 141, 142, 143, 145, 146, 148, 149
4-heteroaryl, 139–142, 140, 141, 142
C-2 vs. C-4 alkylation, 134–136, 135
intermediates for, 133, 134, 135, 138, 143–145, 146, 147, 148, 149
3-alkyl aspartic acid derivatives, 148, 149
x,x-difluoro glycine, 135
x-diketones, 134
nitrile ylides, 143–145, 146, 147
x,γ-unsaturated ketones, 138
nitrile ylides, 143–145, 146
N-oxides, 149–150
from ketones and nitrosoketene, 149
psammapi, 132
racemization, 132, 134
electronic effects, 134
kinetics, 134
steric effects, 134
reactions, 143–150, 145, 146, 146, 148, 149
aminolysis, 145–146, 146
decarboxylation, 145
1,3-dipolar cycloadditions, 143–145
generation of nitrile ylides, 143–145, 146, 147
via thermolysis, 143
Michael addition, 143
synthesis of 2-(trifluoromethyl)pyroles, 143, 145
with electron deficient unsaturated compounds, 143, 145
rearrangements, 147–148
2,3-dihydropyridine, 148
azabicyclohexene, 148
tetrahydrofurypyrrole, 148
thermolysis, 148
thermolysis, 143, 148
with 2H-azirines, 147, 148
with electron deficient unsaturated compounds, 143, 145
azo compounds, 143
synthesis of 2-(trifluoromethyl)pyrroles, 143, 145
synthesis of (trifluoromethyl)-dihydrotriazoles, 143
with phosphites, 147
[3+2]-cycloaddition, 147
generation of nitrile ylides, 147
with ynamines, 148, 149
synthesis, 131–142, 133, 135, 138, 140, 141, 142, 150
4-alkoxy, 140, 141, 142
oxidation of 4-(phenylthio)-5(2H)-oxazolones, 140, 141
4-alkylthio, 139, 140
4-amino, 142, 142
amidines, 142, 142
anilines, 142
4-arythio, 140, 141
C-2 vs. C-4 alkylation, 134–136, 135
cyclization of amino acids and amino nitriles, 131–134, 133
N-oxides, 149
photooxidation of 2'-deoxyguanosine, 150
rearrangement of 5-alkoxyoxazoles, 137, 138
sigmatropic rearrangement(s), 136–139, 138
tautomerism, 131, 134
NMR studies, 134
2-alkoxy, 177–178
activating agents for dicarboxylic acid amino acids, 186
acyl donors, 183
deracemization, 180
derivatizing agents, 182
glycine enolate equivalents, 184
glycine synthons, 186
in peptide synthesis, 185–190, 289
masked 1,3-dipoles, 198
reactions, 178–206, 289–290
alcoholysis, 178–183, 181, 289
aminocyclation, 191–192, 191
aminolysis, 183–185, 185–190, 189
cycloadition reactions, 195–198, 197, 198–201, 199, 201, 289
oxidation of 4-(phenylthio)-5(2H)-oxazolones, 140, 141
from saturated 5(4H)-oxazolones, 160–176
acylation at C-4, 168–171, 170
alkylation at C-4, 162–164, 171
arylation at C-4, 167, 167
Diels-Alder reaction at C-2, 160
from unsaturated 5(4H)-oxazolones, 177, 256–257
hydrogenation, 256–257
halogenation, 175–176
hydroxylilation, 161
intraolecular alkylation at C-4, 171
Michael reaction at C-2, 160
Michael reaction at C-4, 164–167, 166
reaction with azine N-oxides, 174
reaction with diazonium salts, 176
reaction with enamines and formamidines, 172–173
reaction with imines and carbonyl compounds, 171–172
rearrangement of oxazoles, 155–160, 160
unsaturated, 131, 171, 172, 177, 208–287, 212, 213, 214, 216, 217, 218, 220, 221, 224, 229, 241, 244, 247, 249, 258, 261, 266, 267, 268, 278, 280, 281, 292–299
β-amino-α,β-dehydro-α-amino acid equivalents, 173
5(4H)-Oxazolones (Continued)
arylacetaldehyde equivalents, 237
cationic glycine equivalents, 220
charge transfer complexes, 282
configurational assignments, 285–287
isomerization, 213, 213, 283
reactions, 226–284, 261, 266, 267, 268, 294–299
exocyclic double bond, 177, 256–284, 297–299
cyclopropanations, diastereoselective, 269–270
Diels–Alder reactions, 271–280, 278, 280, 280, 297–299
1,3-dipolar cycloadditions, 262–269, 266, 267, 268, 297
hydrogenation, 256–257, 258
Michael reactions, 258–261
electrochemical reduction, 282
fluorination, 282
oxygenation, 282
photodimerization, 283
photoisomerization, 283
1,3-bisnucleophiles, 247–254, 249, 296
aminolysis, 235–243, 237, 241, 295–299
hydrolysis and alcoholysis, 226–230, 229, 230
intramolecular, 256
miscellaneous nucleophiles, 254–256
nitrogen nucleophiles, 243–247, 244, 247
reductive aminolysis, 240–243, 295
sonication, 226
structural analysis, 284–286, 299
synthesis, 172–174, 210–227, 212, 214, 216, 217, 218, 220, 221, 224, 292
from N-acetylglucines and carbonyl compounds (Erlenmeyer synthesis), 210–212, 212, 292
from amino acid derivatives, 213–216, 217, 292
carbodiimides, 214, 214
α,β-dehydroamino acids, 214, 292
iminophosphoranes, 214, 216, 292
isocyanides, 215, 216
from saturated 5(4H)-oxazolones, 174
from unsaturated 5(4H)-oxazolones, 217–227, 292
homologation, 218
5(4H)-Oxazolones as synthetic equivalents, 174, 182, 183, 184, 186, 198, 220, 237, 287
saturated, 182, 183, 184, 186, 197
as acyl donors, 183
as activating agents for dicarboxylic acid amino acids, 186
as derivatizing agents, 182
as glycine enolate equivalents, 184
as glycine synthons, 186
as masked 1,3-dipoles, 198
of amino acids, 287
unsaturated, 173, 220, 237
as β-amino-α,β-dehydro-α-amino acid equivalents, 174
as arylacetaldehyde equivalents, 237
as cationic glycine equivalents, 220
Oxazolo[3,2-α]1,3,5-triazines, 83
Oxazolo[3,2-α]1,3,5,7-tetrazocines, 84
Oxazolonium salts, 58–59, 63–64, 65
2-[2-(α-heteroarylethenyl)-4(5H)-oxazolonium perchlorates, 64
5-acyloxy-4(5H)-oxazolonium salts, 59
1,2,4-triazoles, 64
cyanine dyes, 64
reactions, 63–64, 64, 65
aldehydes and orthoesters, 63–64, 64
guanidines, 65
hydrazines, 65
synthesis, 58–59
acyl cyanides, 59
α-chloroacetamides, 58
cyano hydrazines, 58
α-haloacetethyl bromides, 58
α-hydroxycarboxylic acid amides, 58
Oxazolylic aldehydes, 29
Oxidation, 4, 14, 42, 191, 440
anodic of 2-oxazolidinones, 14
anodic of carbamates, 4
tert-butyl hypochlorite, 42
3-amino-4,5-diphenyl-2(3H)-oxazolone, 42
lead tetraacetate, oxidative cyclization of carbamates, 4
molecular oxygen, saturated 5(4H)-oxazolines, 191
of oxazolines, 440
see Part A chapter 1, pp 4–16 for oxidations of oxazolines to oxazoles
oxidative decarboxylation, 191
potassium superoxide, 191
preparation of N-benzylation amino acid, 191
diacylanines, 191
imides, 191
pyridinium chlorochromate, 42
3-amino-4,5-diphenyl-2(3H)-oxazolone, 42
Subject Index

Oxidative ring contractions, 77, 78, 105–106
2-amino-5-(carboxyalkyl)-4(5H)-oxazolones, 77, 78
5-aryl-2,4-oxazolidinediones, 105
5-heteroaryl-2,4-oxazolidinediones, 105
of 2-aminopyrimidinones, 77, 78
of barbituric acids, 105
of uric acid, 106
Oxime O-carbonates, 16
Oximes, 16, 17
3-alkyl-4,5-disubstituted-2(3H)-oxazolones, 16, 17
[3,3] sigmatropic rearrangement, 16
dialkyl carbonates and oximes, 16, 17
oxime O-carbonates, 16
regioselectivity, 16
Oxassolanino, 462
Oxygenation of unsaturated 5(4H)-oxazolones, 282
(R)-Oxytriphine, 401
Paclitaxel, 346, 366
Paterno-Büchi reaction, 2,4,5-trimethoxazole with aldehydes, 407
bicyclic oxazolines, 407
Pemoline, 67, 68, 72, 74–75
capillary zone electrophoresis (CZE), 75
cyclization of α-hydroxy esters and guanidine, 72
reaction of cyanamide and a mandelate ester, 74–75
spontaneous resolution, 75
Pericyclic additions of 2(3H)-oxazolones, 32–36
[2+2], 35–36
[3+2], 35
[4+2], 32–35
3-acyl-2(3H)-oxazolones as dienophiles, 32–33
Diels-Alder reaction, diastereoselective, 32
ever reaction of 2(3H)-oxazolones, 35
Perimidines, 248
Pesticides, 223, 227
Phe-box, 530, 532, 534, 536, 546, 548, 549, 555, 557, 561, 567, 575, 581
aziridinations, 575
conjugate additions, free radical, 567, 567
crystal structure, 534
geometry, 532
Diels-Alder reactions, 530, 546, 548, 549
1,3-dipolar cycloaddition reactions, 561
hetero-Diels-Alder reactions, 555, 557
preparation of α-(chloroalkyl)boronates, 581
synthesis, 536
2-Phenyl-4(5H)-oxazolone, 54, 61, 65, 66
Phenylalanine(s), see amino acids and derivatives
Photocyclization, reductive of 4-acyl-2-phenyloxazoles, 417
bicyclic oxazolines, 417
Photocycloaddition, 35, 575
Photographic dyes, 54
Photoisomerization of oxazolones, 381
Photolysis of oxazoles, 7, 45
Photooxidation (photodimerization), 150, 194, 283
2,2'-diamino-[(2-deoxy-β-D-erythro-pentofuranosyl)-4-amino]-5(2H)-oxazolone, 150
4,4'-bis(oxazolones), 194, 195
of 2'-deoxyguanosine, 150
of saturated 5(4H)-oxazolones, 194
of unsaturated 5(4H)-oxazolones, 283
preparation of 4,4'-bisoxazolones, 194, 195
Phytosphinogosine-type glucosaminocerebrosides, 353
d-ribo-Phytosphingosine, 477
Pictet-Gams conditions, 348
Pictet-Spengler reaction, 233, 237
Planar chirality, 493, 494, 501
Plant growth regulators, 227
Plant-protective agents, 223
(−)-Platynecine, 390
Polyalcohols, 40
Polyamines, 38
Polymer-supported reagents, 359, 364, 366, 588
aza-bis(oxazolines), 588
PEG-supported Burgess reagent, 364, 366
tosyl chloride, 359
Polymeric oxazolines, 507–508
Polymerization(s), 84, 160, 178, 201–202, 289, 572
5-phenyl-2-(propynylamino)-(5H)-oxazolone, 84
non-linear optical materials, 84
5(4H)-oxazolones, saturated, 160, 178, 201–202
5(4H)-oxazolones, unsaturated, 289
bis(oxazolines), 572
asymmetric, 572
tert-butylstylene and carbon monoxide, 572
cyclopropenes, 572
maleimides, 572
i-pr-box, 572
Positron emmission tomography, 99
i-Pr-box, 534, 535, 548, 561, 570, 572
alkylation of imines, 570, 572
Diels-Alder reaction, 548
1,3-dipolar cycloadditions, 561
i-Pr-box (Continued)
polymerization, asymmetric, 572
preparation of β-lactams, 561
preparedation of tetrahydroisoquinolines, 572
synthesis, 535
x-ray crystal structure, 534
Pratosine, 462
Probase, 105
Prochiral nucleophiles, 504
Prostratin, 545
α-Proton abstraction, axozolines, 442–445
2-(cis-alkenyl)-substituted axozolines, 444
2-(trans-alkenyl)-substituted axozolines, 444
2-oxazoline substituted epoxides, 444
of 2-(allyloxy)methylaxazolines, 443
stereoselective [2,3]-Wittig rearrangement, 443
of 2-(chloromethyl)-4,4-dimethyloxazoline, 443
carbonyl compounds, 443–444
nitrones, 444
Schiff bases, 444
of 2-alkyloxazolines, 442, 445
ketenimine rearrangement, 445
of 2-biphenylmethyloxazolines, 443
ion-pair acidity, 443
of chiral 2-(chloromethyl)oxazolines, 444
boron azaenolates, 444
titanium azaenolates, 444
of chiral arylmethyloxazolines, 443
Proton abstraction of the oxazoline ring, 435–440
2-bromooxazolines, 435
at the C-2 position, 435
at a benzylic C-5 position, 436
ethoxyvinyl lithium-HMPA complex
(EVL-HMPA), 436
at an activated C-4 position, 436
aldol reacton, 437
α-alkyl amino acids, 436
decarbamethoxylation, 439
epimerization of cis- to trans-oxazolines, 439
(+)-lactacystin, 437
(6R)-lactacystin, 437
clasto-lactacystin β-lactone, 437
lactacystin analogues, 436
mycestericin D, 437
quaternary chiral centers, 436–437
sarains A-C, 437
Seebach protocol, 436
stereoselective Michael addition, 437–438
Psammaplin, 132
Pseudodistomins, 417, 441–442
Pseudohydantoin, 53
Pseudoxazolone, 131–132
Psammaplin, 132
Pterins, 72
spirocyclic 2-amino-4(5H)-oxazolones, 72
Pummerer reaction (rearrangement), 12, 57
Py-box, 530, 534, 551, 565–566
Diels-Alder reaction, 551
hydrosilylation, 530
Mukiayama aldol reaction, 565–566
synthesis, 534
x-ray crystal structure, 534
Py-box-ipy, 534, 540–541, 578
cyclopropanation, 540–541
hydrosilylation, 578
synthesis, 534
Pyran-2-ones (α-Pyranones), 165, 173, 235, 252,
2H-Pyran, 580
Pyrazin-2(1H)-ones, 5-(dimethylamino)-3,6-
dihydro, 147, 148, 185
Pyrazoles, 222, 235, 246, 268
Pyrazolines, 234, 235
Pyrazolinoxazolines, 246
5-Pyrazolones, 184, 225
Pyridazines, 199
Pyridines, 137, 148, 174, 194, 201
from 5(4H)-oxazolones, 194
nitrile ylides, 194
Pyridones, 172, 198, 199, 224, 251–252
2-pyridones, 172, 198, 199, 251–252
5(4H)-oxazolones and 1-azadienes, 198, 199
unsaturated 5(4H)-oxazolones and enamines,
251
4-pyridones, 224
Pyridotriazinones, 172
Pyrimidin-2-thiones, 255
Pyrimidin-6-ones, 199, 200
Pyrimidines, 250
Pyrimidinones, 510
Pyrones, 143, 145, 195–197, 197, 201, 235, 289
2-(trifluoromethyl), 143, 145
3-carboxylic acids, 289
3-methyl, 235
preparation from
4-alkylaryl-2-(trifluoromethyl)-5(2H)-
oxazolones, 143
4-aryl-2-(trifluoromethyl)-5(2H)-oxazolones,
143
5(2H)-oxazolones, 145
4-methyl-2-phenyl-5(4H)-oxazolone, 289
dehydroamino acid derivatives, 235
electron deficient unsaturated compounds,
143, 145
mesoionic oxazolones (munchones),
195–197
dimethyl acetylenedicarboxylate, 196
triphenylvinylphosphonium bromides, 196
Michael addition, 143
Pyruvatedine, 194
Pyrrholine-2-carboxylic acid esters, 167
Pyrrhol[6]fullerene, 198
Pyrolooxazolidinones, 29
Pyrrholophenanthridine alkaloids, 462
4(3H)-Quinazolinones, 296
Quinolizidines, trans, 97
Racemization, 131, 134, 206
4-alkyl-5(2H)-oxazolones, 134
electronic effects, 134
kinetics, 134
1H NMR studies of racemization kinetics, 206
steric effects, 134
Radical additions of 2(3H)-oxazolones, 25, 27–32
alkenyl radicals to 2(3H)-oxazolones, 30–31
morphinan, 30–31
oxazolidinopiperidines, 30
alkyl radicals to 3-acetyl(acyl)-2(3H)-oxazolone(s), 25, 27–28
diastereoselectivity, 27
preparation of bleomycins, 28
preparation of cyclosporins (MeBmt), 28
preparation of β-hydroxy-α-amino acids, 28
polyhalomethanes, 25, 27
alkyl radicals to 3-bromoalkyl-2(3H)-oxazolone(s), 29
enantioselectivity, 29
intramolecular addition, 29
pyrrolooxazolidinones, 29
alkyl radicals to oxazolyl aldehydes, 29–30
α-amino alcohols, 29
(+)–bulgecinine, 29
(−)–desoxoprosopinine, 29
intramolecular, 29
polymers, 32, 40
2(3H)-oxazolone co-polymers, 32, 40
2(3H)-oxazolone homopolymers, 32, 40
chemoselective acylating reagents, 32
regioselective acylating reagents, 32
Raman spectroscopy, 206
saturated 5(4H)-oxazolones, 206
Rearrangements of oxazoles, synthesis of saturated 5(4H)-oxazolones, 155–160, 160
see Claisen rearrangements
see sigmatropic rearrangements
4-benzyl-2-methyl-5(4H)-oxazolone, 256
5(4H)-oxazolones, unsaturated, 256–257, 282
electrochemical, 282
hydrogenation, 256–257, 258
amino acids, 258
amino esters, 258
amino alcohols, 258
saturated 5(4H)-oxazolones, 256–257
bis(oxazolones), 577–579, 578, 579, 587
α-alkoxy ketones, 587
hydroxilylation, 577–579, 578
of acetophenone, 577–579, 578
py-box-1p, 578
transfer hydrogenation of ketones, 578–579, 579
oxazolines, 440–442
borane, 442
catalytic transfer hydrogenation, 441
hydrogenation, 440–441
lithium aluminum hydride, 442
preparation of amino acids, 440–442
preparation of azithromycin, 441
preparation of oxazolidines, 440
preparation of pseudodistomins, 441–442
Reductive photocyclization, oxazoline synthesis, 417
bicyclic oxazolines, 417
4-acetyl-2-phenyloxazoles, 417
pseudodistomins, 417
Regioselective acylating agents, 32
Regioselective protection, 38–40
amino alcohols, 38
amino phenols, 38
Boc-Ox, 40
Cbz-Ox, 40
polyalcohols, 40
polyamines, 38
Reviews, oxazolines, 332, 333, 410, 442, 447, 448, 460, 468, 469, 476, 482, 483, 487, 493, 495, 503, 504, 508,
[3 + 2] cycloadditions of 5-alkoxyoxazoles and aldehydes, 410
asymmetric allylic alkylation, 487
asymmetric catalysis, 482
asymmetric cyclopropanation, 504
asymmetric hydrosilylation, 503
asymmetric Michael addition, 504
coordination chemistry of oxazolines, 460, 483
Diels-Alder reactions of 2-alkenylloxazolines, 447
dipolar cycloadditions of 2-alkenylloxazolines, 447
N-oxides, 447
enantioselective hydrogenation, 495
Reviews, oxazolines (Continued)
Heck reactions, 493
oxazolines, 332, 333, 442, 448, 468, 469, 476
polymeric oxazolines, 508
Ring contractions, 100, 105–106
5-aryl-2,4-oxazolidinediones, 105
5-heteroaryl-2,4-oxazolidinediones, 105
spirocyclic 2,4-oxazolidinediones, 100
of alloxans to spirocyclic 2,4-
oxazolidinediones, 100
of barbituric acids, oxidative, 105
of uric acid, 106
Ritter reaction of nitriles, 395–398,
2-aminooxazolines, 396
bis(oxazolines), 396
cis-oxazolines, 395
cyamamide, 396
Indinavir, 395
inversion of configuration, 396
preparation of cis-1-amino-2-indanol, 395
preparation of C\textsubscript{2}-symmetric bis(oxazolines), 396
preparation of \(\alpha\)-furufuryl amides, 397
preparation of Taxol side chain, 397
retention of configuration, 396
with alkenes, 397, 398
with 1,3-dioxolanes, 396
with epoxides, 396
with furfuryl carbinol acetates, 397
with cis-indane-1,2-diol, 396
with olefins, 396–397
(R)-(−)-Rolipram, 348
RTEM-1-β-lactamase inhibitors, 343
Sarains A-C, 437
Schiff bases, 246, 247
ring opening of unsaturated 5(4\(H\))-oxazolones, 246, 247
N-(benzoyl)dehydroamino acid amides, 246
imidazolones, 2-styryl-1-substituted, 246, 247
Seebach protocol, 436
Sensitizing dyes, 284
ent-Shikimic acid, 554
2-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-5(4\(H\))-oxazolones, 158
2-allyl-4-phenyl-5(2\(H\))-oxazolones, 137
5(2\(H\))-oxazolones, 138
allyl substituted 5(2\(H\))-oxazolones, 136
[1,3], 136
[3,3], 136
irradiation, 136
pyridines, 137
thermolysis, 136
4-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-
5(4\(H\))-oxazolones, 158
4-acyl-5(4\(H\))-oxazolones, 159
4-benzyl-2-phenyl-4-(trifluoromethyl)-5(4\(H\))-
oxazolone, 158
5(4\(H\))-oxazolones, 155–159, 160
saturated 5(4\(H\))-oxazolones, 160
1,3-benzyl shift, 158
5-aclyoxyoxazoles, 159
5-alkoxyoxazoles, 138, 155–158, 160
Claisen rearrangement, 155–158
2(3\(H\))-oxazolones, 7, 16
[3,3], 7, 16
allyloxoyoxazoles, 7
enamines from oxime O-carbonates, 16
Silyl ketenes, 587
Sirenin, 544
Sodium cyanodithioformate, 139, 140
4-(alkylthio)-5(2\(H\))-oxazolones, 139, 140
ketones, 139, 140
thiazolones, 139
Somatostatin, 242
Sonication or ultrasound, 47, 226, 284
unsaturated 5(4\(H\))-oxazolones, 226, 284
nucleophilic ring opening reactions, 226
synthesis of esters, 284
Sorbinil, 171
4,8-Sphingadienine, 352
d-erythro-Sphingnosine, 352
Spirocyclic oxazolines, 417, 424, 508
Spirocyclopropanes, 206, 207, 261, 263, 265, 266, 270, 297
Spiroisoxazolones, 268, 268
Spirooxazolines, 207, 218, 261
Spirooxetanes, 35, 36
Spiropyrazolines, 218, 265, 267
Staphylococcus aureus inhibitors, 85
Statine(s), 24, 26, 28
Staudinger-aza-Wittig reaction, synthesis of
oxazolines, 412–413
Staurosporine, 394
Stilb coupling (reaction), 36, 220, 220, 508
chiral 2-substituted oxazolines, 508
chiral 2-haloaxazolines, 508
Sлизобинic acid, 231
saturated 5(4\(H\))-oxazolones, 206–208
chromatographic mobility, 206
\(^1\)H NMR spectrometry, 132, 134, 206
IR spectroscopy, 206
luminescence properties, 206
mass spectrometry, 206
Raman spectroscopy, 206
x-ray crystal structures, 207–208
unsaturated 5(4H)-oxazolones, 280, 284–286, 299
chromatographic mobility, 286
dipole moment, 286
13C NMR spectrometry, 285
1H NMR spectrometry, 280, 284, 285
IR spectroscopy, 284
fluorescence properties, 284
Hammett constants, 284
mass spectrometry, 285–286
UV-visible spectroscopy, 284
x-ray crystal structure(s), 286, 299
Styrene, 538–541, 575
aziridination, 575
cyclopropanation, 538–541
Sulfilimines, 56–57, 413
2-substituted oxazolines, 413
Michael addition, 413
5,5-diphenyl-2-substituted-4(5H)-oxazolones, 56–57, 57
Sulfimidation, 480, 576
diastereoselective, 480
Sulfomycin I, 66
Sulfoximides, 42
Supercritical carbon dioxide, 499
Suzuki coupling, 462
(−)-Swainsonine, 390
Synthetic fiber dyes, 209, 210
Tamao oxidation, 469
Tandem Erlenmeyer condensation-macrolactamization (TECM), 237
2′,3′-Taxol, 358
Taxol, 347, 358, 423, 422–423
Telomerization, 27
Testosterone 5α-reductase inhibitors, 342
Tetracycline ring A analogues, 60
ten-Δ^1-Tetrahydrocannabinol, 554
Tetrahydrofururopyrrole, 148
Tetrahydroisquinolines, 426, 572
Tetrahydrooxazolopyrimidines, 476
Tetrahydropryridones, 558
2,2,6,6-Tetramethyl-1-piperidinioxy, free radical (TEMPO), 289, 290
Tetramethylfluoroorformamidinium hexafluorophosphate (TFFH), 287
Tetrodotoxin, 390
Thiangazole, 363, 367
1,3-Thiazines, 251
2,4-Thiazolidinediones, 17–18
5-aryl-2-(3H)-oxazolones, 17–18
Thiazolines, 427–429, 430
from thiolyis of oxazolines, 427–429
from thioamides, 430
Thienopyridines, 255
Thietane N-acylimines, 509
α-Thioorganolithium additions, 588
Three component condensation, synthesis of 2(3H)-oxazolones, 18–20
3-substituted-2(3H)-oxazolones, 18
primary amines, carbon dioxide, and α-halo ketones, 18
propylamine, carbon dioxide, and propargyl alcohols, 20
Thromboxane A2 receptor antagonist, 352, 353, 373, 448
α-Tosyl acetonilides, 105
Tranquilizers, 54
Transfer hydrogenation, see reductions, transfer hydrogenation
Trehazolin, 424
Triazines, 172, 245
Triazinones, 510
1,2,4-Triazoles, 64, 65, 66, 176, 198, 222, 249, 251
1,5-diaryl-3-carboxamides, 176
from 4(5H)-oxazolones, 65, 66
from oxazolonium salts, 64
fused, 222
1,2,4-Triazolines, 82
1,2,4-Triazolium salts, 18
3-(2-pyrimidinyl)-2(3H)-oxazolone, 18
5-phenyl-3-(2-pyridinyl)-2(3H)-oxazolone, 18
2-iminooxazolines, 18
N-ylide intermediates, 18
1,2,4-Triazolones, from 2,4-oxazolidinediones and hydrazine, 117
Trichloroacetimidates, 389, 391–395
2’-amino-2’-deoxyctydine, 393
2’-amino-2’-deoxyuridine, 393
bis(trichloroacetimidates), 394
staurosporine, 394
vinyllogous Schmidt glycosylation, 394
diethylaluminum chloride, 392
from allylic alcohols, 389, 390
from cyclic sulfates, 393
(+)-mannostatin, 391
Trichloroaconitirile, 381, 383, 389, 393
Trifluoromethylsulfonylation of β-keto acids, 60
Trimethadone, 90, 99, 120
Triphenylphosphonium methylides, 192, 193
Tryptamine, 237
condensation with unsaturated
5(4H)-oxazolones, 237
Pictet-Spengler reaction, 237
Ullmann coupling, 464–468, 466, 468
axially chiral biaryls, 464–468
diastereoselectivity, 466
(S)-gossypol, 466–468
(−)-mastigophorene A, 465–466
Ungeremine, 462
Unsaturated 5(4H)-oxazolones, ring opening
reactions, 243–256, 244, 247, 249, 295
see aminolysis, 5(4H)-oxazolones, unsaturated
see hydrolysis and alcoholysis, unsaturated
5(4H)-oxazolones
1,3-bis(nucleophiles), 247–254, 295
C,C-bis(nucleophiles), 252
disubstituted enamines, 252
phosphonium ylides, 252
C,N-bis(nucleophiles), 251–252
enamines, 251
iminophosphoranes, 251
C,O-bis(nucleophiles), 252–254
1,3-dimethyl acetonedicarboxylate, 254
N,N-bis(nucleophiles), 247–249, 249, 251, 295
1,8-diaminonaphthalene, 248
S-alkylisothiouronium salts, 249
anilines, 249
heterocyclic amines, 249
heterocyclic hydrazines, 249
hydrazidimide, 251
Michael reaction, 248–249
o-phenylenediamine, 248
thiourea, 249
urea, 249
N,O-bis(nucleophiles), 247
anthranilic acid, 247
N,S-bis(nucleophiles), 248, 249–251, 249
o-aminothiophenol, 248
Michael reaction, 250
substituted anilines, 249
preparation of
3,1-benzoazainones, 247
benzimidazoles, 248, 249
benzothiazoles, 248, 249
dihydrobenzoxazoles, 252
dihydropyridines, 252
α-(heteroaryl)glycinates, 249
imidazobenzimidazoles, 248
imidazolones, 248, 249, 250
perimidine, 248
pyran-2-ones, 252, 254
pyridones, 251–252
pyrimidines, 250
thiazines, 251
Friedel-Crafts reactions, 255
intramolecular ring opening, 256
coumarins, 256
Friedel-Crafts reaction, 255
thienopyridines, 255
miscellaneous nucleophiles, 254–256
active methylene compounds, 254
aromatic hydrocarbons, 255
Friedel-Crafts reaction, 255
hydride reduction, 254
N-phenacylpyridinium bromide, 254
phenyl isothiocyanate, 254
preparation of
coumarins, 256
oxazolo[4,5-b]pyridines, 254
pyrimidine-2-thiones, 254
thienopyridines, 255
nitrogen nucleophiles, 243–247, 244, 247
hydrazides, 246
bis-acyldihydrazides, 246
pyrazoles, 246
hydrazines, 243–244, 244
(E)-α-acylamino hydrazides, 244, 244, 247
aminoimidazolones, 243, 244
dehydraamoino acid hydrazides, 244
pyrazolinoxazolines, 245
triazines, 245
Schiff bases, 246–247, 247
N-(benzoyl)dehydroamino acid amides, 247
imidazolones, 2-styryl-1-substituted, 246, 247
see aminolysis, 5(4H)-oxazolones, unsaturated
see hydrolysis and alcoholysis, unsaturated
5(4H)-oxazolones
Unsaturated 5(4H)-oxazolones, synthesis of
unsaturated 5(4H)-oxazolones, 172–174, 217–225, 218, 220, 221, 224, 293, 294
from saturated 5(4H)-oxazolones, 172–174
4-(aminomethylene)-2-phenyl-5(4H)-
oxazolones, 174
unsaturated 5(4H)-oxazolones, 172–173
reaction of 2-phenyl-5(4H)-oxazolone, 172–174
2-dimethylaminomethylene-1,3-
cyclohexanediones, 173
2-dimethylaminomethylene-3-oxoalkanoates, 173
enamines, 172
formamidines, 174
from unsaturated 5(4H)-oxazolones, 217–225, 218, 220, 221, 224, 293, 294
2-alkyl-4-[(alkylamino)methylene]-5(4H)-oxazolones, 294
2-aryl-4-(hydroxymethylene)-5(4H)-oxazolones, 223
4-(alkylaminomethylene)-2-phenyl-5(4H)-oxazolones, 225
4-(alkylthiomethylene)-2-phenyl-5(4H)-oxazolones, 223
4-(alkylthiomethylene)-5(4H)-oxazolones, 223, 224
4-(aminomethylene)-2-phenyl-5(4H)-oxazolones, 223, 224
4-(aminomethylene)-2-phenyl-5(4H)-oxazolones, 221
4-(aminomethylene)-5(4H)-oxazolones, 221, 293
4-(α-arylethylidene)-5(4H)-oxazolones, 218, 218
4-(N,N-disubstituted-1-aminoalkylidene)-5(4H)-oxazolones, 223
4-(N-substituted-aminomethylene)-2-(1-naphthyl)-5(4H)-oxazolones, 294
4-[(1,2,4-oxadiazol-3-yl)aminomethylene]-2-phenyl-5(4H)-oxazolone, 225
4-[(imidazol-1-yl)methylene]-2-phenyl-5(4H)-oxazolone, 219
4-[(N-cycloalkenyl)aminomethylene]-5(4H)-oxazolones, 224
4-[2-hydroxy-3-(aminomethyl)benzylidene]-5(4H)-oxazolones, 217
4-arylidene-2-phenyl-5(4H)-oxazolones, 220, 220
4-heteromethylene-2-substituted-5(4H)-oxazolones, 218
phosphorylated oxazolones, 220
N-acyl-α-(triphenylphosphonio)glycinates, 220
addition-elimination reaction(s), 218, 221
cationic glycine equivalents, 220
diazomethane, 218
1,3-dipolar cycloaddition reactions, 217
4-arylidene-5(4H)-oxazolones, 218
diazomethane, 218
homologation, 218
Mannich reactions, 217
reaction of
2-alkyl-4-[(N,N-dimethylaminomethylene)-5(4H)-oxazolones, 294
transamination with alkylamines, 294
2-aryl-4-(dimethylaminomethylene)-5(4H)-oxazolone, 223
dehydrolysis, 223
4-(2-hydroxybenzylidene)-5(4H)-oxazolones, 217
Mannich reaction, 217
4-(aminomethylene)-2-phenyl-5(4H)-oxazolone, 223, 224
carbon disulfide, 223
enamines, 224
4-(aminomethylene)-2-substituted-5(4H)-oxazolones, 224
transamination, 224
4-(aminomethylene)-5(4H)-oxazolones, 223, 224
appylation, 223
4-(anilinomethylene)-2-phenyl-5(4H)-oxazolone, 225
transamination with alkylamines, 225
4-(chloromethylene)-2-phenyl-5(4H)-oxazolone, 219–221, 220
imidazole, 219
mercaptans, 220
organostannanes, 220
sodium thiomethoxide, 220
Stille reaction, 220, 220
triphenylphosphine, 221
4-(dichloromethylene)-2-phenyl-5(4H)-oxazolone, 221
4-(N,N-dimethylaminomethylene)-2-phenyl-5(4H)-oxazolone, 225
transamination with alkylamines, 225
4-(ethoxymethylene)-2-(1-naphthyl)-5(4H)-oxazolone, 294
amino acids, 294
4-(ethoxymethylene)-2-phenyl-5(4H)-oxazolone, 221
amines, 221
imidazole, 222
indole, 222
4-(ethoxymethylene)-5(4H)-oxazolones, 293
amines, 293
4-(heteromethylene)-2-substituted-5(4H)-oxazolones, 221
hydrazines, 222
4-[(1-dimethylamino)ethylidene]-2-phenyl-5(4H)-oxazolone, 225
transamination, 225
4-[2-bromo-(dimethylamino)ethylidene]-2-phenyl-5(4H)-oxazolone, 225
formamidines, 225
4-[(cyanoamino)methylene]-2-phenyl-5(4H)-oxazolone, 225
hydrazines, 222
4-[(N-heteroaryl-N-methyl)aminomethylene]-2-phenyl-5(4H)-oxazolones, transamination, 224
4-arylidene-5(4H)-oxazolones, 217, 218, 218

Subject Index 677
Oxazolines and Bis(Oxazolines) – General Classes

Bis(oxazoline)-metal complexes, 532–534, 546, 552, 554, 561, 565, 567, 568, 575
Bis(oxazoline) ligands, 530–532, 582–585
aza-bis(oxazolines), 394, 588
benzyl bis(oxazoline), 533, 541
(BINOL)-box, 587
bis(oxazolínyl)pyridine, see py-box
bu-box, 530, 532, 535–536, 539, 540, 541, 548, 552, 555, 557, 559, 561, 565, 566, 570, 581, 585, 589
DBF-box, 534, 550, 551
ferrocene-box, 563, 564
inda-box, 534, 537, 549, 549, 557, 559, 567, 574–575, 577, 589
phe-box, 530, 532, 534, 536, 546, 549, 555, 557, 561, 567, 567, 575, 581
i-pr-box, 534, 535, 548, 561, 570, 572
py-box, 530, 534, 551, 565–566
py-box-IP, 534, 540–541, 578

ferrocenyloxazoline ligands, 452, 453–454, 456, 457, 491, 501
hydroxy-oxazolines (HydrOx), 483, 488, 501, 507
oxazoline-carbene ligands, 498, 499
phosphinoxoazolines ligands (PhosOx), 448, 461, 482, 483–485, 490, 491, 492, 493, 494, 499, 501, 503, 504, 505, 506, 507
phosphate-oxazoline ligands, 504, 505
pyridine-oxazolines (PyrOx), 483, 486, 495, 503, 504, 506
quinoline-oxazoline ligands, 483
selenide-oxazolines (SelOx), 483, 488
sulfide-oxazolines (SulfOx), 483, 487, 504

Oxazolines
2-(α-acyloxy)oxazolines, 417
2-(cis-alkenyl)-substituted oxazolines, 444
2-(trans-alkenyl)-substituted oxazolines, 444
2-(chloromethyl)oxazolines, 443, 444
2-(ortho-fluorophenyl)oxazolines, 461
2-(trichloromethyl)oxazolines, 427
2-alkenylloxazolines, 442, 445–446, 447, 476, 477
2-alkyloxazolines, 332, 435, 442, 444, 445, 508
2-allyloxymethylloxazolines, 443
2-amino substituted oxazolines, 424
2-aminooxazolines, 394, 396, 408, 410, 424, 512
2-aryloxazolines, 332
2-biphenylmethylloxazolines, 443
2-bromooxazolines, 435, 508
2-haloaoxazolines, 508
2-heteroarylloxazolines, 384
2-iminooxazolines, 410
2-mono substituted oxazolines, 338
2-oxazoline substituted epoxides, 444
trans-2-oxazoline-4-carboxylates, 410
cis-2-oxazolines, 408
trans-2-oxazolines, 408
2-phenyl substituted oxazolines, 383
2-stannyloxazolines, 508
2-substituted oxazolines, 413, 435
2-substituted oxazolines, chiral, 508
2-thio substituted oxazolines, 423
2-thiooxazolines, 424
2,4-diaryloxazolines, 430
2,4-disubstituted oxazolines, 398, 400
2,4,5-trisubstituted oxazolines, 407, 415, 442
2,5-disubstituted oxazolines, 398
4-(alkylamino)-2-phenyloxazolines, 382
4-(cyclopropyl)oxazoline carboxylates, 376
4-(hydroxymethyl)oxazolines, 480
4-(methoxymethyl)oxazolines, 480
4-mono substituted oxazolines, 338
4-substituted oxazolines, 338
4,4-oxazolinedicarboxylic acid diesters, 439
4,5-disubstituted oxazolines, 344, 345, 428
trans-4,5-disubstituted oxazolines, 344, 345
5-(alkylidene)oxazoline, 512
5-(vinylidene)oxazoline, 512
5-monosubstituted oxazolines, 338
5-substituted oxazolines, 338
trans-5-vinyl substituted oxazolines, 404
o-aminophenylloxazolines, 336
anomeric oxazolines, 431–432
arylmethylloxazolines, 443
aryloxazolines, 333, 458
aza-bis(oxazolines), 394, 588
bicyclic oxazolines, 407, 417, 441
bis(oxazolines), 347, 361, 384, 396, 417, 457, 465, 466, 481, 504
tert-butyl oxazolines, 466
ferrocenyloxazolines, chiral ligands, 452, 453–454, 456, 457, 491, 501
ortho-fluoroaryl oxazolines, 461
hydroxy-oxazolines (HydrOx), 483, 488, 501, 507
glucofuran[2,1-d]oxazolines, 349
ortho-methoxyaryloxazolines, 461
multiply substituted oxazolines, 338, 384
oxazoline acrylate esters, 477
oxazoline aldehydes, 477
oxazoline epoxides, 444
cis-oxazolines, 347, 358, 364, 367, 395, 408, 436, 439
trans-oxazolines, 346, 358, 364, 367, 404, 408, 436, 439
oxazoline-4-carboxylic acid esters, 437
oxazoline-carbene ligands, 498, 499
oxazoline-sulfoxide ligands, 479
oxazoline N-oxides, 416–417, 447
oxazinecarboxylates, 378, 430
oxazolinecarboxylates, 378, 430
oxazolones – General Classes

Oxazolones

2-(2-methylphenyl)oxazoline, 448
2-(chloromethyl)-4,4-dimethyloxazoline, 443
2-(ortho-chlorophenyl)-4,4-dimethyloxazoline, 461
2-phenyloxazoline, 435, 458
3-methoxy-(2-oxazolinyl)naphthalene, 475
4,4-dimethyl-2-(1-naphthyl)oxazoline, 469
4,4-dimethyl-2-(2-propenyl)oxazoline, 477
4,4-dimethyl-2-(2,3,4-trimethoxyphenyl)oxazoline, 466
4,4-dimethyl-2-phenyloxazoline, 448
tetrasubstituted oxazolines, 426
tetrasubstituted oxazolines, 477
tricyclic oxazolines, 410, 461
tricyclic phosphinooxazolines, 461
tris(oxazolines), 430
unsubstituted oxazolines, 384

2(3H)-Oxazolones

2(3H)-oxazolone-4-carboxylates, 47, 48
2(3H)-oxazolones, 2, 3, 4, 7, 14, 18, 20, 21, 21, 22, 24, 25, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47
3-(2-exo-alkoxy-1-apocamphanecarbonyl)-2(3H)-oxazolones, 24, 27, 32, 35
3-acyl-2(3H)-oxazolones, 25, 26, 32, 33, 38, 40
3-acyl-4,5-unsaturated-2(3H)-oxazolones, 23
3-alkoxycarbonyl-2(3H)-oxazolones, 38
3-alkyl-2(3H)-oxazolones, 15
3-alkyl-2-2(2H)-oxazolones, 16
3-alkyl-4,5-disubstituted-2(3H)-oxazolones, 17
3-alkyl-4,5-disubstituted-2(3H)-oxazolones, 7
3-aryl-5-tert-butyl-2(3H)-oxazolones, 4, 4
3-aryl-5-tert-butyl-2(3H)-oxazolones, 12
3-bromoalkyl-2(3H)-oxazolones, 29
3-bromoalkyl-2(3H)-oxazolones, 20
3-phenyl-2(3H)-oxazolones, 20
3-phenyl-2(3H)-oxazolones, 18
3,4,5-triaryl-2(3H)-oxazolones, 8
3,4,5-trisubstituted-2(3H)-oxazolones, 35
4-aryl-5-phenyl-2(3H)-oxazolones, 3
4,5-diaryl-2(3H)-oxazolones, 46
4,5-diphenyl-2(3H)-oxazolones, 10
4,5-diphenyl-3-substituted-2(3H)-oxazolones, 23
4,5-disubstituted-2(3H)-oxazolones, 10, 22
5-acyl-4-methyl-2(3H)-oxazolones, 36
5-alkoxy-2(3H)-oxazolones, 7, 9, 42, 43, 43, 44
5-alkyl-3-aryloxy-2(3H)-oxazolones, 12, 13
5-alkyl-3-aryl-4-halo-2(3H)-oxazolones, 12, 14
5-aryl-2(3H)-oxazolones, 17, 18
5-methyl-2(3H)-oxazolone sulfonamides, 36
5-phenyl-2(3H)-oxazolones, 6
5-substituted-2(3H)-oxazolones, 3
bicyclic 2(3H)-oxazolones, 10
ethyl 2(3H)-oxazolone-4-carboxylates, 48
stannyloxazolones, 36

2(5H)-Oxazolones
2(5H)-oxazolones, 7, 46
4,5-diaryl-5-methoxy-2(5H)-oxazolones, 46
5-chloro-4,5-diaiphenyl-2(5H)-oxazolones, 46
5-substituted-2(5H)-oxazolones, 45

4(5H)-Oxazolones including 2,4-Oxazolidinediones and 4,5-Oxazolediones
2-(arylimino)-4(5H)-oxazolones, 70
2-[2-(x-heteroaryl)ethenyl]-4(5H)-oxazolonium perchlorates, 64
2-alkoxy-4(5H)-oxazolones, 89, 91, 92, 94
2-alkyl-4(5H)-oxazolones, 55, 121
2-amino-4(5H)-oxazolones, 53, 54, 55, 67, 68, 70, 72, 82
2-amino-5-(carboxyalkyl)-4(5H)-oxazolones, 77, 78
2-amino-5-substituted-4(5H)-oxazolones, 75
2-aryl-4(5H)-oxazolones, 53, 55, 66, 121
2-aryl-5,5-dimethyl-4(5H)-thiooxazolones, 121
2-ethoxy-4(5H)-oxazolones, 93
2-hydroxy-3-unsubstituted-4(5H)-oxazolones, 89
2-methyl-4(5H)-oxazolonium perchlorates, 63, 64
4(5H)-oxazolones, 53, 54, 55, 57, 58, 60, 61, 63, 65, 66, 78, 80, 84, 85, 88, 120, 121
4(5H)-oxazolium salts, 59, 63
4(5H)-thiooxazolones, 59, 121
4-(alkylimino)-2-ethoxy-4(5H)-oxazolones, 89
4-(arylimino)-2-ethoxy-4(5H)-oxazolones, 89
4-alkoxy-5-substituted-4(5H)-oxazolones, 94
5-(benzylidene)-2-substituted-4(5H)-oxazolones, 76
5-acetoxy-4(5H)-oxazolonium salts, 59
5,5-diphenyl-2-substituted-4(5H)-oxazolones, 56, 57
oxazolium salts, 64
spirocyclic 2-amino-4(5H)-oxazolones, 71, 72, 73
spirocyclic 4(5H)-oxazolones, 57
2-hydroxy-4(5H)-oxazolones, 89, 94
2-thio-2,4-oxazolidinediones, 116
2,4-oxazolidinediones, 72, 89, 90, 94, 99, 100, 103, 105, 106, 107, 108, 109, 109, 110, 116
3-(arylideneamino)-2,4-oxazolidinediones, 90
3-alkoxy-2,4-oxazolidinediones, 91
3-alkyl-2,4-oxazolidinediones, 90, 109
3-amino-2,4-oxazolidinediones, 90
3-aryl-2,4-oxazolidinediones, 90, 108
3-substituted-2,4-oxazolidinediones, 91, 94, 108
3-unsubstituted-2,4-oxazolidinediones, 94
3,5-dialkyl-2,4-oxazolidinediones, 103
3,4,5-trialkyl-2,4-oxazolidinediones, 103
4-alkoxy-5-substituted-4(5H)-oxazolones, 94
5-(arylidene)-2-thio-2,4-oxazolidinediones, 114
5-(arylidene)-2-thio-4-oxazolidinediones, 110
5-(benzylidene)-2,4-oxazolidinediones, 114
5-alkenyl-2,4-oxazolidinediones, 113
5-alkyl-2,4-oxazolidinediones, 109, 113
5-aryl-2,4-oxazolidinediones, 100, 105
5-benzyl-2,4-oxazolidinediones, 111
5-heteroaryl-2,4-oxazolidinediones, 101, 105
5-substituted-2,4-oxazolidinediones, 96
5,5-disubstituted-2,4-oxazolidinediones, 109
N-alkylated-2,4-oxazolidinediones, 108
N-arylmethyl-2,4-oxazolidinediones, 109
N-arylsulfonyl-2,4-oxazolidinediones, 109
spirocyclic 2,4-oxazolidinediones, 96, 97, 98, 100, 101, 102, 103
2-alkenyl-4,5-oxazolediones, 62
2-substituted-4,5-oxazolediones, 62

5(2H)-Oxazolones
2-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-5(2H)-oxazolones, 158
2-allyl-4-phenyl-5(2H)-oxazolones, 137
4-(alkylamino)-5(2H)-oxazolones, 142
4-(alkythio)-5(2H)-oxazolones, 139, 140, 143
4-(arylmethyl)-5(2H)-oxazolones, 139, 141, 143
4-(dialkylamino)-5(2H)-oxazolones, 142
4-(N,N-dialkylamino)-5(2H)-oxazolones, 142
4-(phenylthio)-5(2H)-oxazolones, 140, 141
4-alkoxy-5(2H)-oxazolones, 140, 141, 142
4-alkyl-2-(trifluoromethyl)-5(2H)-oxazolones, 134, 145, 147
4-alkyl-5(2H)-oxazolones, 134
4-alkyl(aryl)-2-(trifluoromethyl)-5(2H)-oxazolones, 143
4-aryl-2-(perfluoroalkyl)-5(2H)-oxazolones, 133
4-aryl-2-((trifluoromethyl)-5(2H)-oxazolones, 143
5(2H)-oxazolone N-oxides, 149, 150
allyl substituted-5(2H)-oxazolones, 136

5(4H)-Oxazolones
(E)-2-aryl-4-arylidene-5(4H)-oxazolones, 286
(Z)-2-aryl-4-arylidene-5(4H)-oxazolones, 286
(Z)-4-arylidene-2-phenyl-5(4H)-oxazolones, 273
(Z)-4-arylidene(heteroarylidene)-2-phenyl-5(4H)-oxazolones, 274
1,4-phenylenebis(oxazolones), 239
2-(4-alkenylphenyl)-4,4-disubstituted-5(4H)-oxazolones, 202
2-(4-nitrophenyl)-4-substituted-5(4H)-oxazolones, 183
2-(aminomethyl)-5(4H)-oxazolones, 291
2-(trifluoromethyl)-5(4H)-oxazolones, 152, 186
2-[(9-fluorenylmethyl)oxy]-5(4H)-oxazolones, 177
2,2'-((m-phenylene)bis[4-arylidene-5(4H)-oxazolones], 226
2-acyl-4-(dimethylaminomethylene)-5(4H)-oxazolones, 215
2-alkenyl-4,4-dimethyl-5(4H)-oxazolones, 202
2-alkenyl-4,4-disubstituted-5(4H)-oxazolones, 201
2-alkenyl-5(4H)-oxazolones, 163
2-alkoxy-5(4H)-oxazolones, 208
2-alkyl-4-[(alkylamino)methylene]-5(4H)-oxazolones, 294
2-alkyl-4-[(N,N-dimethylamino)methylene]-5(4H)-oxazolones, 294
2-alkyl-5(4H)-oxazolones, 208
2-alkylaryl-4-arylidene-5(4H)-oxazolones, 226
2-alkylaryl-4-heteroarylidene-5(4H)-oxazolones, 226
2-alkylaryl(5(4H)-oxazolones, 171
2-aryl-4-(2-thienyl)-5(4H)-oxazolones, 255
2-aryl-4-(dimethylaminomethylene)-5(4H)-oxazolones, 223
2-aryl-4-[[(N,N-dimethylamino)methylene]-5(4H)-oxazolones, 284
2-aryl-4-(hydroxymethylene)-5(4H)-oxazolones, 223
2-aryl-4-aryazo-5(4H)-oxazolones, 176
2-aryl-4-arylidene-5(4H)-oxazolones, 214, 282
2-aryl-4-benzylidene-5(4H)-oxazolones, 255
2-aryl-4-cycloalkylidene-5(4H)-oxazolones, 283
2-aryl-4-phenyl-5(4H)-oxazolones, 136, 162
2-aryl-4-substituted-5(4H)-oxazolones, 154
2-aryl-4,5-oxazoledione-4-arydehydrazones, 176
2-aryl-5(4H)-oxazolones, 171, 176, 179
2-arylaminono-4-arylidene-5(4H)-oxazolones, 214
2-arylthio-4-(dimethylaminomethylene)-5(4H)-oxazolones, 215
2-benzyloxy-5(4H)-oxazolones, 177
2-ferrocenyl-5(4H)-oxazolones, 206
2-isopropenyl-5(4H)-oxazolones, 160
2-methyl-5(4H)-oxazolones, 246
2-phenyl-4-substituted-5(4H)-oxazolones, 163, 187, 203, 289
2-phenyl-5(4H)-oxazolones, 179, 183, 205, 247
2-substituted-4-(isoquinol-1-yl)-5(4H)-oxazolones, 174
2-substituted-4-(quinol-2-yl)-5(4H)-oxazolones, 174
2-substituted-5(4H)-oxazolones, 162
2-unsubstituted-5(4H)-oxazolones, 162
2-vinyl-5(4H)-oxazolones, 160
2,2'-((m-phenylene)bis[4-arylidene-5(4H)-oxazolones], 226
2,2'-bis(oxazolones), 202
2,4-diaryl-4(2,4-dinitroaryl)-5(4H)-oxazolones, 167
2,4-diaryl-5(4H)-oxazolones, 167
2,4-disubstituted-5(4H)-oxazolones, 170
4-(1-chloroalkylidene)-2-phenyl-5(4H)-oxazolones, 176
4-(2-hydroxybenzylidene)-5(4H)-oxazolones, 217
4-(3-phenoxybenzylidene)-2-substituted-5(4H)-oxazolones, 209
4-(alkylaminomethylene)-2-phenyl-5(4H)-oxazolones, 225
4-(alkylaminomethylene)-5(4H)-oxazolones, 228
4-(alkylthiomethylene)-2-phenyl-5(4H)-oxazolones, 223
4-(alkylthiomethylene)-5(4H)-oxazolones, 224
4-(aminomethylene)-2-phenyl-5(4H)-oxazolones, 174, 221, 223
4-(aminomethylene)-2-substituted-5(4H)-oxazolones, 224
4-(aminomethylene)-5(4H)-oxazolones, 215, 221, 223, 224, 286, 293
4-(z-arylethylidene)-2-phenyl-5(4H)-oxazolones, 285
4-(z-arylethylidene)-5(4H)-oxazolones, 218
<table>
<thead>
<tr>
<th>Compound Description</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-(arylmethyl)-2-phenyl-4-(trifluoromethyl)-5(4H)-oxazolones</td>
<td>158, 186</td>
</tr>
<tr>
<td>4-(arylmethyl)-2-phenyl-5(4H)-oxazolones</td>
<td>180</td>
</tr>
<tr>
<td>4-(chloromethylene)-5(4H)-oxazolones</td>
<td>219</td>
</tr>
<tr>
<td>4-(dialkylaminomethylene)-5(4H)-oxazolones</td>
<td>228</td>
</tr>
<tr>
<td>4-(N,N-dimethylaminomethylene)-2-substituted-5(4H)-oxazolones</td>
<td>225</td>
</tr>
<tr>
<td>4-(N,N-dimethylaminomethylene)-5(4H)-oxazolones</td>
<td>215</td>
</tr>
<tr>
<td>4-(N,N-disubstituted-1-aminalkylidene)-5(4H)-oxazolones</td>
<td>223</td>
</tr>
<tr>
<td>4-(ethoxymethylene)-5(4H)-oxazolones</td>
<td>293</td>
</tr>
<tr>
<td>4-(hydroxyalkyl)-substituted oxazolones</td>
<td>184</td>
</tr>
<tr>
<td>4-(isoquinolin-1-yl)-2-substituted-5(4H)-oxazolones</td>
<td>174</td>
</tr>
<tr>
<td>4-(N,N-dimethylaminomethylene)-2-phenyl-5(4H)-oxazolones</td>
<td>285, 286</td>
</tr>
<tr>
<td>4-(phosphoranylidene)-2-substituted-5(4H)-oxazolones</td>
<td>175</td>
</tr>
<tr>
<td>4-(phosphoranylidene)-5(4H)-oxazolones</td>
<td>175</td>
</tr>
<tr>
<td>4-(pyren-1-ylmethylene)-2-substituted-5(4H)-oxazolones</td>
<td>209</td>
</tr>
<tr>
<td>4-(quinolin-2-yl)-2-substituted-5(4H)-oxazolones</td>
<td>174</td>
</tr>
<tr>
<td>4-(N-substituted-aminomethylene)-2-(1-naphthyl)-5(4H)-oxazolones</td>
<td>294</td>
</tr>
<tr>
<td>4-[2-hydroxy-3-(aminomethyl)benzylidene]-5(4H)-oxazolones</td>
<td>217</td>
</tr>
<tr>
<td>4-[N-cycloalkenyl]aminomethylene-5(4H)-oxazolones</td>
<td>224</td>
</tr>
<tr>
<td>4-[N-heteroaryl-N-methylaminomethylene]-2-phenyl-5(4H)-oxazolones</td>
<td>224</td>
</tr>
<tr>
<td>4-acetoxy-2-substituted-4-(trifluoromethyl)-5(4H)-oxazolones</td>
<td>152</td>
</tr>
<tr>
<td>4-acyl-2-phenyl-5(4H)-oxazolones</td>
<td>175</td>
</tr>
<tr>
<td>4-acyl-2,4-dialkyl-5(4H)-oxazolones</td>
<td>287</td>
</tr>
<tr>
<td>4-acyl-2,4-disubstituted-5(4H)-oxazolones</td>
<td>170</td>
</tr>
<tr>
<td>4-acyl-5(4H)-oxazolones</td>
<td>159, 168, 169, 170</td>
</tr>
<tr>
<td>4-alkyl-2-phenyl-5(4H)-oxazolones</td>
<td>176, 204, 206</td>
</tr>
<tr>
<td>4-alkyl-2-substituted-5(4H)-oxazolones</td>
<td>193</td>
</tr>
<tr>
<td>4-alkyl-4-(iodomethyl)-2-phenyl-5(4H)-oxazolones</td>
<td>188</td>
</tr>
<tr>
<td>4-alkyl-5(4H)-oxazolones</td>
<td>134</td>
</tr>
<tr>
<td>4-alkyl(aralkyl)-2-phenyl-5(4H)-oxazolones</td>
<td>169</td>
</tr>
<tr>
<td>4-allenyl-2-phenyl-5(4H)-oxazolones</td>
<td>156</td>
</tr>
<tr>
<td>4-arylethylidene-2-phenyl-5(4H)-oxazolones</td>
<td>284</td>
</tr>
<tr>
<td>4-arylidene-2-phenyl-5(4H)-oxazolones</td>
<td>212, 220, 220, 248, 254, 259, 284</td>
</tr>
<tr>
<td>4-arylidene-5(4H)-oxazolones</td>
<td>209, 217, 218, 228, 238, 255, 282, 286</td>
</tr>
<tr>
<td>4-arylmethylene-2-[3-chlorobenzol[3]thien-2-yl]-5(4H)-oxazolones</td>
<td>292</td>
</tr>
<tr>
<td>4-arylmethylene-2-methyl-5(4H)-oxazolones</td>
<td>296</td>
</tr>
<tr>
<td>4-arylmethylene-2-phenyl-5(4H)-oxazolones</td>
<td>282, 295, 296</td>
</tr>
<tr>
<td>4-arylmethylene-5(4H)-oxazolones</td>
<td>241, 263, 268, 296, 297</td>
</tr>
<tr>
<td>4-benzyl-2-substituted-5(4H)-oxazolones</td>
<td>134</td>
</tr>
<tr>
<td>4-benzyl-5(4H)-oxazolones</td>
<td>185</td>
</tr>
<tr>
<td>4-benzylidene-5(4H)-oxazolones</td>
<td>286</td>
</tr>
<tr>
<td>4-bis[(benzylthio)methylene]-5(4H)-oxazolones</td>
<td>228</td>
</tr>
<tr>
<td>4-bis[(methylthio)methylene]-5(4H)-oxazolones</td>
<td>228</td>
</tr>
<tr>
<td>4-sec-butyl-5(4H)-oxazolones</td>
<td>185</td>
</tr>
<tr>
<td>4-cycloalkylidene-2-phenyl(methyl)-5(4H)-oxazolones</td>
<td>282</td>
</tr>
<tr>
<td>4-cyclopropenyl-4-substituted-5(4H)-oxazolones</td>
<td>194</td>
</tr>
<tr>
<td>4-heteroarylmethylene-2-substituted-5(4H)-oxazolones</td>
<td>210</td>
</tr>
<tr>
<td>4-heteroarylmethylene-5(4H)-oxazolones</td>
<td>210, 241, 286, 297</td>
</tr>
<tr>
<td>4-heteromethylene-2-phenyl-5(4H)-oxazolones</td>
<td>263</td>
</tr>
<tr>
<td>4-heteromethylene-2-substituted-5(4H)-oxazolones</td>
<td>218</td>
</tr>
<tr>
<td>4-heteromethylene-5(4H)-oxazolones</td>
<td>221, 228, 240, 277, 293</td>
</tr>
<tr>
<td>4-isopropyl-5(4H)-oxazolones</td>
<td>185</td>
</tr>
<tr>
<td>4-monosubstituted-5(4H)-oxazolones</td>
<td>164, 168, 171, 172, 194, 289</td>
</tr>
<tr>
<td>4-substituted-2-vinyl-5(4H)-oxazolones</td>
<td>160</td>
</tr>
<tr>
<td>4-substituted-4(triphenylphosphonio)-5(4H)-oxazolones</td>
<td>289</td>
</tr>
<tr>
<td>4-substituted-5(4H)-oxazolones</td>
<td>166</td>
</tr>
<tr>
<td>4-unsubstituted-5(4H)-oxazolones</td>
<td>168, 175, 186</td>
</tr>
<tr>
<td>4,4-(diaryl)methyl)-2-phenyl-5(4H)-oxazolones</td>
<td>163</td>
</tr>
<tr>
<td>4,4-di(isopropythio)-2-substituted-5(4H)-oxazolones</td>
<td>190</td>
</tr>
<tr>
<td>4,4-dialkyl-5(4H)-oxazolones</td>
<td>135, 162, 163, 194</td>
</tr>
<tr>
<td>4,4-dimethyl-2-substituted-5(4H)-oxazolones</td>
<td>154, 190</td>
</tr>
<tr>
<td>4,4-disubstituted-2-(trifluoromethyl)-5(4H)-oxazolones</td>
<td>185</td>
</tr>
<tr>
<td>4,4-disubstituted-2-phenyl-5(4H)-oxazolones</td>
<td>187</td>
</tr>
</tbody>
</table>
4,4-disubstituted-5(4H)-oxazolones, 166, 186
4,4′-bis(oxazolones), 194, 195, 289
5(4H)-oxazolylideneacetates, 193
allyl substituted-5(4H)-oxazolones, 136
bis-4-arylidene-5(4H)-oxazolones, 237
bis(oxazolones), 191, 194, 195, 195, 202, 203, 237, 239, 284, 289, 291
α,α-dialkyl-5(4H)-oxazolones, 160
ethylene-bridged bis(oxazolones), 203
fluorooxazolones, 175
heteroarylmethylene-5(4H)-oxazolones, 210
methyl 3-(5-oxo-2-phenyl-2-oxazolin-4-yl)acrylates, 164
oxazolone spirocyclopropanes, 261, 266
oxazolone spiroisoxazolines, 268
oxazolone spiropyrazolines, 267
phenylene-bridged bis(oxazolones), 203
saturated 2-vinyl-5(4H)-oxazolones, 160
saturated 2,4,4-trisubstituted 5(4H)-oxazolones, 165, 166, 167
saturated 4-acyl-2,4-disubstituted 5(4H)-oxazolones, 170
unsaturated (E)-5(4H)-oxazolones, 210–212, 213, 257, 285

Oxazolones

2(3H)-Oxazolones
3-(2-pyrimidinyl)-2(3H)-oxazolone, 18
3-acetyl-2(3H)-oxazolone, 25, 32, 35, 40
3-amino-2(3H)-oxazolone, 15
3-amino-4,5-diphenyl-2(3H)-oxazolone, 42
3-tert-butoxycarbonyl-2(3H)-oxazolone, 35
3-trimethylsilylethoxymethyl-2(3H)-oxazolone, 36
4-(3-indolyl)-2(3H)-oxazolone, 14, 36
4-(difluoromethyl)-5-p-tolylthio-2(3H)-oxazolone, 12
4-methyl-2(3H)-oxazolone, 36
4-methyl-3-phenyl-5-vinyl-2(3H)-oxazolone, 12
4-naphthyl-2(3H)-oxazolone, 4
5-(3-indolyl)-2(3H)-oxazolone, 36
5-ethoxy-3-methyl-2(3H)-oxazolone, 47
5-phenyl-3-(2-pyridinyl)-2(3H)-oxazolone, 18
2(5H)-Oxazolones
5,5-dimethyl-4-ethoxy-2(5H)-oxazolone, 94
4(5H)-Oxazolones, 2,4-Oxazolidinediones and 4,5-Oxazolinediones
[2-11C]5,5-dimethyl-2,4-oxazolidinedione, 99
[2-13C]5,5-dimethyl-2,4-oxazolidinedione, 99
2-(propynylamino)-5-phenyl-4(5H)-oxazolone, 84
2-amino-5-isopropyl-4(5H)-oxazolone, 68
2-amino-5-phenyl-4(5H)-oxazolone, 83
2-phenyl-4(5H)-oxazolone, 54, 61, 65, 66
2-thio-2,4-oxazolidinedione, 113
5-(4-methoxybenzylidine)-2,4-oxazolidinedione, 89
5-(benzylidene)-2-methythio-4(5H)-oxazolinedione, 76
5-methyl-2,4-oxazolidinedione, 100
5-phenyl-2,4-oxazolidinedione, 109, 117
5,5-diethyl-2,4-oxazolidinedione, 91
5,5-dimethyl-2-ethoxy-4(5H)-oxazolone, 94
5,5-dimethyl-2-ethoxy-4-(p-tolylimino)-4(5H)-oxazolone, 93
5,5-dimethyl-2,4-oxazolidinedione, 91, 94, 119
5,5-diphenyl-2,4-oxazolidinedione, 89
5(2H)-Oxazolones
2-(4-chlorophenyl)-2-(3,3-dimethylallyl)-4-phenyl-5(2H)-oxazolone, 148
2-(difluoromethyl)-4-methyl-5(2H)-oxazolone, 133
2,2-bis(trifluoromethyl)-5(2H)-oxazolone, 147, 148
2,2-diamino-[2-deoxy-β-D-erythro-pentofuranosyl]-4-amino-5(2H)-oxazolone, 150, 150, 151
Subject Index

685

4-(isopropoxy)-2-phenyl-2-(trifluoromethyl)-5(2H)-oxazolone, 145
4-benzyl-2-(trifluoromethyl)-5(2H)-oxazolone, 135, 160
4-methyl-2-(trifluoromethyl)-5(2H)-oxazolone, 132

5(4H)-Oxazolones

(E)-2-phenyl-4-(α-phenylethylidene)-5(4H)-oxazolone, 238
(E)-4-benzylidene-2-phenyl-5(4H)-oxazolone, 262, 272, 273, 285, 286
(E)-4-(but-2-en-1-ylidene)-2-phenyl-5(4H)-oxazolone, 286
(E)-4-(chloromethylene)-5(4H)-oxazolone, 277
(Z)-(N-acetyl-4-[(2-phenyl-5-oxo-4(5H)-oxazolidene)methyl]-1H-imidazole, 286
(Z)-2-methyl-4-(α-phenylethylidene)-5(4H)-oxazolone, 238, 286
(Z)-2-phenyl-4-(α-phenylethylidene)-5(4H)-oxazolone, 286
(Z)-4-(1-ethoxyethylidene)-2-phenyl-5(4H)-oxazolone, 286
(Z)-4-(acetoxyethylene)-2-phenyl-5(4H)-oxazolone, 286
(Z)-4-(ethyldene)-2-phenyl-5(4H)-oxazolone, 263
(Z)-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylene]-2-phenyl-5(4H)-oxazolone, 277
(Z)-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylene]-2-phenyl-5(4H)-oxazolone, 286
(Z)-4-[5′-[(2′-chloropyridylmethylene)]-2-phenyl-5(4H)-oxazolone, 274
(Z)-4-benzylidene-2-phenyl-5(4H)-oxazolone, 175, 262, 271, 272, 273, 285, 286, 297
2-(2′-aminophenyl)-5(4H)-oxazolone, 204
2-(2′-hydroxyphenyl)-5(4H)-oxazolone, 204
2-(4-bromophenyl)-4,4-dimethyl-5(4H)-oxazolone, 207
2-(4-bromophenyl)-4,4-diphenyl-5(4H)-oxazolone, 207
2-(4-bromophenyl)-4-ethyl-4-methyl-5(4H)-oxazolone, 207
2-(4-chlorophenyl)-4-(2-cyclohexen-1-yl)-4-phenyl-5(4H)-oxazolone, 207
2-(acyloxyethylene)-5(4H)-oxazolone, 263
2-(aminomethyl)-4-methyl-5(4H)-oxazolone, 291
2-(aminomethyl)-5(4H)-oxazolone, 291
2-(trifluoromethyl)-5(4H)-oxazolone, 186

2-benzyloxy-4-(tert-butyl)-4-methyl-5(4H)-oxazolone, 287
2-benzyloxy-4-isopropyl-4-methyl-5(4H)-oxazolone, 287
2-methyl (or phenyl)-4-(thienylmethylene)-5(4H)-oxazolone, 227
2-methyl-5(4H)-oxazolone, 174, 179
2-phenyl-4-(2,4,6-trimethylbenzylidene)-5(4H)-oxazolone, 286
2-phenyl-4-(4-toluidinomethylene)-5(4H)-oxazolone, 299
2-phenyl-4-(α-phenylethylidene)-5(4H)-oxazolone, 171
2-phenyl-4-((phosphoranylidene)-5(4H)-oxazolone, 175, 176
2-phenyl-4-(sulfanyl)methylene)-5(4H)-oxazolone, 265
2-phenyl-4-propionyl-5(4H)-oxazolone, 168
2-styryl-5(4H)-oxazolone, 192
2,2′-(1,4-phenylene)bis(4-phenylmethylene)-5(4H)-oxazolone, 260
2,2′-((p-phenylene)bis[4,4′-dimethyl-5(4H)-oxazolone], 202, 203
2,2′-bis[4,4-dimethyl-5(4H)-oxazolone], 202
2,4-dimethyl-5(4H)-oxazolone, 186
2,4-diphenyl-5(4H)-oxazolone, 201
4-(1-adamantyl)-2-(trifluoromethyl)-5(4H)-oxazolone, 152
4-(1-benzoyloxybenzylidene)-2-phenyl-5(4H)-oxazolone, 176
4-(3,3-dimethylallyl)-2-methyl-4-phenyl-5(4H)-oxazolone, 136
4-(aminomethylene)-2-phenyl-5(4H)-oxazolone, 223, 254
4-(anilinomethylene)-2-phenyl-5(4H)-oxazolone, 225
4-(bromomethylene)-2-phenyl-5(4H)-oxazolone, 263
4-(but-3-enylidene)-2-phenyl-5(4H)-oxazolone, 276
4-(chloromethylene)-2-phenyl-5(4H)-oxazolone, 219, 220, 263, 265
4-(dichloromethylene)-2-phenyl-5(4H)-oxazolone, 221
4-(N,N-dimethylaminomethylene)-2-phenyl-5(4H)-oxazolone, 225
4-(diphenylmethylene)-2-phenyl-5(4H)-oxazolone, 171
4-(ethoxymethylene)-2-(1-naphthyl)-5(4H)-oxazolone, 294
Tables

TABLE 5.1: SYNTHESIS OF 3-ARYL-5-tert-BUTYL-2(3H)-OXAZOLONES FROM ETHYL N-ARYLCARBAMATES AND α-BROMO KETONES, 4

TABLE 5.2: SYNTHESIS OF 5-ALKOXY-2(3H)-OXAZOLONES FROM α-AMINO ACID ESTERS, 9

TABLE 5.3: CYCLIZATION OF α-IMINO KETONES TO 4,5-DIPHENYL-2(3H)-OXAZOLONES AND 2-THIONES, 10

TABLE 5.4: SYNTHESIS OF 5-ALKYL-3-ARYL-2(3H)-OXAZOLONES FROM N-ARYL-N-(HYDROXY) ACYLACETAMIDES, 13

TABLE 5.5: SYNTHESIS OF 5-ALKYL-3-ARYL-4-HALO-2(3H)-OXAZOLONES FROM N-ARYL-N-(HYDROXY)-α-HALO ACYLACETAMIDES, 14

TABLE 5.6: 3-ALKYL-4,5-DISUBSTITUTED-2(3H)-OXAZOLONES FROM OXIMES AND DIALKYLCARBONATES, 17

TABLE 5.7: 2(3H)-OXAZOLONES FROM α-HYDROXY AMIDES AND PHOSPHORUS YLIDE 134, 21
TABLE 5.8: DIASTEREOSELECTIVE METHOXYBROMINATION OF 3-ACYL-2(3H)-OXAZO-LONES 159, 25

TABLE 5.9: DIASTEREOSELECTIVE METHOXYSELENYLATION OF 3-ACYL-2(3H)-OXAZO-LONES 159, 26

TABLE 5.10: DIASTEREOSELECTIVE [4 + 2] CYCLOADDITION OF AZODICARBOXYLATES TO 2(3H)-OXAZOLONES, 34

TABLE 5.11: SYNTHESIS OF ALKYL 2-OXAZOLIDINONE-4-CARBOXYLATES FROM 5-ALKOXY-2(3H)-OXAZOLONES, 43

TABLE 5.12: SYNTHESIS OF ALKYL 2-IMIDAZOLIDINONE-4-CARBOXYLATES AND ALKYL 2,3-DIAMINOPROPANE-1-CARBOXYLATES FROM 5-ALKOXY-2(3H)-OXAZOLONES, 44

TABLE 5.13: SYNTHESIS OF 5,5-DIALKOXY-2-OXAZOLIDINONES FROM 5-ALKOXY-2(3H)-OXAZOLONES, 44

TABLE 5.14: SYNTHESIS OF κ-AMINO ACID ESTERS FROM 5,5-DIALKOXY-2-OXAZOLIDINONES, 45

TABLE 5.15: SYNTHESIS OF ETHYL 2(3H)-OXAZOLONE-4-CARBOXYLATES FROM 3-NOSYL-OXY-2-KETO ESTERS OR 3-BROMO-2-KETO ESTERS, 48

TABLE 6.1: 5,5-DIPHENYL-2-SUBSTITUTED-4(5H)-OXAZOLONES FROM SULFILIMINES AND DIPHENYLKETENE, 57

TABLE 6.2: 2-[2-(κ-HETEROARYL)ETHENYL]-4(5H)-OXAZOLONIUM PERCHLORATES FROM OXAZOLONIUM SALTS AND ALDEHYDES, 64

TABLE 6.3: 5-(HYDROXYMETHYL)-3-PHENYL-1H-1,2,4-TRIAZoles FROM 2-PHENYL-4(5H)-OXAZOLONE AND HYDRAZINES, 66

TABLE 6.4: SPIROCYCLIC 2-AMINO-4(5H)-OXAZOLONES FROM κ-HYDROXY ESTERS AND GUANIDINE, 73

TABLE 6.5: 5-(BENZYLIDENE)-2-SUBSTITUTED-4(5H)-OXAZOLONES FROM 5-(BENZYLIDENE)-2-(METHYLTHIO)-4(5H)-OXAZOLONE, 76

TABLE 6.6: 2-AMINO-5-(CARBOXYALKYL)-4(5H)-OXAZOLONES FROM OXIDATIVE RING CONTRACTION OF 2-AMINOPYRIMIDINONES, 78

TABLE 6.7: BOULTON-KATRITZKY REARRANGEMENT PRODUCTS FROM 5,5-DIMETHYL-2-ETHOXY-4-(p-TOLYLIMINO)-4(5H)-OXAZOLONE AND HETEROCUMULENES, 93

TABLE 6.8: 5-ARYL-2,4-OXAZOLIDINEDIONES FROM CYCLIZATION OF κ-HYDROXY IMIDATES, 100

TABLE 6.9: SPIROCYCLIC 2,4-OXAZOLIDINEDIONES FROM CYCLIZATION OF κ-HYDROXY IMIDATES, 101

TABLE 6.10: SPIROCYCLIC 2,4-OXAZOLIDINEDIONES FROM 5- OR 7-SUBSTITUTED ISATINS, 103

TABLE 6.11: 3-ALKYL-2,4-OXAZOLIDINEDIONES FROM ALKYLATION OF 2,4-OXAZOLIDINEDIONES, 109

TABLE 6.12: IMIDAZOLONES FROM 5,5-DIMETHYL-2,4-OXAZOLIDINEDIONE AND 2H-AZIRINES, 119

TABLE 7.1: SYNTHESIS OF 5(2H)-OXAZOLONES VIA CYCLIZATION OF AMINO ACIDS OR AMINO NITRILES, 133

TABLE 7.2: SYNTHESIS OF 5(2H)-OXAZOLONES VIA ALKYLATION AT C-2, 135
TABLE 7.3: SYNTHESIS OF 5(2H)-OXAZOLONES VIA SIGMATROPIC REARRANGEMENT, 138

TABLE 7.4: SYNTHESIS OF 5(2H)-OXAZOLONES VIA REARRANGEMENT OF 5-ALKOXYOXAZOLES, 138

TABLE 7.5: SYNTHESIS OF 4-(ALKYLTHIO)-5(2H)-OXAZOLONES FROM SODIUM CYANODITHIOFORMATE, KETONES AND ALKYLATING AGENTS, 140

TABLE 7.6: SYNTHESIS OF 4-(ARYLTHIO)-5(2H)-OXAZOLONES FROM ETHYLCYANOFORMATE, KETONES AND ARYLTHIOLS, 141

TABLE 7.7: SYNTHESIS OF 4-ALKOXY-5(2H)-OXAZOLONES FROM 4-(PHENYLTHIO)-5(2H)-OXAZOLONES, 141

TABLE 7.8: SYNTHESIS OF 4-ALKOXY-5(2H)-OXAZOLONES FROM IMINOOXALATES AND KETONES OR ALDEHYDES, 142

TABLE 7.9: SYNTHESIS OF 4-(N,N-DIALKYLAMINO)-5(2H)-OXAZOLONES FROM AMIDINES AND CARBON DIOXIDE, 142

TABLE 7.10: 2-(TRIFLUOROMETHYL)PYRROLES FROM REACTION OF 5(2H)-OXAZOLONES WITH ELECTRON DEFICIENT UNSATURATED COMPOUNDS, 145

TABLE 7.11: GENERATION OF NITRILE YLIDES FROM 5(2H)-OXAZOLONES, 146

TABLE 7.12: AMINOLYSIS OF 5(2H)-OXAZOLONES, 146

TABLE 7.13: 5-(DIMETHYLAMINO)-3,6-DIHYDROPYRAZIN-2(1H)-ONES FROM REACTION OF 5(2H)-OXAZOLONES WITH 3-(DIMETHYLAMINO)-2H-AZIRINES, 148

TABLE 7.14: 3-ALKYL ASPARTIC ACID DERIVATIVES FROM REACTION OF 5(2H)-OXAZOLONES WITH YNAMINES, 149

TABLE 7.15: SYNTHESIS OF SATURATED 5(4H)-OXAZOLONES VIA CYCLIZATION OF AMINO ACID DERIVATIVES, 154

TABLE 7.16: SYNTHESIS OF SATURATED 5(4H)-OXAZOLONES VIA SIGMATROPIC REARRANGEMENT OF 5-ALKOXYOXAZOLES, 160

TABLE 7.17: SYNTHESIS OF SATURATED 2,4,4-TRISUBSTITUTED 5(4H)-OXAZOLONES VIA ALKYLATION OF SATURATED 5(4H)-OXAZOLONES AT C-4, 165

TABLE 7.18: SYNTHESIS OF SATURATED 2,4,4-TRISUBSTITUTED 5(4H)-OXAZOLONES BY REACTION OF SATURATED 5(4H)-OXAZOLONES WITH MICHAEL ACCEPTORS, 166

TABLE 7.19: SYNTHESIS OF SATURATED 2,4,4-TRISUBSTITUTED 5(4H)-OXAZOLONES VIAARYLATION OF SATURATED 5(4H)-OXAZOLONES AT C-4, 167

TABLE 7.20: SYNTHESIS OF SATURATED 4-ACYL-2,4-DISUBSTITUTED 5(4H)-OXAZOLONES VIA ACYLATION OF 2,4-DISUBSTITUTED 5(4H)-OXAZOLONES AT C-4, 170

TABLE 7.21: N-ACYLAMINO ACID ESTERS FROM ALCOHOLYSIS OF SATURATED 5(4H)-OXAZOLONES, 181

TABLE 7.22: SUBSTITUTED AMINO ACID AMIDES VIA OBRECHT’S METHODOLOGY FOR AMINOLYSIS OF SATURATED 5(4H)-OXAZOLONES, 189

TABLE 7.23: 2,5-DIARYLOXAZOLES FROM REACTION OF SATURATED 5(4H)-OXAZOLONES WITH ARENES, 191

TABLE 7.24: 5(4H)-OXAZOYLIDENEACETATES FROM REACTION OF SATURATED 5(4H)-OXAZOLONES WITH TRIPHENYLPHOSPHONIUM METHYLIDES, 193

TABLE 7.25: ENAMIDES FROM THERMOLYSIS OF SATURATED 5(4H)-OXAZOLONES, 193
TABLE 7.26: 4,4'-BIS(OXAZOLONES) FROM DIMERIZATION OF SATURATED 5(4H)-OXAZO-
LONES, 195
TABLE 7.27: SUBSTITUTED PYRROLES VIA CYCLOADDITION OF DIPOLAROPHILES WITH
MUNCHNONES PREPARED FROM SATURATED 5(4H)-OXAZOLONES, 197
TABLE 7.28: 2-PYRIDONES FROM CYCLOADDITION REACTIONS OF SATURATED 5(4H)-
OXAZOLONES WITH 1-AZADIENES, 199
TABLE 7.29: PYRIMIDIN-6-ONES FROM CYCLOADDITION REACTIONS OF SATURATED
5(4H)-OXAZOLONES WITH 1,3-DIAZADIENES, 200
TABLE 7.30: SYNTHESIS OF UNSATURATED 5(4H)-OXAZOLONES FROM N-ACYLGLYCINES
AND CARBONYL COMPOUNDS, 212
TABLE 7.31: UNSATURATED (E)-5(4H)-OXAZOLONES VIA ISOMERIZATION OF UNSATU-
RATED (Z)-5(4H)-OXAZOLONES, 213
TABLE 7.32: SYNTHESIS OF UNSATURATED 5(4H)-OXAZOLONES VIA CYCLIZATION OF
α,β-DIDEHYDROAMINO ACIDS OR α,β-UNSATURATED CARBODIMIDES, 214
TABLE 7.33: SYNTHESIS OF UNSATURATED 5(4H)-OXAZOLONES VIA CYCLIZATION OF
α,β-UNSATURATED IMINOPHOSPHORANES OR α,β-UNSATURATED ISOCYANIDES, 216
TABLE 7.34: SYNTHESIS OF UNSATURATED 5(4H)-OXAZOLONES FROM N-ACYLAMINO
ACID DERIVATIVES AND VILSMEIER-HAACK REAGENT, 217
TABLE 7.35: SYNTHESIS OF 4-(α-ARYLETHYLIDENE)-5(4H)-OXAZOLONES FROM REACTION
OF 4-ARYLIDENE-5(4H)-OXAZOLONES WITH DIAZOMETHANE, 218
TABLE 7.36: SYNTHESIS OF 4-ARYLIDENE-2-PHENYL-5(4H)-OXAZOLONES FROM STILLE
REACTION OF 4-(CHLOROMETHYLENE)-2-PHENYL-5(4H)-OXAZOLONE, 220
TABLE 7.37: SYNTHESIS OF 4-(AMINOMETHYLENE)-5(4H)-OXAZOLONES FROM 4-(HET-
EROMETHYLENE)-5(4H)-OXAZOLONES, 221
TABLE 7.38: SYNTHESIS OF 4-(ALKYLTHIOMETHYLENE)-5(4H)-OXAZOLONES FROM 4-
(AMINOMETHYLENE)-5(4H)-OXAZOLONES, 224
TABLE 7.39: N-ACYL DEHYDROAMINO ACIDS AND ESTERS FROM HYDROLYSIS AND
ALCOHOLYSIS OF UNSATURATED 5(4H)-OXAZOLONES, 229
TABLE 7.40: N-ACYL DEHYDROAMINO ACID AMIDES FROM AMINOLYSIS OF UNSATU-
RATED 5(4H)-OXAZOLONES, 237
TABLE 7.41: N-ACYLAMINO ACID AMIDES FROM REDUCTIVE AMINOLYSIS OF UNSATU-
RATED 5(4H)-OXAZOLONES, 241
TABLE 7.42: (E)-α-ACYLAMINO HYDRAZIDES FROM REACTION OF UNSATURATED 5(4H)-
OXAZOLONES WITH HYDRAZINES, 244
TABLE 7.43: 2-STYRYL-1-SUBSTITUTED IMIDAZOLONES FROM REACTION OF UNSATU-
RATED 5(4H)-OXAZOLONES WITH SCHIFF BASES, 247
TABLE 7.44: BENZIMIDAZOLES AND BENZOTHIAZOLES FROM REACTION OF UNSATU-
RATED 5(4H)-OXAZOLONES WITH 2-SUBSTITUTED ANILINES, 249
TABLE 7.45: AMINO ACID, AMINO ESTER AND AMINO ALCOHOL DERIVATIVES FROM
HYDROGENATION OF UNSATURATED 5(4H)-OXAZOLONES, 258
TABLE 7.46: OXAZOLONE SPIROCYCLOPROPANES FROM REACTION OF UNSATURATED
5(4H)-OXAZOLONES WITH A STABILIZED SULFUR YLIDE, 261
TABLE 7.47: OXAZOLONE SPIROCYCLOPROPANES FROM 1,3-DIPOLAR CYCLOADDITION
REACTION OF UNSATURATED 5(4H)-OXAZOLONES WITH DIAZOMETHANE, 266
TABLE 7.48: OXAZOLONE SPIROPYRAZOLINES FROM 1,3-DIPOLAR CYCLOADDITION REACTION OF UNSATURATED 5(4H)-OXAZOLONES WITH NITRILE IMINES, 267
TABLE 7.49: OXAZOLONE SPIROISOXAZOLINES FROM 1,3-DIPOLAR CYCLOADDITION REACTION OF UNSATURATED 5(4H)-OXAZOLONES WITH NITRILE OXIDES, 268
TABLE 7.50: DIELS-ALDER ADDUCTS FROM REACTION OF UNSATURATED 5(4H)-OXAZOLONES AND ACYCLIC DIENES, 278
TABLE 7.51: DIELS-ALDER ADDUCTS FROM REACTION OF UNSATURATED 5(4H)-OXAZOLONES AND CYCLIC DIENES, 280
TABLE 7.52: DIELS-ALDER ADDUCTS FROM REACTION OF UNSATURATED 5(4H)-OXAZOLONES AND ACTIVATED DIENES, 281
TABLE 8.1: OXAZOLINES FROM CARBOXYLIC ACIDS, 334–336
TABLE 8.2: OXAZOLINES FROM CARBOXYLIC ESTERS AND AMINO ALCOHOLS, 337
TABLE 8.3: OXAZOLINES FROM PRIMARY β-HYDROXY AMIDES AND SOCl₂, 340–344
TABLE 8.4: OXAZOLINES FROM SECONDARY AND TERTIARY β-HYDROXY AMIDES AND SOCl₂, 345
TABLE 8.5: OXAZOLINES FROM β-HYDROXY AMIDES USING VILSMEIER REAGENT, 348
TABLE 8.6: OXAZOLINES FROM URETHANE-PROTECTED TERTIARY β-HYDROXY AMIDES, 351
TABLE 8.7: OXAZOLINES VIA ACETATES, MESYLATES, AND TRIFLATES, 352–357
TABLE 8.8: OXAZOLINE FORMATION USING BURGESS REAGENT, 361–363
TABLE 8.9: OXAZOLINE FORMATION USING PEG-SUPPORTED BURGESS REAGENT, 366
TABLE 8.10: OXAZOLINES VIA THE MITSUNOBU REACTION OF β-HYDROXY AMIDES, 367
TABLE 8.11: CYCLIZATION OF THREONINE AND ALLO-THREONINE PEPTIDES UNDER MITSUNOBU CONDITIONS, 369
TABLE 8.12: OXAZOLINES FROM β-HYDROXY AMIDES USING DAST, 370–371
TABLE 8.13: COMPARISON OF DAST AND DEOXO-FLUOR FOR CYCLIZATION OF PEPTIDYL β-HYDROXY AMIDES, 372
TABLE 8.14: OXAZOLINES FROM HYDROXY AMIDES USING TRIPHENYLPHOSPHINE AND CARBON TETRACHLORIDE, 373–375
TABLE 8.15: OXAZOLINE CARBOXYLATES FROM 2-CHLORO-2-CYCLOPROPYLIDENEACETATES, 378
TABLE 8.16: OXAZOLINES FROM NITRILES AND AMINO ALCOHOLS, 385–386
TABLE 8.17: OXAZOLINES FROM IMIDATES AND AMINO ALCOHOLS, 388–389
TABLE 8.18: CONVERSION OF ALLYLIC ALCOHOLS TO β-AMINO ALCOHOLS VIA OXAZOLINES, 390
TABLE 8.19: OXAZOLINES FROM CYCLIZATION OF EPOXYTRICHLOORACETIMIDATES CATALYZED BY DIETHYLLALUMINUM CHLORIDE, 392
TABLE 8.20: OXAZOLINES FROM ALKENES, 398
TABLE 8.21: OXAZOLINES FROM α-ISOCYANOESTERS, 407
TABLE 8.22: OXAZOLINES FROM [4 + 2] CYCLOADDITIONS, 411
TABLE 8.23: HYDROLYSIS OF OXAZOLINES, 419–421
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.24</td>
<td>Unmasking the side-chain of Taxol analogs by acid hydrolysis, 422–423</td>
</tr>
<tr>
<td>8.25</td>
<td>Hydrolysis of oxazoline 329 under basic conditions, 427</td>
</tr>
<tr>
<td>8.26</td>
<td>Lithiation of oxazolinylferricene 439 and trapping with electrophiles, 453–454</td>
</tr>
<tr>
<td>8.27</td>
<td>Lithiation of oxazolinylferricene 439 and trapping with TMSCI, 457</td>
</tr>
<tr>
<td>8.28</td>
<td>Lithiation of arenes by EVL-HMPA, 459</td>
</tr>
<tr>
<td>8.29</td>
<td>Oxazole-directed stereoselective synthesis of biphenyls, 462</td>
</tr>
<tr>
<td>8.30</td>
<td>Diastereoselectivity in Ullmann coupling reactions (Scheme 8.158), 466</td>
</tr>
<tr>
<td>8.31</td>
<td>Diastereoselective conjugate additions of EVL, 470</td>
</tr>
<tr>
<td>8.32</td>
<td>Addition of lithium amides to oxazolinylnaphthalenes, 472–473</td>
</tr>
<tr>
<td>8.33</td>
<td>Hetero diels-alder reaction of chiral 2-alkenyl-2-oxazolines (Scheme 8.168), 477</td>
</tr>
<tr>
<td>8.34</td>
<td>Palladium-catalyzed alkylation of diphenylallyl acetate with dimethyl malonate, 489</td>
</tr>
<tr>
<td>8.35</td>
<td>Palladium-catalyzed alkylation of dimethylallyl acetate and dimethylallyl 1-butyllcarbonate with dimethyl malonate, 490</td>
</tr>
<tr>
<td>8.36</td>
<td>Palladium-catalyzed alkylation of 3-acetoxy-cyclohexene with dimethyl malonate, 491</td>
</tr>
<tr>
<td>8.37</td>
<td>Asymmetric intermolecular Heck reaction, 494</td>
</tr>
<tr>
<td>8.38</td>
<td>Asymmetric hydrogenation of styrenes 597 (Scheme 8.185), 496–497</td>
</tr>
<tr>
<td>8.39</td>
<td>Enantioselective transfer hydrogenation of ketones, 500</td>
</tr>
<tr>
<td>8.40</td>
<td>Asymmetric addition of dialkylzinc reagents to aldehydes, 502</td>
</tr>
<tr>
<td>8.41</td>
<td>Asymmetric Michael additions to cyclic enones, 505</td>
</tr>
<tr>
<td>8.42</td>
<td>Reaction of 647 with bifunctional electrophiles, 510–511</td>
</tr>
<tr>
<td>9.1</td>
<td>Masamune's Cu(II)-bis(oxazoline)-catalyzed cyclopropanation, 539</td>
</tr>
<tr>
<td>9.2</td>
<td>Evans' Cu(I)-bis(oxazoline)-catalyzed cyclopropanation, 539</td>
</tr>
<tr>
<td>9.3</td>
<td>Cyclopropanations using various metals and ligands, 542</td>
</tr>
<tr>
<td>9.4</td>
<td>Cyclopropanation of diazoacetate esters, 543</td>
</tr>
<tr>
<td>9.5</td>
<td>Cyclopropanation of enol ethers, 543</td>
</tr>
<tr>
<td>9.6</td>
<td>Intramolecular cyclopropanations, 544</td>
</tr>
<tr>
<td>9.7</td>
<td>Corey's diels-alder reaction using Fe(III) halides, 546</td>
</tr>
<tr>
<td>9.8</td>
<td>Corey's diels-alder reaction using Fe(III) or Mg(II) salts, 547</td>
</tr>
<tr>
<td>9.9</td>
<td>CuOTf-mediated diels-alder reaction, 548</td>
</tr>
<tr>
<td>9.10</td>
<td>Inda-box-mediated diels-alder reaction, 549</td>
</tr>
<tr>
<td>9.11</td>
<td>Diels-alder reaction using anhydrous and hydrated Mg(II), 550</td>
</tr>
<tr>
<td>9.12</td>
<td>DBF-box-mediated diels-alder reaction, 551</td>
</tr>
<tr>
<td>9.13</td>
<td>Diels-alder reactions with substituted acroleins, 552</td>
</tr>
</tbody>
</table>
TABLE 9.14: DIELS-ALDER REACTIONS OF N-ACYL OXAZOLIDINONES, 553
TABLE 9.15: DIELS-ALDER REACTIONS WITH VARIOUS DIENOPHILES, 553
TABLE 9.16: ENANTIOSELECTIVE ENE REACTIONS OF ETHYL GLYOXYLATE, 556
TABLE 9.17: ENANTIOSELECTIVE HETERO DIELS-ALDER AND ENE REACTION PRODUCTS, 557
TABLE 9.18: HETERO DIELS-ALDER REACTION OF DANISHEFSKY’S DIENE WITH GLYOXYLATE ESTERS, 558
TABLE 9.19: ENANTIOSELECTIVE HETERO DIELS-ALDER REACTIONS USING DANISHEFSKY’S DIENE, 559
TABLE 9.20: ENANTIOSELECTIVE HETERO DIELS-ALDER REACTIONS OF \(\alpha,\beta \)-UNSATURATED ACYL PHOSPHONATES, 560
TABLE 9.21: 1,3-DIPOLAR CYCLOADDITION OF PHENYLACETYLENE, 561
TABLE 9.22: ENANTIOSELECTIVE 1,3-DIPOLAR CYCLOADDITION OF \(\alpha,\beta \)-UNSATURATED OXAZOLIDINONES AND NITRONES, 562
TABLE 9.23: ENANTIOSELECTIVE SUBSTITUTION OF 1,3-DIPHENYLALLYL ACETATE WITH DIETHYLMALONATE, 563
TABLE 9.24: FERROCENE-BOX MEDIATED ENANTIOSELECTIVE SUBSTITUTION OF 1,3-DIPHENYLALLYL ACETATE WITH DIETHYLMALONATE, 564
TABLE 9.25: MUKAIYAMA ALDOL REACTION OF BENZYLOXYACETALDEHYDE AND A TRIMETHYLSILYL ENOL ETHER, 565
TABLE 9.26: ENANTIOSELECTIVE ALDOL REACTION MEDIATED BY BU-BOX, 566
TABLE 9.27: Cu(II)-BU-BOX-MEDIATED MUKAIYAMA ALDOL REACTIONS, 566
TABLE 9.28: PHE-BOX-MEDIATED FREE RADICAL CONJUGATE ADDITION, 567
TABLE 9.29: ENANTIOSELECTIVE FREE RADICAL CONJUGATE ADDITIONS TO \(\alpha,\beta \)-UNSATURATED N-ACYL OXAZOLIDINONES, 568
TABLE 9.30: POLAR CONJUGATE ADDITION REACTION, 569
TABLE 9.31: BIS(OXAZOLINE)-MEDIATED CONJUGATE ADDITIONS, 569
TABLE 9.32: ASYMMETRIC ADDITION TO IMINES, 571
TABLE 9.33: ENANTIOSELECTIVE ADDITION OF ALLYLZINC REAGENTS TO CYCLIC IMINES, 571
TABLE 9.34: AZIRIDINATION OF CINNAMATE ESTERS, 575
TABLE 9.35: BIS(OXAZOLINE)-MEDIATED ALLYLIC OXIDATION, 577
TABLE 9.36: HYDROSILYLATION OF ACETOPHENONE, 578
TABLE 9.37: BIS(OXAZOLINE)-MEDIATED TRANSFER HYDROGENATION OF KETONES, 579
TABLE 9.38: BIS(OXAZOLINE) LIGANDS, 582–585
TABLE 9.39: CYCLOPROPANATIONS WITH SULFUR YLIDES, 586
TABLE 9.40: BIS(OXAZOLINE)-MEDIATED FRIEDEL-CRAFTS REACTIONS OF INDOLES, 589